so reading the following question (Correct use of FORTRAN INTENT() for large arrays) I learned that defining a variable with intent(in) isn't enough, since when the variable is passed to another subroutine/function, it can be changed again. So how can I avoid this? In the original thread they talked about putting the subroutine into a module, but that doesn't help for me. For example I want to calculate the determinant of a matrix with a LU-factorization. Therefore I use the Lapack function zgetrf, but however this function alters my input matrix and the compiler don't displays any warnings. So what can I do?
module matHelper
implicit none
contains
subroutine initMat(AA)
real*8 :: u
double complex, dimension(:,:), intent(inout) :: AA
integer :: row, col, counter
counter = 1
do row=1,size(AA,1)
do col=1,size(AA,2)
AA(row,col)=cmplx(counter ,0)
counter=counter+1
end do
end do
end subroutine initMat
!subroutine to write a Matrix to file
!Input: AA - double complex matrix
! fid - integer file id
! fname - file name
! stat - integer status =replace[0] or old[1]
subroutine writeMat(AA,fid, fname, stat)
integer :: fid, stat
character(len=*) :: fname
double complex, dimension(:,:), intent(in) :: AA
integer :: row, col
character (len=64) :: fmtString
!opening file with given options
if(fid /= 0) then
if(stat == 0) then
open(unit=fid, file=fname, status='replace', &
action='write')
else if(stat ==1) then
open(unit=fid, file=fname, status='old', &
action='write')
else
print*, 'Error while trying to open file with Id', fid
return
end if
end if
!initializing matrix print format
write(fmtString,'(I0)') size(aa,2)
fmtString = '('// trim(fmtString) //'("{",ES10.3, ",", 1X, ES10.3,"}",:,1X))'
!write(*,*) fmtString
!writing matrix to file by iterating through each row
do row=1,size(aa,1)
write(fid,fmt = fmtString) AA(row,:)
enddo
write(fid,*) ''
end subroutine writeMat
!function to calculate the determinant of the input
!Input: AA - double complex matrix
!Output determinantMat - double complex,
! 0 if AA not a square matrix
function determinantMat(AA)
double complex, dimension(:,:), intent(in) :: AA
double complex :: determinantMat
integer, dimension(min(size(AA,1),size(AA,2)))&
:: ipiv
integer :: ii, info
!check if not square matrix, then set determinant to 0
if(size(AA,1)/= size(AA,2)) then
determinantMat = 0
return
end if
!compute LU facotirzation with LAPACK function
call zgetrf(size(AA,1),size(AA,2), AA,size(AA,1), ipiv,info)
if(info /= 0) then
determinantMat = cmplx(0.D0, 0.D0)
return
end if
determinantMat = cmplx(1.D0, 0.D0)
!determinant of triangular matrix is product of diagonal elements
do ii=1,size(AA,1)
if(ipiv(ii) /= ii) then
!a permutation was done, so a factor of -1
determinantMat = -determinantMat *AA(ii,ii)
else
!no permutation, so no -1
determinantMat = determinantMat*AA(ii,ii)
end if
end do
end function determinantMat
end module matHelper
!***********************************************************************
!module which stores matrix elements, dimension, trace, determinant
program test
use matHelper
implicit none
double complex, dimension(:,:), allocatable :: AA, BB
integer :: n, fid
fid = 0;
allocate(AA(3,3))
call initMat(AA)
call writeMat(AA,0,' ', 0)
print*, 'Determinante: ',determinantMat(AA) !changes AA
call writeMat(AA,0, ' ', 0)
end program test
PS: I am using the ifort compiler v15.0.3 20150407
I do not have ifort at home, but you may want to try compiling with '-check interfaces' and maybe with '-ipo'. You may need the path to 'zgetrf' for the '-check interfaces' to work, and if that is not source then it may not help.
If you declare 'function determinantMat' as 'PURE FUNCTION determinantMat' then I am pretty sure it would complain because 'zgetrf' is not known to be PURE nor ELEMENTAL. Try ^this stuff^ first.
If LAPACK has a module, then zgetrf could be known to be, or not be, PURE/ELEMENTAL. https://software.intel.com/en-us/articles/blas-and-lapack-fortran95-mod-files
I would suggest you add to your compile line:
-check interfaces -ipo
During initial build I like (Take it out for speed once it works):
-check all -warn all
Making a temporary array is one way around it. (I have not compiled this, so it is only a conceptual exemplar.)
PURE FUNCTION determinantMat(AA)
USE LAPACK95 !--New Line--!
IMPLICIT NONE !--New Line--!
double complex, dimension(:,:) , intent(IN ) :: AA
double complex :: determinantMat !<- output
!--internals--
integer, dimension(min(size(AA,1),size(AA,2))) :: ipiv
!!--Next line is new--
double complex, dimension(size(AA,1),size(AA,2)) :: AA_Temp !!<- I have no idea if this will work, you may need an allocatable??
integer :: ii, info
!check if not square matrix, then set determinant to 0
if(size(AA,1)/= size(AA,2)) then
determinantMat = 0
return
end if
!compute LU factorization with LAPACK function
!!--Next line is new--
AA_Temp = AA !--Initialise AA_Temp to be the same as AA--!
call zgetrf(size(AA_temp,1),size(AA_Temp,2), AA_Temp,size(AA_Temp,1), ipiv,info)
if(info /= 0) then
determinantMat = cmplx(0.D0, 0.D0)
return
end if
determinantMat = cmplx(1.D0, 0.D0)
!determinant of triangular matrix is product of diagonal elements
do ii=1,size(AA_Temp,1)
if(ipiv(ii) /= ii) then
!a permutation was done, so a factor of -1
determinantMat = -determinantMat *AA_Temp(ii,ii)
else
!no permutation, so no -1
determinantMat = determinantMat*AA_Temp(ii,ii)
end if
end do
end function determinantMat
With the 'USE LAPACK95' you probably do not need PURE, but if you wanted it to be PURE then you want to explicitly say so.
Related
I'm writing a code for LU decomposition and I don't know how to fix the "unexpected data declaration statement" pointed at line 8 (where I'm declaring an array. See the code fragment). Why is it unexpected?
!Decomposição LU
!-----------------------------------------------------------
PROGRAM LUdecomp
IMPLICIT INTEGER (I-K,N), REAL (A-H, L-M,O-Z)
INTEGER, PARAMETER :: N=3
REAL, DIMENSION (N,N) :: A,L,U
A = reshape((/3.,1.,4.,4.,2.,0.,3.,2.,3./),(/3,3/)) !exemplo do Bortoli*******
REAL, DIMENSION(3) :: B=(/9.,3.,-2./),Z,X
OPEN(1,file = 'LUFACTOR.out')
!
! FORALL (I = 1:N, J = 1:N) A(I,J) = 1.0/REAL(I+J-1)
!-------Fazendo a fatoração A = LU-----------------------------
CALL LU(N, A, L, U)
DO I=1,N
WRITE(*,10)(L(I,J), J=1,N), (U(I,J), J=1,N)
END DO
10 FORMAT(3(F8.4), 7x, 3(F8.4))
!
This statement
REAL, DIMENSION(3) :: B=(/9.,3.,-2./),Z,X
is in the wrong place. In a Fortran program-unit (program, subroutine, function) -- certainly one without the new ASSOCIATE and BLOCK constructs -- all declarations have to precede all executable statements.
Move the misplaced statement ahead of the first executable statement.
this is the program. and I got an error why?
''''code'''''
I don't know why the whole doesn't appear, I tried to determine the area and volume for a random number.
----------------why-------------
'''Fortran
'program exercise2'
!
integer :: N,i
type :: Values
double precision :: radius,area,volume
end type
!
!
type(Values),allocatable, dimension(:) :: s
integer :: bi
!
!Read the data to create the random number
write(6,*) 'write your number '
read(5,*) N
allocate(s(N))
bi = 3.14
!create the random number
call random_seed()
do i=1,N
call random_number(s(i)%radius)
s(i)%area=areacircle(s(i)%radius)
s(i)%volume=volumesphere(s(i)%radius)
end do
!
open(15,file='radius.out',status='new')
write(15,*) s(i)%radius
open(16,file='output2.out',status='new')
r = real(s(i)%radius)
!Two function
contains
double precision function areacircle (s)
implicit none
double precision :: s
do i=1 , N
areacircle=bi*r**2
end do
return
end function areacircle
!
!
double precision function volumesphere (s)
implicit none
double precision :: s
do i=1,N
volumesphere=4/3*bi*r**3
end do
return
write(16,*) r , areacircle , volumesphere
end function volumesphere
'end program exercise2'
'''''''
so anyone know why?
This likely does what you want. As the computation of area and volume involve a single input that does not change, I've changed your functions to be elemental. This allows an array argument where the function is executed for each element of the array. I also changed double precision to use Fortran kind type parameter mechanism, because typing is real(dp) is much shorter.
Finally, never write a Fortran program without the implicit none statement.
program exercise2
implicit none ! Never write a program without this statement
integer, parameter :: dp = kind(1.d0) ! kind type parameter
integer n, i
type values
real(dp) radius, area, volume
end type
type(values), allocatable :: s(:)
real(dp) bi ! integer :: bi?
! Read the data to create the random number
write(6,*) 'write your number '
read(5,*) n
! Validate n is validate.
if (n < 1) stop 'Invalid number'
allocate(s(n))
bi = 4 * atan(1.d0) ! bi = 3.14? correctly determine pi
call random_seed() ! Use default seeding
call random_number(s%radius) ! Fill radii with random numbers
s%area = areacircle(s%radius) ! Compute area
s%volume = volumesphere(s%radius) ! Compute volume
write(*,'(A)') ' Radii Area Volume'
do i = 1, n
write(*, '(3F9.5)') s(i)
end do
contains
elemental function areacircle(s) result(area)
real(dp) area
real(dp), intent(in) :: s
area = bi * s**2
end function areacircle
elemental function volumesphere(s) result(volume)
real(dp) volume
real(dp), intent(in) :: s
volume = (4 * bi / 3) * s**3
end function volumesphere
end program exercise2
I am struggling with reading a text string in. Am using gfortran 4.9.2.
Below I have written a little subroutine in which I would like to submit the write format as argument.
Ideally I'd like to be able to call it with
call printarray(mat1, "F8.3")
to print out a matrix mat1 in that format for example. The numbers of columns should be determined automatically inside the subroutine.
subroutine printarray(x, udf_temp)
implicit none
real, dimension(:,:), intent(in) :: x ! array to be printed
integer, dimension(2) :: dims ! array for shape of x
integer :: i, j
character(len=10) :: udf_temp ! user defined format, eg "F8.3, ...
character(len = :), allocatable :: udf ! trimmed udf_temp
character(len = 10) :: udf2
character(len = 10) :: txt1, txt2
integer :: ncols ! no. of columns of array
integer :: udf_temp_length
udf_temp_length = len_trim(udf_temp)
allocate(character(len=udf_temp_length) :: udf)
dims = shape(x)
ncols = dims(2)
write (txt1, '(I5)') ncols
udf2 = trim(txt1)//adjustl(udf)
txt2 = "("//trim(udf2)//")"
do i = 1, dims(1)
write (*, txt2) (x(i, j), j = 1, dims(2)) ! this is line 38
end do
end suroutine printarray
when I set len = 10:
character(len=10) :: udf_temp
I get compile error:
call printarray(mat1, "F8.3")
1
Warning: Character length of actual argument shorter than of dummy argument 'udf_temp' (4/10) at (1)
When I set len = *
character(len=*) :: udf_temp
it compiles but at runtime:
At line 38 of file where2.f95 (unit = 6, file = 'stdout')
Fortran runtime error: Unexpected element '( 8
What am I doing wrong?
Is there a neater way to do this?
Here's a summary of your question that I will try to address: You want to have a subroutine that will print a specified two-dimensional array with a specified format, such that each row is printed on a single line. For example, assume we have the real array:
real, dimension(2,8) :: x
x = reshape([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], shape=[2,8], order=[2,1])
! Then the array is:
! 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000
! 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000
We want to use the format "F8.3", which prints floating point values (reals) with a field width of 8 and 3 decimal places.
Now, you are making a couple of mistakes when creating the format within your subroutine. First, you try to use udf to create the udf2 string. This is a problem because although you have allocated the size of udf, nothing has been assigned to it (pointed out in a comment by #francescalus). Thus, you see the error message you reported: Fortran runtime error: Unexpected element '( 8.
In the following, I make a couple of simplifying changes and demonstrate a few (slightly) different techniques. As shown, I suggest the use of * to indicate that the format can be applied an unlimited number of times, until all elements of the output list have been visited. Of course, explicitly stating the number of times to apply the format (ie, "(8F8.3)" instead of "(*(F8.3))") is fine, but the latter is slightly less work.
program main
implicit none
real, dimension(2,8) :: x
character(len=:), allocatable :: udf_in
x = reshape([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], shape=[2,8], order=[2,1])
udf_in = "F8.3"
call printarray(x, udf_in)
contains
subroutine printarray(x, udf_in)
implicit none
real, dimension(:,:), intent(in) :: x
character(len=*), intent(in) :: udf_in
integer :: ncols ! size(x,dim=2)
character(len=10) :: ncols_str ! ncols, stringified
integer, dimension(2) :: dims ! shape of x
character(len=:), allocatable :: udf0, udf1 ! format codes
integer :: i, j ! index counters
dims = shape(x) ! or just use: ncols = size(x, dim=2)
ncols = dims(2)
write (ncols_str, '(i0)') ncols ! use 'i0' for min. size
udf0 = "(" // ncols_str // udf_in // ")" ! create string: "(8F8.3)"
udf1 = "(*(" // udf_in // "))" ! create string: "(*(F8.3))"
print *, "Version 1:"
do i = 1, dims(1)
write (*, udf0) (x(i, j), j = 1,ncols) ! implied do-loop over j.
end do
print *, "Version 2:"
do i = 1, dims(1)
! udf1: "(*(F8.3))"
write (*, udf1) (x(i, j), j = 1,ncols) ! implied do-loop over j
end do
print *, "Version 3:"
do i = 1, size(x,dim=1) ! no need to create nrows/ncols vars.
write(*, udf1) x(i,:) ! let the compiler handle the extents.
enddo
end subroutine printarray
end program main
Observe: the final do-loop ("Version 3") is very simple. It does not need an explicit count of ncols because the * takes care of it automatically. Due to its simplicity, there is really no need for a subroutine at all.
besides the actual error (not using the input argument), this whole thing can be done much more simply:
subroutine printarray(m,f)
implicit none
character(len=*)f
real m(:,:)
character*10 n
write(n,'(i0)')size(m(1,:))
write(*,'('//n//f//')')transpose(m)
end subroutine
end
note no need for the loop constructs as fortran will automatically write the whole array , line wrapping as you reach the length of data specified by your format.
alternately you can use a loop construct, then you can use a '*' repeat count in the format and obviate the need for the internal write to construct the format string.
subroutine printarray(m,f)
implicit none
character(len=*)f
real m(:,:)
integer :: i
do i=1,size(m(:,1))
write(*,'(*('//f//'))')m(i,:)
enddo
end subroutine
end
I'm writing a code for LU decomposition and I don't know how to fix the "unexpected data declaration statement" pointed at line 8 (where I'm declaring an array. See the code fragment). Why is it unexpected?
!Decomposição LU
!-----------------------------------------------------------
PROGRAM LUdecomp
IMPLICIT INTEGER (I-K,N), REAL (A-H, L-M,O-Z)
INTEGER, PARAMETER :: N=3
REAL, DIMENSION (N,N) :: A,L,U
A = reshape((/3.,1.,4.,4.,2.,0.,3.,2.,3./),(/3,3/)) !exemplo do Bortoli*******
REAL, DIMENSION(3) :: B=(/9.,3.,-2./),Z,X
OPEN(1,file = 'LUFACTOR.out')
!
! FORALL (I = 1:N, J = 1:N) A(I,J) = 1.0/REAL(I+J-1)
!-------Fazendo a fatoração A = LU-----------------------------
CALL LU(N, A, L, U)
DO I=1,N
WRITE(*,10)(L(I,J), J=1,N), (U(I,J), J=1,N)
END DO
10 FORMAT(3(F8.4), 7x, 3(F8.4))
!
This statement
REAL, DIMENSION(3) :: B=(/9.,3.,-2./),Z,X
is in the wrong place. In a Fortran program-unit (program, subroutine, function) -- certainly one without the new ASSOCIATE and BLOCK constructs -- all declarations have to precede all executable statements.
Move the misplaced statement ahead of the first executable statement.
I want to tridiagonalize a real symmetric matrix using Fortran and LAPACK. LAPACK basically provides two routines, one operating on the full matrix, the other on the matrix in packed storage. While the latter surely uses less memory, I was wondering if anything can be said about the speed difference?
It's an empirical question, of course: but in general, nothing comes for free, and less memory/more runtime is a pretty common tradeoff.
In this case, the indexing for the data is more complex for the packed case, so as you traverse the matrix, the cost of getting your data is a little higher. (Complicating this picture is that for symmetric matrices, the lapack routines also assume a certain kind of packing - that you only have the upper or lower component of the matrix available).
I was messing around with an eigenproblem earlier today, so I'll use that as a measurement benchmark; trying with a simple symmetric test case (The Herdon matrix, from http://people.sc.fsu.edu/~jburkardt/m_src/test_mat/test_mat.html ), and comparing ssyevd with sspevd
$ ./eigen2 500
Generating a Herdon matrix:
Unpacked array:
Eigenvalues L_infty err = 1.7881393E-06
Packed array:
Eigenvalues L_infty err = 3.0994415E-06
Packed time: 2.800000086426735E-002
Unpacked time: 2.500000037252903E-002
$ ./eigen2 1000
Generating a Herdon matrix:
Unpacked array:
Eigenvalues L_infty err = 4.5299530E-06
Packed array:
Eigenvalues L_infty err = 5.8412552E-06
Packed time: 0.193900004029274
Unpacked time: 0.165000006556511
$ ./eigen2 2500
Generating a Herdon matrix:
Unpacked array:
Eigenvalues L_infty err = 6.1988831E-06
Packed array:
Eigenvalues L_infty err = 8.4638596E-06
Packed time: 3.21040010452271
Unpacked time: 2.70149993896484
There's about an 18% difference, which I must admit is larger than I expected (also with a slightly larger error for the packed case?). This is with intel's MKL. The performance difference will depend on your matrix in general, of course, as eriktous points out, and on the problem you're doing; the more random access to the matrix you have to do, the worse the overhead would be. The code I used is as follows:
program eigens
implicit none
integer :: nargs,n ! problem size
real, dimension(:,:), allocatable :: A, B, Z
real, dimension(:), allocatable :: PA
real, dimension(:), allocatable :: work
integer, dimension(:), allocatable :: iwork
real, dimension(:), allocatable :: eigenvals, expected
real :: c, p
integer :: worksize, iworksize
character(len=100) :: nstr
integer :: unpackedclock, packedclock
double precision :: unpackedtime, packedtime
integer :: i,j,info
! get filename
nargs = command_argument_count()
if (nargs /= 1) then
print *,'Usage: eigen2 n'
print *,' Where n = size of array'
stop
endif
call get_command_argument(1, nstr)
read(nstr,'(I)') n
if (n < 4 .or. n > 25000) then
print *, 'Invalid n ', nstr
stop
endif
! Initialize local arrays
allocate(A(n,n),B(n,n))
allocate(eigenvals(n))
! calculate the matrix - unpacked
print *, 'Generating a Herdon matrix: '
A = 0.
c = (1.*n * (1.*n + 1.) * (2.*n - 5.))/6.
forall (i=1:n-1,j=1:n-1)
A(i,j) = -1.*i*j/c
endforall
forall (i=1:n-1)
A(i,i) = (c - 1.*i*i)/c
A(i,n) = 1.*i/c
endforall
forall (j=1:n-1)
A(n,j) = 1.*j/c
endforall
A(n,n) = -1./c
B = A
! expected eigenvalues
allocate(expected(n))
p = 3. + sqrt((4. * n - 3.) * (n - 1.)*3./(n+1.))
expected(1) = p/(n*(5.-2.*n))
expected(2) = 6./(p*(n+1.))
expected(3:n) = 1.
print *, 'Unpacked array:'
allocate(work(1),iwork(1))
call ssyevd('N','U',n,A,n,eigenvals,work,-1,iwork,-1,info)
worksize = int(work(1))
iworksize = int(work(1))
deallocate(work,iwork)
allocate(work(worksize),iwork(iworksize))
call tick(unpackedclock)
call ssyevd('N','U',n,A,n,eigenvals,work,worksize,iwork,iworksize,info)
unpackedtime = tock(unpackedclock)
deallocate(work,iwork)
if (info /= 0) then
print *, 'Error -- info = ', info
endif
print *,'Eigenvalues L_infty err = ', maxval(eigenvals-expected)
! pack array
print *, 'Packed array:'
allocate(PA(n*(n+1)/2))
allocate(Z(n,n))
do i=1,n
do j=i,n
PA(i+(j-1)*j/2) = B(i,j)
enddo
enddo
allocate(work(1),iwork(1))
call sspevd('N','U',n,PA,eigenvals,Z,n,work,-1,iwork,-1,info)
worksize = int(work(1))
iworksize = iwork(1)
deallocate(work,iwork)
allocate(work(worksize),iwork(iworksize))
call tick(packedclock)
call sspevd('N','U',n,PA,eigenvals,Z,n,work,worksize,iwork,iworksize,info)
packedtime = tock(packedclock)
deallocate(work,iwork)
deallocate(Z,A,B,PA)
if (info /= 0) then
print *, 'Error -- info = ', info
endif
print *,'Eigenvalues L_infty err = ', &
maxval(eigenvals-expected)
deallocate(eigenvals, expected)
print *,'Packed time: ', packedtime
print *,'Unpacked time: ', unpackedtime
contains
subroutine tick(t)
integer, intent(OUT) :: t
call system_clock(t)
end subroutine tick
! returns time in seconds from now to time described by t
real function tock(t)
integer, intent(in) :: t
integer :: now, clock_rate
call system_clock(now,clock_rate)
tock = real(now - t)/real(clock_rate)
end function tock
end program eigens