How does the DownScale2x2 BasicPostProcess work in DirectX Tool Kit? - directx-12

I have a DirectX 12 desktop project on Windows 11 that implements post-processing using a combination of DXTK post-process effects.
The aim of the post-proc sequence is to end up with individual bloom and blur textures (along with a depth texture rendered in a depth pass) which are sampled in a 'big triangle' pixel shader to achieve a depth of field effect for the final backbuffer screen image.
The DXTK PostProcesses operate on the full-size (1920x1080) screen texture. Presently this isn't impacting performance (benchmarked at 60fps), but I imagine it could be an issue when I eventually want to support 4K resolutions in future, where full-size image post-processing could be expensive.
Since the recommended best practice is to operate on a scaled down copy of the source image,
I hoped to achieve this by using half-size (i.e. quarter resolution) working textures with the DownScale_2x2 BasicPostProcess option. But after several attempts experimenting with the effect, only the top-left quarter of the original source image is being rendered to the downsized texture... not the full image as expected per the documentation:
DownScale_2x2: Downscales each 2x2 block of pixels to an average. This is intended to write to a render target that is half the size of the source texture in each dimension.
Other points of note:
scene geometry is first rendered to a _R16G16B16A16_FLOAT MSAA render target and resolved to single-sample 16fp target
postprocessing operates on resolved single-sample 16fp target (where only the intermediate 'Pass1' & 'Pass2' working render targets are set to half the backbuffer length & width)
final processed image is tonemapped to the _R10G10B10A2_UNORM swapchain backbuffer for presentation.
The following code snippets show how I'm implementing the DownScale_2x2 shader into my post-process. Hopefully it's enough to resolve the issue and I can update with more info if necessary.
Resource initialization under CreateDeviceDependentResources():
namespace GameConstants {
constexpr DXGI_FORMAT BACKBUFFERFORMAT(DXGI_FORMAT_R10G10B10A2_UNORM); // back buffer to support hdr rendering
constexpr DXGI_FORMAT HDRFORMAT(DXGI_FORMAT_R16G16B16A16_FLOAT); // format for hdr render targets
constexpr DXGI_FORMAT DEPTHFORMAT(DXGI_FORMAT_D32_FLOAT); // format for render target depth buffer
constexpr UINT MSAACOUNT(4u); // requested multisample count
}
...
//
// Render targets
//
mMsaaHelper = std::make_unique<MSAAHelper>(GameConstants::HDRFORMAT, GameConstants::DEPTHFORMAT, GameConstants::MSAACOUNT);
mMsaaHelper->SetClearColor(GameConstants::CLEARCOLOR);
mDistortionRenderTex = std::make_unique<RenderTexture>(GameConstants::BACKBUFFERFORMAT);
mHdrRenderTex = std::make_unique<RenderTexture>(GameConstants::HDRFORMAT);
mPass1RenderTex = std::make_unique<RenderTexture>(GameConstants::HDRFORMAT);
mPass2RenderTex = std::make_unique<RenderTexture>(GameConstants::HDRFORMAT);
mBloomRenderTex = std::make_unique<RenderTexture>(GameConstants::HDRFORMAT);
mBlurRenderTex = std::make_unique<RenderTexture>(GameConstants::HDRFORMAT);
mDistortionRenderTex->SetClearColor(GameConstants::CLEARCOLOR);
mHdrRenderTex->SetClearColor(GameConstants::CLEARCOLOR);
mPass1RenderTex->SetClearColor(GameConstants::CLEARCOLOR);
mPass2RenderTex->SetClearColor(GameConstants::CLEARCOLOR);
mBloomRenderTex->SetClearColor(GameConstants::CLEARCOLOR);
mBlurRenderTex->SetClearColor(GameConstants::CLEARCOLOR);
mMsaaHelper->SetDevice(device); // Set the MSAA device. Note this updates GetSampleCount.
mDistortionRenderTex->SetDevice(device,
mPostProcSrvDescHeap->GetCpuHandle(SRV_PostProcDescriptors::DistortionMaskSRV),
mRtvDescHeap->GetCpuHandle(RTV_Descriptors::DistortionMaskRTV));
mHdrRenderTex->SetDevice(device,
mPostProcSrvDescHeap->GetCpuHandle(SRV_PostProcDescriptors::HdrSRV),
mRtvDescHeap->GetCpuHandle(RTV_Descriptors::HdrRTV));
mPass1RenderTex->SetDevice(device,
mPostProcSrvDescHeap->GetCpuHandle(SRV_PostProcDescriptors::Pass1SRV),
mRtvDescHeap->GetCpuHandle(RTV_Descriptors::Pass1RTV));
mPass2RenderTex->SetDevice(device,
mPostProcSrvDescHeap->GetCpuHandle(SRV_PostProcDescriptors::Pass2SRV),
mRtvDescHeap->GetCpuHandle(RTV_Descriptors::Pass2RTV));
mBloomRenderTex->SetDevice(device,
mPostProcSrvDescHeap->GetCpuHandle(SRV_PostProcDescriptors::BloomSRV),
mRtvDescHeap->GetCpuHandle(RTV_Descriptors::BloomRTV));
mBlurRenderTex->SetDevice(device,
mPostProcSrvDescHeap->GetCpuHandle(SRV_PostProcDescriptors::BlurSRV),
mRtvDescHeap->GetCpuHandle(RTV_Descriptors::BlurRTV));
...
RenderTargetState ppState(GameConstants::HDRFORMAT, DXGI_FORMAT_UNKNOWN); // 2d postproc rendering
...
// Set other postprocessing effects
mBloomExtract = std::make_unique<BasicPostProcess>(device, ppState, BasicPostProcess::BloomExtract);
mBloomPass = std::make_unique<BasicPostProcess>(device, ppState, BasicPostProcess::BloomBlur);
mBloomCombine = std::make_unique<DualPostProcess>(device, ppState, DualPostProcess::BloomCombine);
mGaussBlurPass = std::make_unique<BasicPostProcess>(device, ppState, BasicPostProcess::GaussianBlur_5x5);
mDownScalePass = std::make_unique<BasicPostProcess>(device, ppState, BasicPostProcess::DownScale_2x2);
Resource resizing under CreateWindowSizeDependentResources():
// Get current backbuffer dimensions
CD3DX12_RECT outputRect(mDeviceResources->GetOutputSize());
// Determine the render target size in pixels
mBackbufferSize.x = std::max<UINT>(outputRect.right - outputRect.left, 1u);
mBackbufferSize.y = std::max<UINT>(outputRect.bottom - outputRect.top, 1u);
...
mMsaaHelper->SetWindow(outputRect);
XMUINT2 halfSize(mBackbufferSize.x / 2u, mBackbufferSize.y / 2u);
mBloomRenderTex->SetWindow(outputRect);
mBlurRenderTex->SetWindow(outputRect);
mDistortionRenderTex->SetWindow(outputRect);
mHdrRenderTex->SetWindow(outputRect);
mPass1RenderTex->SizeResources(halfSize.x, halfSize.y);
mPass2RenderTex->SizeResources(halfSize.x, halfSize.y);
Post-processing implementation:
mMsaaHelper->Prepare(commandList);
Clear(commandList);
// Render 3d scene
mMsaaHelper->Resolve(commandList, mHdrRenderTex->GetResource(),
D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_RENDER_TARGET);
//
// Postprocessing
//
// Set texture descriptor heap in prep for postprocessing if necessary.
// Unbind dsv for postprocess textures and sprites.
ID3D12DescriptorHeap* postProcHeap[] = { mPostProcSrvDescHeap->Heap() };
commandList->SetDescriptorHeaps(UINT(std::size(postProcHeap)), postProcHeap);
// downscale pass
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvDownScaleDescriptor(mRtvDescHeap->GetCpuHandle(RTV_Descriptors::Pass1RTV));
commandList->OMSetRenderTargets(1u, &rtvDownScaleDescriptor, FALSE, nullptr);
mPass1RenderTex->BeginScene(commandList); // transition to render target state
mDownScalePass->SetSourceTexture(mPostProcSrvDescHeap->GetGpuHandle(SRV_PostProcDescriptors::HdrSRV), mHdrRenderTex->GetResource());
mDownScalePass->Process(commandList);
mPass1RenderTex->EndScene(commandList); // transition to pixel shader resource state
// blur horizontal pass
commandList->OMSetRenderTargets(1u, &rtvPass2Descriptor, FALSE, nullptr);
mPass2RenderTex->BeginScene(commandList); // transition to render target state
mGaussBlurPass->SetSourceTexture(mPostProcSrvDescHeap->GetGpuHandle(SRV_PostProcDescriptors::Pass1SRV), mPass1RenderTex->GetResource());
//mGaussBlurPass->SetSourceTexture(mPostProcSrvDescHeap->GetGpuHandle(SRV_PostProcDescriptors::HdrSRV), mHdrRenderTex->GetResource());
mGaussBlurPass->SetGaussianParameter(1.f);
mGaussBlurPass->SetBloomBlurParameters(TRUE, 4.f, 1.f); // horizontal blur
mGaussBlurPass->Process(commandList);
mPass2RenderTex->EndScene(commandList); // transition to pixel shader resource
// blur vertical pass
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvBlurDescriptor(mRtvDescHeap->GetCpuHandle(RTV_Descriptors::BlurRTV));
commandList->OMSetRenderTargets(1u, &rtvBlurDescriptor, FALSE, nullptr);
mBlurRenderTex->BeginScene(commandList); // transition to render target state
mGaussBlurPass->SetSourceTexture(mPostProcSrvDescHeap->GetGpuHandle(SRV_PostProcDescriptors::Pass2SRV), mPass2RenderTex->GetResource());
mGaussBlurPass->SetBloomBlurParameters(FALSE, 4.f, 1.f); // vertical blur
mGaussBlurPass->Process(commandList);
mBlurRenderTex->EndScene(commandList); // transition to pixel shader resource
// render the final image to hdr texture
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHdrDescriptor(mRtvDescHeap->GetCpuHandle(RTV_Descriptors::HdrRTV));
commandList->OMSetRenderTargets(1u, &rtvHdrDescriptor, FALSE, nullptr);
//mHdrRenderTex->BeginScene(commandList); // transition to render target state
commandList->SetGraphicsRootSignature(mRootSig.Get()); // bind root signature
commandList->SetPipelineState(mPsoDepthOfField.Get()); // set PSO
...
commandList->SetGraphicsRootConstantBufferView(RootParameterIndex::PSDofCB, psDofCB.GpuAddress());
commandList->SetGraphicsRootDescriptorTable(RootParameterIndex::PostProcDT, mPostProcSrvDescHeap->GetFirstGpuHandle());
// use the big triangle optimization to draw a fullscreen quad
commandList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
commandList->DrawInstanced(3u, 1u, 0u, 0u);
...
PIXBeginEvent(commandList, PIX_COLOR_DEFAULT, L"Tone Map");
// Set swapchain backbuffer as the tonemapping render target and unbind depth/stencil for sprites (UI)
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvDescriptor(mDeviceResources->GetRenderTargetView());
commandList->OMSetRenderTargets(1u, &rtvDescriptor, FALSE, nullptr);
CD3DX12_GPU_DESCRIPTOR_HANDLE postProcTexture(mPostProcSrvDescHeap->GetGpuHandle(SRV_PostProcDescriptors::HdrSRV));
ApplyToneMapping(commandList, postProcTexture);
Vertex shader:
/*
We use the 'big triangle' optimization that only requires three vertices to completely
cover the full screen area.
v0 v1 ID NDC UV
*____* -- ------- ----
| | / 0 (-1,+1) (0,0)
|_|/ 1 (+3,+1) (2,0)
| / 2 (-1,-3) (0,2)
|/
*
v2
*/
TexCoordVertexOut VS(uint id : SV_VertexID)
{
TexCoordVertexOut vout;
vout.texCoord = float2((id << 1u) & 2u, id & 2u);
// See Luna p.687
float x = vout.texCoord.x * 2.f - 1.f;
float y = -vout.texCoord.y * 2.f + 1.f;
// Procedurally generate each NDC vertex.
// The big triangle produces a quad covering the screen in NDC space.
vout.posH = float4(x, y, 0.f, 1.f);
// Transform quad corners to view space near plane.
float4 ph = mul(vout.posH, InvProj);
vout.posV = ph.xyz / ph.w;
return vout;
}
Pixel shader:
float4 PS(TexCoordVertexOut pin) : SV_TARGET
//float4 PS(float2 texCoord : TEXCOORD0) : SV_TARGET
{
...
// Get downscale texture sample
float3 colorDownScale = Pass1Tex.Sample(PointSampler, pin.texCoord).rgb;
...
return float4(colorDownScale, 1.f); // only top-quarter of source input is rendered!
//return float4(colorOutput, 1.f);
//return float4(distortCoords, 0.f, 1.f);
//return float4(colorHDR, 1.f);
//return float4(colorBlurred, 1.f);
//return float4(colorBloom, 1.f);
//return float4((p.z * 0.01f).rrr, 1.f); // multiply by a contrast factor
}

The PostProcess class uses a 'full-screen quad' rendering model. Since we can rely on Direct3D 10.0 or later class hardware, it makes use of the 'self-generating quad' model to avoid the need for a VB.
As such, the self-generating quad is going to be positioned wherever you have the viewport set. The scissors settings are also needed since it uses the "big-triangle" optimization to avoid having a diagonal seam across the image IF you have the viewport positioned anywhere except the full render target.
I have this detail in the Writing custom shaders tutorial, but I forgot to replicate it in the PostProcess docs on the wiki.
TL;DR: When you go to render to the smaller render target, use:
auto vp = m_deviceResources->GetScreenViewport();
Viewport halfvp(vp);
halfvp.height /= 2.f;
halfvp.width /= 2.f;
commandList->RSSetViewports(1, halfvp.Get12());
Then when we switch back to your full-size rendertarget, use:
commandList->RSSetViewports(1, &vp);
Updated the wiki page.

Related

Sampling Back Buffer in vertex Shader always returns 0 and float1 instead of float4

I am totally lost now. Have been trying to read the backbuffer inside a vertex shader for days with no luck whatsoever.
I'm trying to read the vertexes position from the backbuffer and it's neighboring pixels. (I'm trying to count how many black pixels are around a vertex, and if there are any color that vertex red in the pixel shader). I've created a separate ID3D11Texture2D and an SRV to go with the backBuffer. I copy the backbuffer into this SRV's resource. Bind the SRV using VSSetShaderResources but just can't seem to be able to read from it inside the vertex shader.
I will share some code here from the creation of these elements as well as include some RenderDoc screenshots that keep showing that the SRV is being bound to the VS stage and has the right texture associated with it but every Load or []operator or tex2dlod or SampleLevel(i bound a SamplerState too)
just keeps returning a single 1.0 value with the rest of the float4 never being returned, meaning i only get a float1 back. I will also include a renderdoc capture file if anyone wants to take a look.
This is a simple scene from tutorial 42 on the rastertek.com site, there is a ground plane with a cube and a sphere on it :
https://i.imgur.com/cbVC48E.gif
// Here is some code when creating the secondary texture and SRV that houses a //backBuffer
// Get the pointer to the back buffer.
result = m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&backBufferPtr);
if(FAILED(result))
{
MessageBox((*(hwnd)), L"Get the pointer to the back buffer FAILED", L"Error", MB_OK);
return false;
}
// Create another texture2d that we will use to make an SRV out of, and this texture2d will be used to copy the backbuffer to so we can read it in a shader
D3D11_TEXTURE2D_DESC bbDesc;
backBufferPtr->GetDesc(&bbDesc);
bbDesc.MipLevels = 1;
bbDesc.ArraySize = 1;
bbDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
bbDesc.Usage = D3D11_USAGE_DEFAULT;
bbDesc.MiscFlags = 0;
bbDesc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
result = m_device->CreateTexture2D(&bbDesc, NULL, &m_backBufferTx2D);
if (FAILED(result))
{
MessageBox((*(m_hwnd)), L"Create a Tx2D for backbuffer SRV FAILED", L"Error", MB_OK);
return false;
}
D3D11_SHADER_RESOURCE_VIEW_DESC descSRV;
ZeroMemory(&descSRV, sizeof(descSRV));
descSRV.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
descSRV.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D;
descSRV.Texture2D.MipLevels = 1;
descSRV.Texture2D.MostDetailedMip = 0;
result = GetDevice()->CreateShaderResourceView(m_backBufferTx2D, &descSRV, &m_backBufferSRV);
if (FAILED(result))
{
MessageBox((*(m_hwnd)), L"Creating BackBuffer SRV FAILED.", L"Error", MB_OK);
return false;
}
// Create the render target view with the back buffer pointer.
result = m_device->CreateRenderTargetView(backBufferPtr, NULL, &m_renderTargetView);
First I render the scene in all white and then I copy that to the SRV and bind it for the next shader that's supposed to sample it. I'm expecting to get a float4(1.0, 1.0, 1.0, 1.0) value returned when i sample the backbuffer with the vertex's on screen position
https://i.imgur.com/N9CYg8c.png
as shown on the top left in the event browser, there were three drawindexed calls for rendering everything in white and then a CopyResource.
I've selected the next (fourth) DrawIndexed and on the right side outlined in red are the inputs for this next shader clearly showing that the backBuffer has been successfully bound to the vertex shader.
And now for the part that's giving me trouble
https://i.imgur.com/ENuXk0n.png
I'm gonna be debugging this top-left vertex as shown on the screenshot,
the vertex Shader has a
Texture2D prevBackBuffer: register(t0);
written at the top
https://i.imgur.com/8cihNsq.png
When trying to sample the left neighboring pixel
this line of code returns newCoord = float2(158, 220)
when entering these pixel values in the texture view i get this pixel
https://i.imgur.com/DT72Fl1.png
so the coordinates are ok so far, and as outlined i'm expecting to get a float4(0.0, 0.0, 0.0, 1,0) returned when i sample this pixel
(I'm trying to count how many black pixels are around a vertex, and if there are any color that vertex red in the pixel shader)
AND YET, when i sample that pixel right after altering the pixel coordinates since load counts pixels from bottom left so i need
newCoord = float2(158, 379), i get this
https://i.imgur.com/8SuwOzz.png
why is this, even if it's out of range, load should return all zeros, since I'm not sure about the whole load counts from bottom left thing I tried sampling using the top left coordinates (158, 220) but end up getting 0.0, ?, ?, ?
I'm completely stumped and have no idea what to try next. I've tried using a sample state :
// Create a clamp texture sampler state description.
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP;
samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0;
samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D11_FLOAT32_MAX;
// Create the texture sampler state.
result = device->CreateSamplerState(&samplerDesc, &m_sampleStateClamp);
but still never get a proper float4 back when reading the texture.
Any ideas, suggestions, I'll take anything at this point.
Oh and here's a RenderDoc file of the frame i was examining :
http://www.mediafire.com/file/1bfiqdpjkau4l0n/my_capture.rdc/file
So from my experience, reading from the back buffer is not really an operation that you want to be doing in the first place. If you have to do any operation on the rendered scene, the best way to do that is to render the scene to an intermediate texture, perform the operation on that texture, then render the final scene to the back buffer. This is generally how things like dynamic shadows are done - the scene is rendered from the perspective of the light, and the resulting buffer is interpreted to get a shadow value that is then applied to the final scene (this is also why dynamic light sources are limited in commercial game engines - they're rather expensive to use).
A similar idea can be applied here. First, render the whole scene to an intermediate texture, bound as a render target view (where the pixel format is specified by you, the programmer). Next, rebind that intermediate texture as a shader resource view, and render the scene again, using the edge detection shader and the real back buffer (where the pixel format is defined by the hardware).
This, fundamentally, is what I believe the issue is - a back buffer is a device dependent resource, and its format can change depending on the hardware. Therefore, using it from a shader is not safe, as you don't always know what the format will be. A device independent resource, on the other hand, will always have the same format, and you can safely use it however you like from a shader.
I wasn't able to get sampling an SRV in the vertex shader to work
but what i was able to get working
is using a backBuffer.SampleLevel inside a compute shader
I also had to change the sampler to something like this :
D3D11_SAMPLER_DESC samplerDesc;
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_POINT;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_BORDER;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_BORDER;
samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_BORDER;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0.5f;
samplerDesc.BorderColor[1] = 0.5f;
samplerDesc.BorderColor[2] = 0.5f;
samplerDesc.BorderColor[3] = 0.5f;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = 0;

D3D11: Rendering (depth) to texture results in red square, normal rendering works

I'm currently working on a D3D project and want to implement directional shadow mapping. I set everything up according to the Microsoft Guide, but it just doesn't work.
I've created a 2D texture object, a depth stencil view and a shader resource view and set them up using the following descriptions:
D3D11_TEXTURE2D_DESC shadowMapDesc;
ZeroMemory(&shadowMapDesc, sizeof(D3D11_TEXTURE2D_DESC));
shadowMapDesc.Width = width;
shadowMapDesc.Height = height;
shadowMapDesc.MipLevels = 1;
shadowMapDesc.ArraySize = 1;
shadowMapDesc.Format = DXGI_FORMAT_R24G8_TYPELESS;
shadowMapDesc.SampleDesc.Count = 1;
shadowMapDesc.SampleDesc.Quality = 0;
shadowMapDesc.Usage = D3D11_USAGE_DEFAULT;
shadowMapDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL | D3D11_BIND_SHADER_RESOURCE;
shadowMapDesc.CPUAccessFlags = 0;
shadowMapDesc.MiscFlags = 0;
ID3D11Device& d3ddev = dev.getD3DDevice();
uint32_t *initData = new uint32_t[width * height];
ZeroMemory(initData, sizeof(uint32_t) * width * height);
D3D11_SUBRESOURCE_DATA data;
ZeroMemory(&data, sizeof(D3D11_SUBRESOURCE_DATA));
data.pSysMem = initData;
data.SysMemPitch = sizeof(uint32_t) * width;
data.SysMemSlicePitch = 0;
HRESULT hr = d3ddev.CreateTexture2D(&shadowMapDesc, &data, &texture_);
D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc;
ZeroMemory(&depthStencilViewDesc, sizeof(D3D11_DEPTH_STENCIL_VIEW_DESC));
depthStencilViewDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
depthStencilViewDesc.Texture2D.MipSlice = 0;
hr = d3ddev.CreateDepthStencilView(texture_, &depthStencilViewDesc, &stencilView_);
D3D11_SHADER_RESOURCE_VIEW_DESC shaderResourceViewDesc;
ZeroMemory(&shaderResourceViewDesc, sizeof(D3D11_SHADER_RESOURCE_VIEW_DESC));
shaderResourceViewDesc.Format = DXGI_FORMAT_R24_UNORM_X8_TYPELESS;
shaderResourceViewDesc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D;
shaderResourceViewDesc.Texture2D.MipLevels = 1;
shaderResourceViewDesc.Texture2D.MostDetailedMip = 0;
hr = d3ddev.CreateShaderResourceView(texture_, &shaderResourceViewDesc, &shaderView_);
Between these steps there is additional error checking, but all the create-functions return successfully. I then bind the texture, render my scene and unbind the texture using the following functions:
void D3DDepthTexture2D::bindAsTarget(D3DDevice& dev)
{
dev.getDeviceContext().ClearDepthStencilView(stencilView_, D3D11_CLEAR_DEPTH | D3D11_CLEAR_STENCIL, 1.0f, 0);
// Bind target
dev.getDeviceContext().OMSetRenderTargets(0, 0, stencilView_);
// Set viewport
dev.setViewport(static_cast<float>(width_), static_cast<float>(height_), 0.0f, 0.0f);
}
void D3DDepthTexture2D::unbindAsTarget(D3DDevice& dev, float width, float height)
{
// Unbind target
dev.resetRenderTarget();
// Reset viewport
dev.setViewport(width, height, 0.0f, 0.0f);
}
My render-to-depth-texture routine basically looks like this (removing all the unnecessary details):
camera = buildCameraFromLight(light);
setCameraCBuffer(camera);
bindTexture();
activateShader();
for(Object j : objects) {setTransformationCBuffer(j); renderObject(j);}
deactivateShader();
unbindTexture();
Rendering the scene from the light's perspective to the normal render target (screen) results in the proper image (both the actual image and just rendering the depth values). I use a simple vertex shader that just transforms the vertices and a pixel shader that does nothing at all OR returns the depth values (I tried both, doesn't change anything about the end result since we don't care about the color buffer).
After clearing the texture and rendering to it, I render it onto a quad to my screen, but all I get is a red square - so the depth value is 1.0f, the value I've cleared the texture to. I'm really at a loss for what to do, I tried everything, implemented every possible solution from online tutorials or changed things around on my own, but nothing helps. Here's a list of all the things I already checked:
All FAILED(hr)-calls return false, no error message is printed to the console
I tested whether the geometry gets transformed properly by rendering the geometry and their depth values (z / w) to screen, which worked and looked correct
I tested calculating the depth values in the fragment shader and rendering to a normal render target (basically trying to render my color buffer to texture) instead of a depth stencil texture, but that didn't work either, red square
I tested different formats and format combinations for the shadow map and the views, which either caused the creation to fail or didn't change a thing
I checked whether any call between setting and unsetting my texture as the render target during the render call resetted the depth stencil target to something else - not the case
I debugged my texture-to-screen/quad rendering routine already and it works properly with other textures, so I am in fact seeing what the depth texture looks like
I changed the geometry and camera perspective around to see whether that makes anything visible in the depth texture - it doesn't
I came across this similar StackOverflow problem and checked whether my default depth stencil buffer had the same dimensions, AA settings etc. as my texture - and it does (count 1, quality 0)
I really don't know what's up, I've been trying to debug this for hours and hours. I hope someone here can give me any advice on what I'm doing wrong or what I could try to fix this. I'm using C++11 with Direct3D11.
Note: I can't debug any of this using NSight or any Visual Studio tools since they don't seem to work properly with my system right now and I don't have any administrative rights to fix any of it. I just have to deal with it for now. I hope the given information and code samples are enough to provide a rough idea of what I could also try to make this work.
Thanks in advance.
I got NSight to work and debugged the whole thing with that. Turns out the depth texture was properly created and filled with the depth and stencil data and I just forgot that all the depth information is stored in the first channel - so I ignored the g and b data and used 1.0 for a and it worked. Using the g and b channels somehow made the whole thing red (maybe someone wants to add to this and explain why).
Debugging this got much easier once I could observe the texture that is present in the shader - I should've used a debugging tool like NSight or RenderDoc way earlier. Thanks to #EgorShkorov for the advice.

How pick geometries in OpenGL with multisample framebuffer?

(Edit) I made working geometry picking with framebuffer. My goal is draw huge scene in one draw call, but I need to draw to multisample color texture attachment (GL_COLOR_ATTACHMENT0) and draw to (eddited) non-multisample picking texture attachment (GL_COLOR_ATTACHMENT1). The problem is if I use multisample texture to pick, picking is corrupted because of multi-sampling.
I write geometry ID to fragment shader like this:
//...
// Given geometry id
uniform int in_object_id;
// Drawed to screen (GL_COLOR_ATTACHMENT0)
out vec4 out_frag_color0;
// Drawed to pick texture (GL_COLOR_ATTACHMENT1)
out vec4 out_frag_color1;
// ...
void main() {
out_frag_color0 = ...; // Calculating lighting and other stuff
//...
const int max_byte1 = 256;
const int max_byte2 = 65536;
const float fmax_byte = 255.0;
int a1 = in_object_id % max_byte1;
int a2 = (in_object_id / max_byte1) % max_byte1;
int a3 = (in_object_id / max_byte2) % max_byte1;
//out_frag_color0 = vec4(a3 / fmax_byte, a2 / fmax_byte, a1 / fmax_byte, 1);
out_frag_color1 = vec4(a3 / fmax_byte, a2 / fmax_byte, a1 / fmax_byte, 1);
}
(Point of that code is use RGB space for store geometry ID which is then read back a using for changing color of cube)
This happens when I move cursor by one pixel to left:
Because of alpha value of cube pixel:
Without multisample is works well. But multisampling multiplies my output color and geometry id is then corrupted, so it selects random cube with multiplied value.
(Edit) I can't attach one multisample texture target to color0 and non-multisample texture target to color1, it's not supported. How can I do this in one draw call?
Multisampling is not my friend I am not sure If I understand it well (whole framebuffering). Anyway, this way to pick geometries looks horrible for me (I meant calculating ID to color). Am I doing it well? How can I solve multisample problem? Is there better way?
PS: Sorry for low english. :)
Thanks.
You can't do multisampled and non-multisampled rendering in a single draw call.
As you already found, using two color targets in an FBO, with only one of them being multisampled, is not supported. From the "Framebuffer Completeness" section in the spec:
The value of RENDERBUFFER_SAMPLES is the same for all attached renderbuffers; the value of TEXTURE_SAMPLES is the same for all attached textures; and, if the attached images are a mix of renderbuffers and textures, the value of RENDERBUFFER_SAMPLES matches the value of TEXTURE_SAMPLES.
You also can't render to multiple framebuffers at the same time. There is always one single current framebuffer.
The only reasonable option I can think of is to do picking in a separate pass. Then you can easily switch the framebuffer/attachment to a non-multisampled renderbuffer, and avoid all these issues.
Using a separate pass for picking seems cleaner to me anyway. This also allows you to use a specialized shader for each case, instead of always producing two outputs even if one of them is mostly unused.
I think it is posible...
You have to set the picking texture to multisampled and after rendering the scene, you can render 2 triangles over the screen and inside another fragmentshader you can readout each sample... to do that you have to use the GLSL command:
texelFetch(sampler, pixelposition/*[0-texturesize]*/, /*important*/layernumber);
Then you can render it into a single-sampled texture and read the color via glReadPixel.
I haven't tested it now, but I think it works

Render RGB-D image from mesh

I have a mesh model (.ply file) and I have rendered it with VTK and changed the camera viewpoint.
From the new camera viewpoint how can I render an RGB and a depth image? I think this might be raytracing, but not sure
EDIT
I want to generate a real depth map, as opposed to just a visualization of the depth. The visualization can be achieved by using values in Z buffer and scaling between 0-255 but this does not provide real depth information.
To get the real world depth from the camera I have done the following:
double z = render_win->GetZbufferDataAtPoint(x,y);
worldPicker->Pick(x, y, z, renderer);
worldPicker->GetPickPosition(coords);
double euclidean_distance = sqrt(pow((coords[0] - cam_pos[0]), 2) + pow(coords[1] - cam_pos[1], 2) + pow(coords[2] - cam_pos[2], 2));
where cam_pos is the camera position in real world coordinates. This seems to do the trick
Here is a short few lines if you already have the application set up and rendering, this has to be after the mesh has rendered at least once
// Screenshot
vtkSmartPointer<vtkWindowToImageFilter> windowToImageFilter =
vtkSmartPointer<vtkWindowToImageFilter>::New();
windowToImageFilter->SetInput(renderWindow);
windowToImageFilter->SetMagnification(3); //set the resolution of the output image (3 times the current resolution of vtk render window)
windowToImageFilter->SetInputBufferTypeToRGBA(); //also record the alpha (transparency) channel
windowToImageFilter->Update();
vtkSmartPointer<vtkPNGWriter> writer =
vtkSmartPointer<vtkPNGWriter>::New();
writer->SetFileName("screenshot2.png");
writer->SetInputConnection(windowToImageFilter->GetOutputPort());
writer->Write();
This is from the VTK Public Wiki
To retrieve RGB image you can use vtkWindowToImageFilter class, allowing to read data from the vtkWindow.
For the Depth Image, i tried a solution which is to modify color on the mesh using vtkDepthSortPolyData , and again, read from the window.
See the example above :
# define VTK_CREATE(type, nom) vtkSmartPointer<type> nom = vtkSmartPointer<type>::New()
int main ()
{
VTK_CREATE(vtkPLYReader, reader);
reader->SetFileName ("mesh.ply");
reader->Update ();
// create depth sort algo
VTK_CREATE(vtkDepthSortPolyData, sort);
sort->SetInput(reader->GetOutput ());
// init stuff for rendering
VTK_CREATE(vtkPolyDataMapper, mapper);
VTK_CREATE(vtkActor, actor);
VTK_CREATE(vtkRenderer, rend);
VTK_CREATE(vtkRenderWindow, rw);
VTK_CREATE(vtkRenderWindowInteractor, inte);
VTK_CREATE(vtkCamera, cam);
sort->SetDirectionToBackToFront (); // camera direction
sort->SetCamera (cam); // set camera or runtime warning
sort->SortScalarsOn ();
sort->Update ();
mapper->SetScalarVisibility(true);
// limit max scalar (nb Color)
mapper->SetScalarRange (0, sort->GetOutput ()->GetNumberOfCells ());
mapper->SetInputConnection(sort->GetOutputPort ());
mapper->Update ();
actor->SetMapper(mapper);
actor->RotateY (59); // transform with a rotation to see depth
actor->GetProperty()->SetColor(1, 0, 0);
sort->SetProp3D (actor); // set the actor to the algo
rend->SetActiveCamera (cam);
rw->AddRenderer(rend);
rend->AddActor(actor);
inte->SetRenderWindow (rw);
inte->Initialize ();
// read depth image from vtk Window
VTK_CREATE (vtkWindowToImageFilter, screen);
screen->SetInput (rw);
screen->Update ();
// start rendering for visualization
rw->Render ();
// save the depth img as a png
VTK_CREATE(vtkPNGWriter, writer);
writer->SetFileName ("output.png");
writer->SetInputConnection (screen->GetOutputPort ());
writer->Write ();
inte->Start ();
return 0;
}
Tested on VTK 5.10.

Precise Texture Overlay

I'm trying to set up a two-stage render of objects in a 3D engine I'm working on written in C++ with DirectX9 to facilitate transparency (and other things). I thought it was all working nicely until I noticed some dodgyness on the edge of objects rendered before objects using this two stage method.
The two stage method is simple:
Draw model to off-screen ("side") texture of same size using same zbuffer (no MSAA is used anywhere)
Draw off-screen ("side") texture over the top of the main render target with a suitable blend and no alpha test or write
In the image below the left view is with the two stage render of the gray object (a lamppost) with the body in-front of it rendered directly to the target texture. The right view is with the two-stage render disabled, so both are rendered directly onto the target surface.
On close inspection it is as if the side texture is offset by exactly 1 pixel "down" and 1 pixel "right" when rendered over the target surface (but is rendered correctly in-place). This can be seen in an overlay of the off screen texture (which I get my program to write out to a bitmap file via D3DXSaveTextureToFile) over a screen shot below.
One last image so you can see where the edge in the side texture is coming from (it's because rendering to the side texture does use z test). Left is screen short, right is side texture (as overlaid above).
All this leads me to believe that my "overlaying" isn't very effective. The code that renders the side texture over the main render target is shown below (note that the same viewport is used for all scene rendering (on and off screen)). The "effect" object is an instance of a thin wrapper over LPD3DXEFFECT, with the "effect" field (sorry about shoddy naming) being a LPD3DXEFFECT itself.
void drawSideOver(LPDIRECT3DDEVICE9 dxDevice, drawData* ddat)
{ // "ddat" drawdata contains lots of render state information, but all we need here is the handles for the targetSurface and sideSurface
D3DXMATRIX idMat;
D3DXMatrixIdentity(&idMat); // create identity matrix
dxDevice->SetRenderTarget(0, ddat->targetSurface); // switch to targetSurface
dxDevice->SetRenderState(D3DRS_ZENABLE, false); // disable z test and z write
dxDevice->SetRenderState(D3DRS_ZWRITEENABLE, false);
vertexOver overVerts[4]; // create square
overVerts[0] = vertexOver(-1, -1, 0, 0, 1);
overVerts[1] = vertexOver(-1, 1, 0, 0, 0);
overVerts[2] = vertexOver(1, -1, 0, 1, 1);
overVerts[3] = vertexOver(1, 1, 0, 1, 0);
effect.setTexture(ddat->sideTex); // use side texture as shader texture ("tex")
effect.effect->SetTechnique("over"); // change to "over" technique
effect.setViewProj(&idMat); // set viewProj to identity matrix so 1/-1 map directly
effect.effect->CommitChanges();
setAlpha(dxDevice); // this sets up the alpha blending which works fine
UINT numPasses, pass;
effect.effect->Begin(&numPasses, 0);
effect.effect->BeginPass(0);
dxDevice->SetVertexDeclaration(vertexDecOver);
dxDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, overVerts, sizeof(vertexOver));
effect.effect->EndPass();
effect.effect->End();
dxDevice->SetRenderState(D3DRS_ZENABLE, true); // revert these so we don't mess everything up drawn after this
dxDevice->SetRenderState(D3DRS_ZWRITEENABLE, true);
}
The C++ side definition for the VertexOver struct and constructor (HLSL side shown below somewhere):
struct vertexOver
{
public:
float x;
float y;
float z;
float w;
float tu;
float tv;
vertexOver() { }
vertexOver(float xN, float yN, float zN, float tuN, float tvN)
{
x = xN;
y = yN;
z = zN;
w = 1.0;
tu = tuN;
tv = tvN;
}
};
Inefficiency in re-creating and passing the vertices down to the GPU each draw aside, what I really want to know is why this method doesn't quite work, and if there are any better methods for overlaying textures like this with an alpha blend that won't exhibit this issue
I figured that the texture sampling may matter somewhat in this matter, but messing about with options didn't seem to help much (for example, using a LINEAR filter just makes it fuzzy as you might expect implying that the offset isn't as clear-cut as a 1 pixel discrepancy). Shader code:
struct VS_Input_Over
{
float4 pos : POSITION0;
float2 txc : TEXCOORD0;
};
struct VS_Output_Over
{
float4 pos : POSITION0;
float2 txc : TEXCOORD0;
float4 altPos : TEXCOORD1;
};
struct PS_Output
{
float4 col : COLOR0;
};
Texture tex;
sampler texSampler = sampler_state { texture = <tex>;magfilter = NONE; minfilter = NONE; mipfilter = NONE; AddressU = mirror; AddressV = mirror;};
// side/over shaders (these make up the "over" technique (pixel shader version 2.0)
VS_Output_Over VShade_Over(VS_Input_Over inp)
{
VS_Output_Over outp = (VS_Output_Over)0;
outp.pos = mul(inp.pos, viewProj);
outp.altPos = outp.pos;
outp.txc = inp.txc;
return outp;
}
PS_Output PShade_Over(VS_Output_Over inp)
{
PS_Output outp = (PS_Output)0;
outp.col = tex2D(texSampler, inp.txc);
return outp;
}
I've looked about for a "Blended Blit" or something but I can't find anything, and other related searches have only brought up forums implying that rendering a quad with an orthographic projection is the way to go about doing this.
Sorry if I've given far too much detail for this issue but it's both interesting and infuriating and any feedback would be greatly appreciated.
It looks for me that you problem is the mapping of texels to pixels. You must offset a screen-aligned quad with a half pixel to match the texels direct to the screenpixels. This issue is explaines here: Directly Mapping Texels to Pixels (MSDN)
For anyone else hitting a similar wall, my specific problem solved by adjusting the U and V values of the verticies sent to the GPU for the overlaid texture triangles thus:
for (int i = 0; i < 4; i++)
{
overVerts[i].tu += 0.5 / (float)ddat->targetVp->Width; // ddat->targetVp is the viewport in use, and the viewport is the same size as the texture
overVerts[i].tv += 0.5 / (float)ddat->targetVp->Height;
}
See Directly Mapping Texels to Pixels as provided by Gnietschow's answer for an explanation as to why this makes sense.