Integrate pre-compiled libraries into C++ codebase with CMake ExternalProject - c++

I want to integrate CasADi into a CMake-based C++ codebase as an ExternalProject. For this purpose, I would like to use pre-compiled libraries because building from source is not recommended. So far, I have only managed to write the following:
ExternalProject_Add(
casadi-3.5.5
URL https://github.com/casadi/casadi/releases/download/3.5.5/casadi-linux-py39-v3.5.5-64bit.tar.gz
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
PREFIX ${CMAKE_BINARY_DIR}/external/casadi)
and I noticed that all the binaries are correctly downloaded in the specified folder. However, I do not know how to link my targets to CasADi, nor how to find the package.

There is a natural problem with ExternalProject_Add:
ExternalProject_Add executes commands only on build.
Hence, download will not happen at the configure stage of your project which makes it difficult to use find_package, because the files cannot be found during your first configure run.
Take this CMakeLists.txt:
cmake_minimum_required(VERSION 3.21)
project(untitled)
set(CMAKE_CXX_STANDARD 17)
add_executable(untitled main.cpp)
include(ExternalProject)
ExternalProject_Add(
casadi-3.5.5
URL https://github.com/casadi/casadi/releases/download/3.5.5/casadi-linux-py39-v3.5.5-64bit.tar.gz
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
PREFIX ${CMAKE_BINARY_DIR}/external/casadi)
find_package(casadi HINTS ${CMAKE_BINARY_DIR}/external/casadi/src/casadi-3.5.5/casadi)
target_link_libraries(untitled casadi)
In order to use it you have to do the following:
Configure your project
mkdir build
cd build
cmake ..
Build (download) casadi-3.5.5
cmake --build . --target casadi-3.5.5
Reconfigure your project, because now find_package will find the needed files
cmake ..
Build your targets
cmake --build .
If you want a one step build, there are ways to get around this problem
Use FetchContent
Create a sub-cmake-project in a subfolder with all the ExternalProject_Add commands and execute the approriate build (download) steps manually in your own CMakeLists.txt via execute_process calls: https://stackoverflow.com/a/37554269/8088550
Here is an example for the second option, which might be better since FetchContent doesn't have the full functionality of ExternalProject.
main.cpp
#include <casadi/casadi.hpp>
int main()
{
casadi_printf("This works!");
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 3.20)
project(untitled)
set(CMAKE_CXX_STANDARD 17)
# some default target
add_executable(untitled main.cpp)
# Configure and build external project
file(MAKE_DIRECTORY ${CMAKE_BINARY_DIR}/external)
execute_process(
COMMAND ${CMAKE_COMMAND} ${CMAKE_SOURCE_DIR}/external
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/external
)
execute_process(
COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR}/external
)
# find and link externals
find_package(casadi REQUIRED HINTS ${CMAKE_BINARY_DIR}/external/external/casadi/src/casadi-3.5.5/casadi)
target_link_libraries(untitled casadi)
external/CMakeLists.txt
cmake_minimum_required(VERSION 3.20)
project(external)
include(ExternalProject)
ExternalProject_Add(
casadi-3.5.5
URL https://github.com/casadi/casadi/releases/download/3.5.5/casadi-linux-py39-v3.5.5-64bit.tar.gz
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
PREFIX ${CMAKE_BINARY_DIR}/external/casadi)
The point is to have another cmake project under external/CMakeLists.txt, which gets configured and build via execute_process calls from the main cmake project. Do note, that you can now have find_package(casadi REQUIRED ...) at configure stage, because the download will happen just before.

Related

FetchContent vs ExternalProject

I am building a project with Cmake and use FetchContent to manage dependencies. For several reasons I cannot depend on system-wide installed packages, so this package helps a lot. It allows me to do things like this:
cmake_minimum_required(VERSION 3.14)
project(dummy LANGUAGES C CXX)
include(FetchContent)
FetchContent_Declare(nlohmann
GIT_REPOSITORY https://github.com/onavratil-monetplus/json
GIT_TAG v3.7.3
)
FetchContent_MakeAvailable(nlohmann)
add_executable(dummy main.cpp)
target_link_libraries(dummy PUBLIC nlohmann_json::nlohmann_json)
Now this works nicely as long as the repo is a cmake project with CMakeLists.txt. I would love to use similar approach for non-cmake projects, such as Botan library. Apparently
FetchContent_Declare(botan
GIT_REPOSITORY https://github.com/onavratil-monetplus/botan
GIT_TAG 2.17.2
)
FetchContent_MakeAvailable(botan)
does not really do the job, the build doesnt run since its not a cmake project. One would consider adding
CONFIGURE_COMMAND "<SOURCE_DIR>/configure.py --prefix=<BINARY_DIR>"
BUILD_COMMAND "cd <SOURCE_DIR> && make"
or something similar to the declare command, yet the FetchContent docs explicitly says that these particular arguments are ignored when passed to FetchContent.
Now the struggle is obvious - how to properly use FetchContent in this scenario? I was considering using ExternalProject_Add after the fetchcontent, yet then fetchcontent seems useless (ExternalProject can download git repo as well). Moreover, I would like to use some of the targets of botan at config time (if it makes sense).
I'm facing the same problem. Since the Botan library does not use the CMake build system internally, we cannot use the Botan "targets". But it is possible to build the Botan library at CMake configure time and use library and header files. Here is my solution (minimal configuration, works only for MS Visual Studio):
cmake_minimum_required (VERSION 3.20)
if(WIN32)
if(NOT (${CMAKE_BUILD_TYPE} STREQUAL "Release"))
message(FATAL_ERROR "This configuration only works for a Release build")
endif()
# set paths
set(BOTAN_LIB_ROOT_DIR "${CMAKE_SOURCE_DIR}/external/botan")
set(BOTAN_LIB_REPOS_DIR "${BOTAN_LIB_ROOT_DIR}/repos")
set(BOTAN_LIB_FCSTUFF_DIR "${BOTAN_LIB_ROOT_DIR}/cmake-fetchcontent-stuff")
set(BOTAN_LIB_INSTALL_DIR "${BOTAN_LIB_ROOT_DIR}-install")
# download and unpack Botan library
include(FetchContent)
FetchContent_Declare(
botan
GIT_REPOSITORY https://github.com/randombit/botan.git
GIT_TAG 2.19.1
PREFIX ${BOTAN_LIB_FCSTUFF_DIR}
SOURCE_DIR ${BOTAN_LIB_REPOS_DIR}
)
set(FETCHCONTENT_QUIET OFF CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(botan)
# find Python3 Interpreter and run build, testing and installation
if(${botan_POPULATED} AND MSVC AND NOT EXISTS "${BOTAN_LIB_INSTALL_DIR}/lib/botan.lib")
find_package(Python3 COMPONENTS Interpreter)
if(NOT ${Python3_Interpreter_FOUND})
message(FATAL_ERROR "Python3 Interpreter NOT FOUND")
endif()
execute_process(
COMMAND ${Python3_EXECUTABLE} configure.py --cc=msvc --os=windows --prefix=${BOTAN_LIB_INSTALL_DIR}
WORKING_DIRECTORY ${BOTAN_LIB_REPOS_DIR}
COMMAND_ECHO STDOUT
)
execute_process(
COMMAND nmake
WORKING_DIRECTORY ${BOTAN_LIB_REPOS_DIR}
COMMAND_ECHO STDOUT
)
execute_process(
COMMAND nmake check
WORKING_DIRECTORY ${BOTAN_LIB_REPOS_DIR}
COMMAND_ECHO STDOUT
)
execute_process(
COMMAND nmake install
WORKING_DIRECTORY ${BOTAN_LIB_REPOS_DIR}
COMMAND_ECHO STDOUT
)
endif()
endif()
add_executable (main "main.cpp")
if(WIN32)
target_include_directories(main PUBLIC "${BOTAN_LIB_INSTALL_DIR}/include/botan-2")
target_link_libraries(main PUBLIC "${BOTAN_LIB_INSTALL_DIR}/lib/botan.lib")
configure_file("${BOTAN_LIB_INSTALL_DIR}/bin/botan.dll"
"${CMAKE_CURRENT_BINARY_DIR}/botan.dll"
COPYONLY
)
install(TARGETS main DESTINATION bin)
install(FILES "${BOTAN_LIB_INSTALL_DIR}/bin/botan.dll" DESTINATION bin)
endif()
Here is the full version: https://github.com/weenchvd/cmake-build-botan-lib

How to build and link external CMake dependencies with CMake?

I'd like to use the following third party library:
https://github.com/Corvusoft/restbed
I'd like to create a folder structure similar to this:
- root
- CMakeLists.txt
- src
- third_party
- restbed
- src
- CMakeLists.txt
- CMakeLists.txt
I've found out that I should use the ExternalProject CMake module to achieve this but it does not seem that I can do it correctly. For some reason the external lib's (restbed's) source does not appear in my XCode project when I generate it out with the use of the root CMakeLists.txt. This root CMakeLists.txt includes in the third_party folder's CMakeLists.txt. The third_party folder's CMakeLists.txt looks like this:
include(ExternalProject)
# CMAKE_CURRENT_LIST_DIR -> third_party folder
set(RESTBED_DIR ${CMAKE_CURRENT_LIST_DIR}/restbed)
ExternalProject_Add(restbed
PREFIX ${RESTBED_DIR}
SOURCE_DIR ${RESTBED_DIR}
CMAKE_ARGS -DBUILD_SSL=NO
DOWNLOAD_COMMAND ""
UPDATE_COMMAND ""
BUILD_COMMAND cmake ..
BINARY_DIR ${RESTBED_DIR}/build
INSTALL_DIR ${RESTBED_DIR}/distribution
INSTALL_COMMAND make install
)
set(RESTBED_INCLUDE_DIR ${RESTBED_DIR}/distribution/include)
set(RESTBED_LIB_DIR ${RESTBED_DIR}/distribution/lib)
add_library(librestbed IMPORTED STATIC)
add_dependencies(librestbed restbed)
After this I'd like to use target_include_dir and target_link_libraries to add librestbed as a dependency to my root project. After this when I build my XCode project nothing happens, the external lib won't get built. What am I doing wrong? I would not like to use the built-in CMake git functionality because I'd like to store my external dependencies as git submodules in the third_party lib. I'd rather not let CMake figure out if it needs to re-download a given dependency. Thanks in advance!
I think you mixed up the BUILD_COMMAND option with the CONFIGURE_COMMAND option. The cmake .. should be placed after the option CONFIGURE_COMMAND.
ExternalProject_Add(restbed
PREFIX ${RESTBED_DIR}
SOURCE_DIR ${RESTBED_DIR}
CMAKE_ARGS -DBUILD_SSL=NO
DOWNLOAD_COMMAND ""
UPDATE_COMMAND ""
CONFIGURE_COMMAND cmake ..
BINARY_DIR ${RESTBED_DIR}/build
INSTALL_DIR ${RESTBED_DIR}/distribution
INSTALL_COMMAND make install
)
Per the documentation, there are defaults to each of these commands, so you likely don't have to specify the CONFIGURE_COMMAND at all. For example, for BUILD_COMMAND:
If this option is not given, the default build command will be chosen to integrate with the main build in the most appropriate way (e.g. using recursive make for Makefile generators or cmake --build if the project uses a CMake build).
Also, if you do specify the CONFIGURE_COMMAND, you likely expand the arguments you pass it to something like this:
...
CONFIGURE_COMMAND cd restbed && mkdir build && cd build && cmake ..
...

CMake: rebuild external project

I have a project that uses an external library. The project's CMakeLists.txt looks like this:
cmake_minimum_required(VERSION 3.6.0)
project(my-project)
set(CMAKE_CXX_STANDARD 14)
include(ExternalProject)
find_package(Git REQUIRED)
ExternalProject_Add(library
PREFIX ${my-project_SOURCE_DIR}/lib/library
GIT_REPOSITORY https://github.com/vendor/library
GIT_TAG master
UPDATE_COMMAND ""
INSTALL_COMMAND ""
)
link_directories(${my-project_SOURCE_DIR}/lib/library/src/library-build/src)
add_subdirectory(src)
And src/CMakeLists.txt like this:
include_directories(../lib/library/src/library/include)
add_executable(my-project
main.cpp
)
add_dependencies(my-project library)
target_link_libraries(my-project liblibrary.a)
It pulls the library from Git and builds it for the first time without any problems.
I want to edit source code of the library and have the library .a file be recompiled automatically. What is the cleanest way I can achieve that? It currently ignores any updates to the source code, because it already has .a file of the library.
When I try to add
add_subdirectory(lib/library/src/library/src)
to my main CMakeLists.txt, I get the following error:
CMake Error at lib/library/src/library/src/CMakeLists.txt:55 (add_library): add_library cannot create target "library" because another target with the same name already exists. The existing target is a custom target created in source directory "/cygdrive/c/Code/my-project". See documentation for policy CMP0002 for more details.
I guess it's caused by calling
add_library(gram STATIC ${SOURCE_FILES})
in the library CMakeLists.txt and then calling
ExternalProject_Add(library ...)
in the project CMakeLists.txt.
Any ideas?
As your main goal for using ExternalProject_Add is to download the dependency from an external source without configuring and building it, you could define the CMAKE_COMMAND, CONFIGURE_COMMAND and BUILD_COMMAND as empty strings. Same as you already did for the UPDATE_COMMAND and INSTALL_COMMAND. That way, ExternalProject_Add will only clone the repository once.
To overcome the name clash, just use a different one for the first argument of ExternalProject_Add, e.g. library_src:
ExternalProject_Add(library_src
PREFIX ${my-project_SOURCE_DIR}/lib/library
GIT_REPOSITORY https://github.com/vendor/library
GIT_TAG master
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
CMAKE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
)
ExternalProject_Get_Property(library_src SOURCE_DIR)
add_subdirectory(${SOURCE_DIR})
The second command (ExternalProject_Get_Property) will give you the named properties for the given external project. The output variables are of the same name as the properties. That way, you are immune against changes in the behaviour of ExternalProject_Add where it places the actual source tree.
add this command in ExternalProject_Add maybe help you:
UPDATE_COMMAND ""
https://gitlab.kitware.com/cmake/cmake/issues/16419

How to clone and integrate external (from git) cmake project into local one

I faced with a problem when I was trying to use Google Test.
There are lot of manuals on how to use ExternalProject_Add for the adding gtest into the project, however most of these describe a method based on downloading zip archive with gtest and build it.
As we know gtest is github-hosted and cmake-based project. So I'd like to find native cmake way.
If this would be a header-only project, I'd write something like:
cmake_minimum_required(VERSION 2.8.8)
include(ExternalProject)
find_package(Git REQUIRED)
ExternalProject_Add(
gtest
PREFIX ${CMAKE_CURRENT_SOURCE_DIR}/ext
GIT_REPOSITORY https://github.com/google/googletest.git
TIMEOUT 10
UPDATE_COMMAND ${GIT_EXECUTABLE} pull
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
LOG_DOWNLOAD ON
)
ExternalProject_Get_Property(gtest source_dir)
set(GTEST_INCLUDE_DIR ${source_dir}/googletest/include CACHE INTERNAL "Path to include folder for GTest")
set(GTEST_ROOT_DIR ${source_dir}/googletest CACHE INTERNAL "Path to source folder for GTest")
include_directories(${INCLUDE_DIRECTORIES} ${GTEST_INCLUDE_DIR} ${GTEST_ROOT_DIR})
message(${GTEST_INCLUDE_DIR})
and add this script from my cmake project like:
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake.modules/")
include(AddGTest)
....
add_dependencies(${PROJECT_NAME} gtest)
However this requires a build step.
How should this be implemented?
By adding BUILD_COMMAND into ExternaProject_Add and linking with produced libs?
Or by including gtest's cmakelists into my project, something like this:
add_subdirectory (${CMAKE_SOURCE_DIR}\ext\src\gtest\googletest\CMakeLists.txt)
this is not correct way because on the moment of the project load the folder does not exist.
Any other ways?
What is a correct/prefer way?
I would go with the first approach. You don't need to specify a build command because cmake is used by default. This could look like:
cmake_minimum_required(VERSION 3.0)
project(GTestProject)
include(ExternalProject)
set(EXTERNAL_INSTALL_LOCATION ${CMAKE_BINARY_DIR}/external)
ExternalProject_Add(googletest
GIT_REPOSITORY https://github.com/google/googletest
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${EXTERNAL_INSTALL_LOCATION}
)
include_directories(${EXTERNAL_INSTALL_LOCATION}/include)
link_directories(${EXTERNAL_INSTALL_LOCATION}/lib)
add_executable(FirstTest main.cpp)
add_dependencies(FirstTest googletest)
target_link_libraries(FirstTest gtest gtest_main pthread)
I don't know if this is the correct/preferred way if there even is one. If you wanted to implement your second approach you would have to download the code with execute_process first.

CMakeLists configuration to link two C++ projects

I have the following situation: a Project A depends on a Project B, but both are built at the same time. Project A has to include the includes of project B and it needs also to link its libraries. Up to now I've tried this way:
ADD_SUBDIRECTORY(${CMAKE_SOURCE_DIR}/other_project other_project)
and then:
INCLUDE_DIRECTORIES(includ ${CMAKE_SOURCE_DIR}/other_project/include})
LIST(APPEND LINK_LIBS other_project)
in the CMakeLists.txt of Project A
but it doesn't seem to work, the compiler also gives me error when including the headers of Project B saying that they do not exist.
What is the right way to add dependencies in A? How should the CMakeLists.txt look like?
EDIT:
as suggested in the comments, this question was addressed in this, however I'd like to see an example of how to use it in a CMakeList.txt file.
The following is a simple example which builds zlib and then builds libxml2 which depends on the zlib we build. One thing to note, I quickly pulled this example from stuff I've done before. The libxml2 example uses make, thus will only actually build on a system which has it, e.g. Linux, Mac ...
Here is the proposed directory structure for this example ...
src/
-- CMakeLists.txt
CMake/
---- External_ZLib.cmake
---- External_libxml2.cmake
Dowloads/ ( no need to create this directory, CMake will do it for you )
build/ ( Out of source build to prevent littering source tree )
Files:
CMakeLists.txt
# Any version that supports ExternalProject should do
cmake_minimum_required( VERSION 3.1)
project(test_ext_proj)
set(test_ext_proj_CMAKE_DIR "${CMAKE_CURRENT_SOURCE_DIR}/CMake")
set(CMAKE_MODULE_PATH ${test_ext_proj_CMAKE_DIR} ${CMAKE_MODULE_PATH})
set(test_ext_proj_BUILD_INSTALL_PREFIX ${CMAKE_CURRENT_BINARY_DIR}/install)
set(test_ext_proj_DOWNLOAD_DIR ${CMAKE_CURRENT_SOURCE_DIR}/Downloads CACHE PATH "Directory to store downloaded tarballs.")
include(ExternalProject)
include(External_ZLib)
include(External_libxml2)
External_ZLib.cmake:
set(ZLib_version 1.2.8)
set(ZLib_url "http://zlib.net/zlib-${ZLib_version}.tar.gz")
set(ZLib_md5 "44d667c142d7cda120332623eab69f40")
ExternalProject_Add(ZLib
URL ${ZLib_url}
URL_MD5 ${ZLib_md5}
PREFIX ${vision-tpl_BUILD_PREFIX}
DOWNLOAD_DIR ${test_ext_proj_DOWNLOAD_DIR}
INSTALL_DIR ${test_ext_proj_BUILD_INSTALL_PREFIX}
CMAKE_GENERATOR ${gen}
CMAKE_ARGS
-DCMAKE_INSTALL_PREFIX:PATH=${test_ext_proj_BUILD_INSTALL_PREFIX}
-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
)
#This variable is required so other packages can find it.
set(ZLIB_ROOT ${test_ext_proj_BUILD_INSTALL_PREFIX} CACHE PATH "" FORCE)
External_libxml2.cmake:
set(libxml2_release "2.9")
set(libxml2_patch_version 0)
set(libxml2_url "ftp://xmlsoft.org/libxml2/libxml2-sources-${libxml2_release}.${libxml2_patch_version}.tar.gz")
set(libxml2_md5 "7da7af8f62e111497d5a2b61d01bd811")
#We need to state that we're dependent on ZLib so build order is correct
set(_XML2_DEPENDS ZLib)
#This build requires make, ensure we have it, or error out.
if(CMAKE_GENERATOR MATCHES ".*Makefiles")
set(MAKE_EXECUTABLE "$(MAKE)")
else()
find_program(MAKE_EXECUTABLE make)
if(NOT MAKE_EXECUTABLE)
message(FATAL_ERROR "Could not find 'make', required to build libxml2.")
endif()
endif()
ExternalProject_Add(libxml2
DEPENDS ${_XML2_DEPENDS}
URL ${libxml2_url}
URL_MD5 ${libxml2_md5}
PREFIX ${test_ext_proj_BUILD_PREFIX}
DOWNLOAD_DIR ${test_ext_proj_DOWNLOAD_DIR}
INSTALL_DIR ${test_ext_proj_BUILD_INSTALL_PREFIX}
BUILD_IN_SOURCE 1
CONFIGURE_COMMAND ./configure
--prefix=${test_ext_proj_BUILD_INSTALL_PREFIX}
--with-zlib=${ZLIB_ROOT}
BUILD_COMMAND ${MAKE_EXECUTABLE}
INSTALL_COMMAND ${MAKE_EXECUTABLE} install
)