DynamoDB costs arising due to triggers - amazon-web-services

I have a workflow where I put files into an S3 bucket, which triggers a Lambda function. The Lambda function extracts some info about the file and inserts a row into a DynamoDB table for each file:
def put_filename_in_db(dynamodb, filekey, filename):
table = dynamodb.Table(dynamodb_table_name)
try:
response = table.put_item(
Item={
'masterclient': masterclient,
'filekey': filekey,
'filename': filename,
'filetype': filetype,
'source_bucket_name': source_bucket_name,
'unixtimestamp': unixtimestamp,
'processed_on': None,
'archive_path': None,
'archived_on': None,
}
)
except Exception as e:
raise Exception(f"Error")
return response
def get_files():
bucket_content = s3_client.list_objects(Bucket=str(source_bucket_name), Prefix=Incoming_prefix)['Contents']
file_list = []
for k, v in enumerate(bucket_content):
if (v['Key'].endswith("zip") and not v['Key'].startswith(Archive_prefix)):
filekey = v['Key']
filename = ...
dict = {"filekey": filekey, "filename": filename}
file_list.append(dict)
logger.info(f'Found {len(file_list)} files to process: {file_list}')
return file_list
def lambda_handler(event, context):
for current_item in get_files():
filekey = current_item['filekey']
filename = current_item['filename']
put_filename_in_db(dynamodb, filekey, filename)
return {
'statusCode': 200
}
This is how my DynamoDB table is defined in terraform:
resource "aws_dynamodb_table" "filenames" {
name = local.dynamodb_table_filenames
billing_mode = "PAY_PER_REQUEST"
#read_capacity = 10
#write_capacity = 10
hash_key = "filename"
stream_enabled = true
stream_view_type = "NEW_IMAGE"
attribute {
name = "filename"
type = "S"
}
}
resource "aws_lambda_event_source_mapping" "allow_dynamodb_table_to_trigger_lambda" {
event_source_arn = aws_dynamodb_table.filenames.stream_arn
function_name = aws_lambda_function.trigger_stepfunction_lambda.arn
starting_position = "LATEST"
}
New entries in the DynamoDB table trigger another Lambda function which contains this:
def parse_file_info_from_trigger(event):
filename = event['Records'][0]['dynamodb']['Keys']['filename']['S']
filetype = event['Records'][0]['dynamodb']['NewImage']['filetype']['S']
unixtimestamp = event['Records'][0]['dynamodb']['NewImage']['unixtimestamp']['S']
masterclient = event['Records'][0]['dynamodb']['NewImage']['masterclient']['S']
source_bucket_name = event['Records'][0]['dynamodb']['NewImage']['source_bucket_name']['S']
filekey = event['Records'][0]['dynamodb']['NewImage']['filekey']['S']
return filename, filetype, unixtimestamp, masterclient, source_bucket_name, filekey
def start_step_function(event, state_machine_zip_files_arn):
if event['Records'][0]['eventName'] == 'INSERT':
filename, filetype, unixtimestamp, masterclient, source_bucket_name, filekey = parse_file_info_from_trigger(event)
......
else:
logger.info(f'This is not an Insert event')
However, the costs for this process are extremely high. If I start testing with a single file loaded into S3, the overall DynamoDB costs for that day were $0.785. If I do it for around 50 files for a day, that would mean my total costs per day are 40$, which seems too high if we want to run the workflow on a daily basis.
Am I doing something wrong? Or is DynamoDB generally expensive? If it's the later, then what part exactly is costing so much? Or is it because put_filename_in_db is running in a loop?

Related

Properly return a label in post-annotation lambda for AWS SageMaker Ground Truth custom labeling job

I'm working on a SageMaker labeling job with custom datatypes. For some reason though, I'm not getting the correct label in the AWS web console. It should have the selected label which is "Native", but instead, I'm getting the <labelattributename> which is "new-test-14".
After Ground Truth runs the post-annotation lambda, it seems to modify the metadata before returning a data object. The data object it returns doesn't contain a class-name key inside the metadata attribute, even when I hard-code the lambda to return an object that contains it.
My manifest file looks like this:
{"source-ref" : "s3://<file-name>", "text" : "Hello world"}
{"source-ref" : "s3://"<file-name>", "text" : "Hello world"}
And the worker response looks like this:
{"answers":[{"acceptanceTime":"2021-05-18T16:08:29.473Z","answerContent":{"new-test-14":{"label":"Native"}},"submissionTime":"2021-05-18T16:09:15.960Z","timeSpentInSeconds":46.487,"workerId":"private.us-east-1.ea05a03fcd679cbb","workerMetadata":{"identityData":{"identityProviderType":"Cognito","issuer":"https://cognito-idp.us-east-1.amazonaws.com/us-east-1_XPxQ9txEq","sub":"edc59ce1-e09d-4551-9e0d-a240465ea14a"}}}]}
That worker response gets processed by my post-annotation lambda which is modeled after this aws sample ground truth recipe. Here's my code:
import json
import sys
import boto3
from datetime import datetime
def lambda_handler(event, context):
# Event received
print("Received event: " + json.dumps(event, indent=2))
labeling_job_arn = event["labelingJobArn"]
label_attribute_name = event["labelAttributeName"]
label_categories = None
if "label_categories" in event:
label_categories = event["labelCategories"]
print(" Label Categories are : " + label_categories)
payload = event["payload"]
role_arn = event["roleArn"]
output_config = None # Output s3 location. You can choose to write your annotation to this location
if "outputConfig" in event:
output_config = event["outputConfig"]
# If you specified a KMS key in your labeling job, you can use the key to write
# consolidated_output to s3 location specified in outputConfig.
# kms_key_id = None
# if "kmsKeyId" in event:
# kms_key_id = event["kmsKeyId"]
# # Create s3 client object
# s3_client = S3Client(role_arn, kms_key_id)
s3_client = boto3.client('s3')
# Perform consolidation
return do_consolidation(labeling_job_arn, payload, label_attribute_name, s3_client)
def do_consolidation(labeling_job_arn, payload, label_attribute_name, s3_client):
"""
Core Logic for consolidation
:param labeling_job_arn: labeling job ARN
:param payload: payload data for consolidation
:param label_attribute_name: identifier for labels in output JSON
:param s3_client: S3 helper class
:return: output JSON string
"""
# Extract payload data
if "s3Uri" in payload:
s3_ref = payload["s3Uri"]
payload_bucket, payload_key = s3_ref.split('/',2)[-1].split('/',1)
payload = json.loads(s3_client.get_object(Bucket=payload_bucket, Key=payload_key)['Body'].read())
# print(payload)
# Payload data contains a list of data objects.
# Iterate over it to consolidate annotations for individual data object.
consolidated_output = []
success_count = 0 # Number of data objects that were successfully consolidated
failure_count = 0 # Number of data objects that failed in consolidation
for p in range(len(payload)):
response = None
dataset_object_id = payload[p]['datasetObjectId']
log_prefix = "[{}] data object id [{}] :".format(labeling_job_arn, dataset_object_id)
print("{} Consolidating annotations BEGIN ".format(log_prefix))
annotations = payload[p]['annotations']
# print("{} Received Annotations from all workers {}".format(log_prefix, annotations))
# Iterate over annotations. Log all annotation to your CloudWatch logs
annotationsFromAllWorkers = []
for i in range(len(annotations)):
worker_id = annotations[i]["workerId"]
anotation_data = annotations[i]["annotationData"]
annotation_content = anotation_data["content"]
annotation_content_json = json.loads(annotation_content)
annotation_job = annotation_content_json["new_test"]
annotation_label = annotation_job["label"]
consolidated_annotation= {
"workerId": worker_id,
"annotationData": {
"content": {
"annotatedResult": {
"instances": [{"label":annotation_label }]
}
}
}
}
annotationsFromAllWorkers.append(consolidated_annotation)
consolidated_annotation = {"annotationsFromAllWorkers": annotationsFromAllWorkers} # TODO : Add your consolidation logic
# Build consolidation response object for an individual data object
response = {
"datasetObjectId": dataset_object_id,
"consolidatedAnnotation": {
"content": {
label_attribute_name: consolidated_annotation,
label_attribute_name+ "-metadata": {
"class-name": "Native",
"confidence": 0.00,
"human-annotated": "yes",
"creation-date": datetime.strftime(datetime.now(), "%Y-%m-%dT%H:%M:%S"),
"type": "groundtruth/custom"
}
}
}
}
success_count += 1
# print("{} Consolidating annotations END ".format(log_prefix))
# Append individual data object response to the list of responses.
if response is not None:
consolidated_output.append(response)
failure_count += 1
print(" Consolidation failed for dataobject {}".format(p))
print(" Unexpected error: Consolidation failed." + str(sys.exc_info()[0]))
print("Consolidation Complete. Success Count {} Failure Count {}".format(success_count, failure_count))
print(" -- Consolidated Output -- ")
print(consolidated_output)
print(" ------------------------- ")
return consolidated_output
As you can see above, the do_consolidation method returns an object hard-coded to include a class-name of "Native", and the lambda_handler method returns that same object. Here's the post-annotation function response:
[{
"datasetObjectId": "4",
"consolidatedAnnotation": {
"content": {
"new-test-14": {
"annotationsFromAllWorkers": [{
"workerId": "private.us-east-1.ea05a03fcd679cbb",
"annotationData": {
"content": {
"annotatedResult": {
"instances": [{
"label": "Native"
}]
}
}
}
}]
},
"new-test-14-metadata": {
"class-name": "Native",
"confidence": 0,
"human-annotated": "yes",
"creation-date": "2021-05-19T07:06:06",
"type": "groundtruth/custom"
}
}
}
}]
As you can see, the post-annotation function return value has the class-name of "Native" in the metadata so I would expect the class-name to be present in the data object metadata, but it's not. And here's a screenshot of the data object summary:
It seems like Ground Truth overwrote the metadata, and now the object doesn't contain the correct label. I think perhaps that's why my label is coming through as the label attribute name "new-test-14" instead of as the correct label "Native". Here's a screenshot of the labeling job in the AWS web console:
The web console is supposed to show the label "Native" inside the "Label" column but instead I'm getting the <labelattributename> "new-test-14" in the label column.
Here is the output.manifest file generated by Ground Truth at the end:
{
"source-ref": "s3://<file-name>",
"text": "Hello world",
"new-test-14": {
"annotationsFromAllWorkers": [{
"workerId": "private.us-east-1.ea05a03fcd679ert",
"annotationData": {
"content": {
"annotatedResult": {
"label": "Native"
}
}
}
}]
},
"new-test-14-metadata": {
"type": "groundtruth/custom",
"job-name": "new-test-14",
"human-annotated": "yes",
"creation-date": "2021-05-18T12:34:17.400000"
}
}
What should I return from the Post-Annotation function? Am I missing something in my response? How do I get the proper label to appear in the AWS web console?

Cross Account Cloudtrail log transfer through Cloudwatch and Kinesis data stream

I am using Cloudwatch subscriptions to send over cloudtrail log of one account into another. The Account receiving the logs has a Kinesis data stream which receives the logs from the cloudwatch subscription and invokes the standard lambda function provided by AWS to parse and store the logs to an S3 bucket of the log receiver account.
The log files getting written to s3 bucket are in the form of :
{"eventVersion":"1.08","userIdentity":{"type":"AssumedRole","principalId":"AA:i-096379450e69ed082","arn":"arn:aws:sts::34502sdsdsd:assumed-role/RDSAccessRole/i-096379450e69ed082","accountId":"34502sdsdsd","accessKeyId":"ASIAVAVKXAXXXXXXXC","sessionContext":{"sessionIssuer":{"type":"Role","principalId":"AROAVAVKXAKDDDDD","arn":"arn:aws:iam::3450291sdsdsd:role/RDSAccessRole","accountId":"345029asasas","userName":"RDSAccessRole"},"webIdFederationData":{},"attributes":{"mfaAuthenticated":"false","creationDate":"2021-04-27T04:38:52Z"},"ec2RoleDelivery":"2.0"}},"eventTime":"2021-04-27T07:24:20Z","eventSource":"ssm.amazonaws.com","eventName":"ListInstanceAssociations","awsRegion":"us-east-1","sourceIPAddress":"188.208.227.188","userAgent":"aws-sdk-go/1.25.41 (go1.13.15; linux; amd64) amazon-ssm-agent/","requestParameters":{"instanceId":"i-096379450e69ed082","maxResults":20},"responseElements":null,"requestID":"a5c63b9d-aaed-4a3c-9b7d-a4f7c6b774ab","eventID":"70de51df-c6df-4a57-8c1e-0ffdeb5ac29d","readOnly":true,"resources":[{"accountId":"34502914asasas","ARN":"arn:aws:ec2:us-east-1:3450291asasas:instance/i-096379450e69ed082"}],"eventType":"AwsApiCall","managementEvent":true,"eventCategory":"Management","recipientAccountId":"345029149342"}
{"eventVersion":"1.08","userIdentity":{"type":"AssumedRole","principalId":"AROAVAVKXAKPKZ25XXXX:AmazonMWAA-airflow","arn":"arn:aws:sts::3450291asasas:assumed-role/dev-1xdcfd/AmazonMWAA-airflow","accountId":"34502asasas","accessKeyId":"ASIAVAVKXAXXXXXXX","sessionContext":{"sessionIssuer":{"type":"Role","principalId":"AROAVAVKXAKPKZXXXXX","arn":"arn:aws:iam::345029asasas:role/service-role/AmazonMWAA-dlp-dev-1xdcfd","accountId":"3450291asasas","userName":"dlp-dev-1xdcfd"},"webIdFederationData":{},"attributes":{"mfaAuthenticated":"false","creationDate":"2021-04-27T07:04:08Z"}},"invokedBy":"airflow.amazonaws.com"},"eventTime":"2021-04-27T07:23:46Z","eventSource":"logs.amazonaws.com","eventName":"CreateLogStream","awsRegion":"us-east-1","sourceIPAddress":"airflow.amazonaws.com","userAgent":"airflow.amazonaws.com","errorCode":"ResourceAlreadyExistsException","errorMessage":"The specified log stream already exists","requestParameters":{"logStreamName":"scheduler.py.log","logGroupName":"dlp-dev-DAGProcessing"},"responseElements":null,"requestID":"40b48ef9-fc4b-4d1a-8fd1-4f2584aff1e9","eventID":"ef608d43-4765-4a3a-9c92-14ef35104697","readOnly":false,"eventType":"AwsApiCall","apiVersion":"20140328","managementEvent":true,"eventCategory":"Management","recipientAccountId":"3450291asasas"}
The problem with this type of log lines is that Athena is not able to Parse these log lines and I am not able to query the logs using Athena.
I tried modifying the blueprint lambda function to save the log file as a standard JSON result which would make it easy for Athena to parse the files.
Eg:
{'Records': ['{"eventVersion":"1.08","userIdentity":{"type":"AssumedRole","principalId":"AROAVAVKXAKPBRW2S3TAF:i-096379450e69ed082","arn":"arn:aws:sts::345029149342:assumed-role/RightslineRDSAccessRole/i-096379450e69ed082","accountId":"345029149342","accessKeyId":"ASIAVAVKXAKPBL653UOC","sessionContext":{"sessionIssuer":{"type":"Role","principalId":"AROAVAVKXAKPXXXXXXX","arn":"arn:aws:iam::34502asasas:role/RDSAccessRole","accountId":"345029asasas","userName":"RDSAccessRole"},"webIdFederationData":{},"attributes":{"mfaAuthenticated":"false","creationDate":"2021-04-27T04:38:52Z"},"ec2RoleDelivery":"2.0"}},"eventTime":"2021-04-27T07:24:20Z","eventSource":"ssm.amazonaws.com","eventName":"ListInstanceAssociations","awsRegion":"us-east-1","sourceIPAddress":"188.208.227.188","userAgent":"aws-sdk-go/1.25.41 (go1.13.15; linux; amd64) amazon-ssm-agent/","requestParameters":{"instanceId":"i-096379450e69ed082","maxResults":20},"responseElements":null,"requestID":"a5c63b9d-aaed-4a3c-9b7d-a4f7c6b774ab","eventID":"70de51df-c6df-4a57-8c1e-0ffdeb5ac29d","readOnly":true,"resources":[{"accountId":"3450291asasas","ARN":"arn:aws:ec2:us-east-1:34502asasas:instance/i-096379450e69ed082"}],"eventType":"AwsApiCall","managementEvent":true,"eventCategory":"Management","recipientAccountId":"345029asasas"}]}
The modified code for Blueprint Lambda function that I looks like:
import base64
import json
import gzip
from io import BytesIO
import boto3
def transformLogEvent(log_event):
return log_event['message'] + '\n'
def processRecords(records):
for r in records:
data = base64.b64decode(r['data'])
striodata = BytesIO(data)
with gzip.GzipFile(fileobj=striodata, mode='r') as f:
data = json.loads(f.read())
recId = r['recordId']
if data['messageType'] == 'CONTROL_MESSAGE':
yield {
'result': 'Dropped',
'recordId': recId
}
elif data['messageType'] == 'DATA_MESSAGE':
result = {}
result["Records"] = {}
events = []
for e in data['logEvents']:
events.append(e["message"])
result["Records"] = events
print(result)
if len(result) <= 6000000:
yield {
'data': result,
'result': 'Ok',
'recordId': recId
}
else:
yield {
'result': 'ProcessingFailed',
'recordId': recId
}
else:
yield {
'result': 'ProcessingFailed',
'recordId': recId
}
def putRecordsToFirehoseStream(streamName, records, client, attemptsMade, maxAttempts):
failedRecords = []
codes = []
errMsg = ''
# if put_record_batch throws for whatever reason, response['xx'] will error out, adding a check for a valid
# response will prevent this
response = None
try:
response = client.put_record_batch(DeliveryStreamName=streamName, Records=records)
except Exception as e:
failedRecords = records
errMsg = str(e)
# if there are no failedRecords (put_record_batch succeeded), iterate over the response to gather results
if not failedRecords and response and response['FailedPutCount'] > 0:
for idx, res in enumerate(response['RequestResponses']):
# (if the result does not have a key 'ErrorCode' OR if it does and is empty) => we do not need to re-ingest
if 'ErrorCode' not in res or not res['ErrorCode']:
continue
codes.append(res['ErrorCode'])
failedRecords.append(records[idx])
errMsg = 'Individual error codes: ' + ','.join(codes)
if len(failedRecords) > 0:
if attemptsMade + 1 < maxAttempts:
print('Some records failed while calling PutRecordBatch to Firehose stream, retrying. %s' % (errMsg))
putRecordsToFirehoseStream(streamName, failedRecords, client, attemptsMade + 1, maxAttempts)
else:
raise RuntimeError('Could not put records after %s attempts. %s' % (str(maxAttempts), errMsg))
def putRecordsToKinesisStream(streamName, records, client, attemptsMade, maxAttempts):
failedRecords = []
codes = []
errMsg = ''
# if put_records throws for whatever reason, response['xx'] will error out, adding a check for a valid
# response will prevent this
response = None
try:
response = client.put_records(StreamName=streamName, Records=records)
except Exception as e:
failedRecords = records
errMsg = str(e)
# if there are no failedRecords (put_record_batch succeeded), iterate over the response to gather results
if not failedRecords and response and response['FailedRecordCount'] > 0:
for idx, res in enumerate(response['Records']):
# (if the result does not have a key 'ErrorCode' OR if it does and is empty) => we do not need to re-ingest
if 'ErrorCode' not in res or not res['ErrorCode']:
continue
codes.append(res['ErrorCode'])
failedRecords.append(records[idx])
errMsg = 'Individual error codes: ' + ','.join(codes)
if len(failedRecords) > 0:
if attemptsMade + 1 < maxAttempts:
print('Some records failed while calling PutRecords to Kinesis stream, retrying. %s' % (errMsg))
putRecordsToKinesisStream(streamName, failedRecords, client, attemptsMade + 1, maxAttempts)
else:
raise RuntimeError('Could not put records after %s attempts. %s' % (str(maxAttempts), errMsg))
def createReingestionRecord(isSas, originalRecord):
if isSas:
return {'data': base64.b64decode(originalRecord['data']), 'partitionKey': originalRecord['kinesisRecordMetadata']['partitionKey']}
else:
return {'data': base64.b64decode(originalRecord['data'])}
def getReingestionRecord(isSas, reIngestionRecord):
if isSas:
return {'Data': reIngestionRecord['data'], 'PartitionKey': reIngestionRecord['partitionKey']}
else:
return {'Data': reIngestionRecord['data']}
def lambda_handler(event, context):
print(event)
isSas = 'sourceKinesisStreamArn' in event
streamARN = event['sourceKinesisStreamArn'] if isSas else event['deliveryStreamArn']
region = streamARN.split(':')[3]
streamName = streamARN.split('/')[1]
records = list(processRecords(event['records']))
projectedSize = 0
dataByRecordId = {rec['recordId']: createReingestionRecord(isSas, rec) for rec in event['records']}
putRecordBatches = []
recordsToReingest = []
totalRecordsToBeReingested = 0
for idx, rec in enumerate(records):
if rec['result'] != 'Ok':
continue
projectedSize += len(rec['data']) + len(rec['recordId'])
# 6000000 instead of 6291456 to leave ample headroom for the stuff we didn't account for
if projectedSize > 6000000:
totalRecordsToBeReingested += 1
recordsToReingest.append(
getReingestionRecord(isSas, dataByRecordId[rec['recordId']])
)
records[idx]['result'] = 'Dropped'
del(records[idx]['data'])
# split out the record batches into multiple groups, 500 records at max per group
if len(recordsToReingest) == 500:
putRecordBatches.append(recordsToReingest)
recordsToReingest = []
if len(recordsToReingest) > 0:
# add the last batch
putRecordBatches.append(recordsToReingest)
# iterate and call putRecordBatch for each group
recordsReingestedSoFar = 0
if len(putRecordBatches) > 0:
client = boto3.client('kinesis', region_name=region) if isSas else boto3.client('firehose', region_name=region)
for recordBatch in putRecordBatches:
if isSas:
putRecordsToKinesisStream(streamName, recordBatch, client, attemptsMade=0, maxAttempts=20)
else:
putRecordsToFirehoseStream(streamName, recordBatch, client, attemptsMade=0, maxAttempts=20)
recordsReingestedSoFar += len(recordBatch)
print('Reingested %d/%d records out of %d' % (recordsReingestedSoFar, totalRecordsToBeReingested, len(event['records'])))
else:
print('No records to be reingested')
return {"records": records}
My end goal is to store the result on S3 as JSON so that it can be queried easily with Athena.
the line where the transformation is happening is:
elif data['messageType'] == 'DATA_MESSAGE':
Any help in this would be greatly appreciated.

Unable to create a record in except loop of try-except odoo10

When i call the below function through API;
In both try and except conditions I have to keep log in separate table named api.log.
While the function enters in except condition, error occurs on creating record on api.log table
Here is the code:
#http.route('/tax_master',type="json",methodn ['POST'],auth="public",csrf=Falenter code herese)
def create_tax_master(self,**kw):
kw = http.request.params
obj_tax_master = request.env['tax.master']
obj_account_tax = request.env['account.tax']
flag = kw.get('flag')
vals = {}
result = False
if kw.get('name'):
vals['name'] = kw.get('name')
if kw.get('value'):
vals['value'] = kw.get('value')
if kw.get('scope'):
vals['scope'] = kw.get('scope')
if kw.get('is_excise'):
vals['is_excise'] = kw.get('is_excise')
if kw.get('description'):
vals['description'] = kw.get('description')
if kw.get('amount_type'):
vals['amount_type']= kw.get('amount_type')
if 'is_excise' in kw and kw.get('is_excise') not in [1,0]:
result = json.dumps({
"statusCode":02,
"statusDesc":"The value for the field is_excise should be 0 or 1"})
try:
if flag == 'create':
tax_id = obj_tax_master.sudo().create(vals).id
result = json.dumps({"id":tax_id,
"statusCode":01,
"statusDesc":"Successfully Created"
})
elif flag == 'write':
if kw.get('id'):
tax_id_rec = obj_tax_master.sudo().browse([int(kw.get('id'))])
if tax_id_rec.active == False:
result = json.dumps({
'statusCode': 02,
'statusDesc': 'The Tax is Archived.Updation is not possible now',
})
else:
tax_id_rec.sudo().write(vals)
tax_id = kw.get('id')
result = json.dumps({"id":tax_id,
"statusCode":01,
"statusDesc":"Successfully Updated"
})
else:
result = json.dumps({
'statusCode' : 02,
'statusDesc' : 'Please provide valid id to update the record',
})
elif flag == 'delete':
tax_id = obj_tax_master.sudo().browse(int(kw.get('id')))
if tax_id.active == False:
result = json.dumps({
'statusCode': 02,
'statusDesc': 'The record is already archived!!!',
})
else:
tax_id.write({'active':False})
taxes = obj_account_tax.sudo().search([('tax_master_id','=',kw.get('id'))])
for tax in taxes:
tax.write({'active':False})
result = json.dumps({
'statusCode' : 01,
'statusDesc' : 'The record is archived successfully!!!',
})
data = json.loads(result)
self.create_api_log('tax_master', flag, kw, data)
return data
except Exception,e:
result = json.dumps({'statusCode' : 02,'statusDesc' : str(e),})
data = json.loads(result)
self.create_api_log('tax_master', flag, kw, data)
return data
It is solved by using commit function.

Scheduling tasks with dynamic arguments to run periodically with celery in django

I have a tasks that contains dynamic arguments I want to run periodically, how do I pass dynamic elements to the tasks arguments when the task is being called in django celery beat?
Here is the task I want to run periodically:
#task(bind=True)
def generate_export(export_type, xform, export_id=None, options=None):
"""
Create appropriate export object given the export type.
param: export_type
param: xform
params: export_id: ID of export object associated with the request
param: options: additional parameters required for the lookup.
binary_select_multiples: boolean flag
end: end offset
ext: export extension type
dataview_pk: dataview pk
group_delimiter: "/" or "."
query: filter_query for custom queries
remove_group_name: boolean flag
split_select_multiples: boolean flag
index_tag: ('[', ']') or ('_', '_')
show_choice_labels: boolean flag
language: language labels as in the XLSForm/XForm
"""
username = xform.user.username
id_string = xform.id_string
end = options.get("end")
extension = options.get("extension", export_type)
filter_query = options.get("query")
remove_group_name = options.get("remove_group_name", False)
start = options.get("start")
export_type_func_map = {
Export.XLS_EXPORT: 'to_xls_export',
Export.CSV_EXPORT: 'to_flat_csv_export',
Export.DHIS2CSV_EXPORT: 'to_dhis2csv_export',
Export.CSV_ZIP_EXPORT: 'to_zipped_csv',
Export.SAV_ZIP_EXPORT: 'to_zipped_sav',
Export.GOOGLE_SHEETS_EXPORT: 'to_google_sheets',
}
if xform is None:
xform = XForm.objects.get(
user__username__iexact=username, id_string__iexact=id_string)
dataview = None
if options.get("dataview_pk"):
dataview = DataView.objects.get(pk=options.get("dataview_pk"))
records = dataview.query_data(dataview, all_data=True,
filter_query=filter_query)
total_records = dataview.query_data(dataview,
count=True)[0].get('count')
else:
records = query_data(xform, query=filter_query, start=start, end=end)
if filter_query:
total_records = query_data(xform, query=filter_query, start=start,
end=end, count=True)[0].get('count')
else:
total_records = xform.num_of_submissions
if isinstance(records, QuerySet):
records = records.iterator()
export_builder = ExportBuilder()
export_builder.TRUNCATE_GROUP_TITLE = True \
if export_type == Export.SAV_ZIP_EXPORT else remove_group_name
export_builder.GROUP_DELIMITER = options.get(
"group_delimiter", DEFAULT_GROUP_DELIMITER
)
export_builder.SPLIT_SELECT_MULTIPLES = options.get(
"split_select_multiples", True
)
export_builder.BINARY_SELECT_MULTIPLES = options.get(
"binary_select_multiples", False
)
export_builder.INCLUDE_LABELS = options.get('include_labels', False)
export_builder.INCLUDE_LABELS_ONLY = options.get(
'include_labels_only', False
)
export_builder.INCLUDE_HXL = options.get('include_hxl', False)
export_builder.INCLUDE_IMAGES \
= options.get("include_images", settings.EXPORT_WITH_IMAGE_DEFAULT)
export_builder.VALUE_SELECT_MULTIPLES = options.get(
'value_select_multiples', False)
export_builder.REPEAT_INDEX_TAGS = options.get(
"repeat_index_tags", DEFAULT_INDEX_TAGS
)
export_builder.SHOW_CHOICE_LABELS = options.get('show_choice_labels',
False)
export_builder.language = options.get('language')
# 'win_excel_utf8' is only relevant for CSV exports
if 'win_excel_utf8' in options and export_type != Export.CSV_EXPORT:
del options['win_excel_utf8']
export_builder.set_survey(xform.survey, xform)
# change the dhis2csv exports to standard csv format
if extension == 'dhis2csv':
extension = 'csv'
temp_file = NamedTemporaryFile(suffix=("." + extension))
columns_with_hxl = export_builder.INCLUDE_HXL and get_columns_with_hxl(
xform.survey_elements)
# get the export function by export type
func = getattr(export_builder, export_type_func_map[export_type])
try:
func.__call__(
temp_file.name, records, username, id_string, filter_query,
start=start, end=end, dataview=dataview, xform=xform,
options=options, columns_with_hxl=columns_with_hxl,
total_records=total_records
)
except NoRecordsFoundError:
pass
except SPSSIOError as e:
export = get_or_create_export(export_id, xform, export_type, options)
export.error_message = str(e)
export.internal_status = Export.FAILED
export.save()
report_exception("SAV Export Failure", e, sys.exc_info())
return export
# generate filename
basename = "%s_%s" % (
id_string, datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f"))
if remove_group_name:
# add 'remove group name' flag to filename
basename = "{}-{}".format(basename, GROUPNAME_REMOVED_FLAG)
if dataview:
basename = "{}-{}".format(basename, DATAVIEW_EXPORT)
filename = basename + "." + extension
# check filename is unique
while not Export.is_filename_unique(xform, filename):
filename = increment_index_in_filename(filename)
file_path = os.path.join(
username,
'exports',
id_string,
export_type,
filename)
# seek to the beginning as required by storage classes
temp_file.seek(0)
export_filename = default_storage.save(file_path,
File(temp_file, file_path))
temp_file.close()
dir_name, basename = os.path.split(export_filename)
# get or create export object
export = get_or_create_export(export_id, xform, export_type, options)
export.filedir = dir_name
export.filename = basename
export.internal_status = Export.SUCCESSFUL
# do not persist exports that have a filter
# Get URL of the exported sheet.
if export_type == Export.GOOGLE_SHEETS_EXPORT:
export.export_url = export_builder.url
# if we should create a new export is true, we should not save it
if start is None and end is None:
export.save()
return export
and this is where I call the tasks in the celery beat schedule:
CELERY_BEAT_SCHEDULE = {
'download_csv': {
'task': 'onadata.libs.utils.export_tools.generate_export',
# There are 4 ways we can handle time, read further
'schedule': crontab(minute='*'),
# If you're using any arguments
'args': ()
}
}
how do I pass parameters into the arguments for the tasks??
There is no way to pass argument dynamically in Celery Beat. I think your function is not suitable with periodic task.
Instead of giving a factor directly to the generate_export function, it must be changed to get the required items within the function. Or change to a simple asynchronous operation.
I faced a similar problem. The args field in beat_schedule is fixed at startup and does not change afterward.
But there is a hackish way to pass different arguments to your task.
Use the before_task_publish signal to add custom data in headers.
from celery.signals import before_task_publish
#before_task_publish.connect
def before_publish(sender=None, headers=None, body=None, **kwargs):
if sender == "tasks.generate_export":
headers["custom_args"] = {
"export_type": "some_val"
"xform": "some_val"
"export_id": get_export_id()
"options": options_dict
}
By default, Celery uses JSON serializer. So, make sure the data you add to headers are JSON serializable. Alternatively, you can use pickle to serialize the data, but it brings security concerns with it.
Now you can access these headers in a bound task.
#task(bind=True)
def generate_export(self):
args = self.request.get("custom_args", None)
# do something with args

How to retrieve multiple items from Dynamo DB using AWS lambda

How to get multiple items from DB. the below code throws me an error as it fetches only one item. I am retrieving the items based on email value.
import json
import os
import boto3
import decimalencoder
dynamodb = boto3.resource('dynamodb')
def get(event, context):
table = dynamodb.Table(os.environ['DYNAMODB_TABLE'])
# fetch a person from the database
result = table.get_item(
Key={
'email': event['pathParameters']['email']
}
)
# create a response
response = {
"statusCode": 200,
"body": json.dumps(result['Item'], cls=decimalencoder.DecimalEncoder),
"headers": {
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Credentials": "true"
}
}
return response
To retrive multiple rows from db, first query on id you want data to be filtered.
Then maintain a list to store all row values in it.
def lambda_handler(event,context):
item = table.query(
KeyConditionExpression=Key('hubID').eq(hubId)
)
if (item["Count"] == 0):
response = {"msg": "Item not exist, can't perform READ"}
else:
i = 1
lst = []
while i < item["Count"]:
response = {
"hubId" : item["Items"][i]["hubID"],
"deviceState": int(item["Items"][i]["deviceState"]),
"deviceId": item["Items"][i]["deviceID"],
"deviceType": item["Items"][i]["deviceType"],
"intensity": int(item["Items"][i]["intensity"])
}
lst.append(response)
i += 1
print(lst)
response = lst
return response