Related
I have a C++ program running on Windows 10. The windows task manager tells me that the commit size is increasing rapidly over time. While the working set appears to be constant.
Screenshot of Task Manager, my program in first line, commit size ~37GB
The code has been checked for memory leaks many times by different developers, we can't find any obvious leak.
The program is a graphics and memory intense application, utilizing MFC to instantiate multiple windows. Which we use to render into with OpenGL. There is a lot copying of data going on at runtime, because we are processing images of multiple cameras.
The issue is that after ~10-15days, when the commit size exhausts the available total (paged included) memory of the system (not physical RAM), either:
a) the program will crash to desktop
b) the display driver disconnected from the GPU. And we are greeted with just black screens.
What I have tried so far:
finding memory leaks in the code
updating graphics driver
updating windows 10
What kind of leak could cause only the commit size to increase? How can I prevent this issue from happening?
After much testing and code reviewing, I have found that there was no memory leak in my application after all. Windows reported it as such, however, after upgrading the Windows 10 build from 1909 to 21H2, all the issues went away. No more commit memory increase and no more crashing/black screening.
What, MFC is still around? Unless you have a real need for MFC you should probably use something like glfw.
Past that, outside of using external memory leak detectors you can use the heap debug support in Visual Studio's c runtime. You will need to define the following in your code.
#define _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
and add
_CrtDumpMemoryLeaks();
somewhere after the major processing and before your program exits.
This will swap out the normal malloc and free with debug versions. You can also modify new/delete to get more information as well. These overrides should catch most of the standard library allocators. There is a lot of info in that link (more than should probably be here)
After swapping out the memory handlers you would then run your program and after it has leaked a bit shut it down. Be careful to shut it down gracefully (don't kill the process) otherwise a lot more than the actual leaks will be seen as leaks. Once you call _CrtDumpMemoryLeaks it will then dump information on everything that was not free'd. Sometimes the leaks can be a hard to find as the dump may not include the source/lines (especially if you do not override new/deletes). It will just be allocation index, size, and data information, but the docs tell you how to track it down with allocation breakpoints. By default the info will dump to VS's output window, so in general it is better to run the app from VS. There are other apps that hook the OutputDebugMessage call and you can also redirect it yourself, but again VS is the easiest. You will need to run debug builds in order for it to work. The debug versions of the allocators are going to be slower and increase the size of your allocations but its a small price to pay in this case (and its temporary).
If you still have issues locating the leaks then next thing to try is GFlags - PageHeap , but that is a whole other topic and things are really going wrong at that point.
I am writing a text Editor application. As an experiment I ran the application and monitered its memory usage on Task Manager as I performed different actions.
When I first launched the application, it used 3000 kB.
It stayed roughly the same when I typed
When I clicked on save, it shot up to 9000kb
and then it just stayed at 8500kb (It didn't go back down to 3000kb)
Is this caused by a memory leak? I'm a bit confused because I observed similar behaviour with Notepad.
Launching: 1500kb
Saving: 6000 kb
After saving, memory stays at around 5000kb
Also, why does my application take up 3x more memory than Notepad.exe, what kind of things could cause that? Should I be worried?
To start with you want to know where that memory is actually being used. There are a lot of complex programs to do memory analysis/profiling, but if you want something more detailed than Task Manager but still fairly simple and free, Sysinternals vmmap is great.
http://technet.microsoft.com/en-us/sysinternals/dd535533
As others have mentioned, the save is probably causing other libraries to be pulled in. The text itself is also going to contribute to your memory usage. VMMap will help you determine how much is yours and how much is other stuff. Then you could see if your part is really growing substantially over time or not. You probably want a large amount of time of stress testing to really see if it is leaking memory if you are not going to use a memory profiler, otherwise the leak is probably not going to be big enough to really notice easily.
The File-Save dialog starting up for the first time probably burns a lot of memory. Opening the file dialog embeds a copy of Explorer in the window, for instance, and loading Explorer into your process carries a lot of baggage along with it.
The fact that you are using Qt means there's a lots of unnecessary code added to your software. Qt Core for instance is over 2MB, Qt Gui is about 8 MB. Microsoft on the other hand have probably coded Notepad using pure C/C++ and the Windows API, which mean they have a smaller and faster executable.
Finally, it also depends on your compiler. MinGW is going to create larger and slower executables than Visual C++ compiler. So if you can, try to use Microsoft's compiler.
I tried exactly the same in notepad, the save needs more memory. If you open a current file and save it, then there is no difference in memory. Creating the file takes tons of memory, in the end.
This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
What's the graceful way of handling out of memory situations in C/C++?
Hi,
this seems to be a simple question a first glance. And I don't want to start a huge discussion on what-is-the-best-way-to-do-this....
Context: Windows >= 5, 32 bit, C++, Windows SDK / Win32 API
But after asking a similar question, I read some MSDN and about the Win32 memory management, so now I'm even more confused on what to do if an allocation fails, let's say the C++ new operator.
So I'm very interested now in how you implement (and implicitly, if you do implement) an error handling for OOM in your applications.
If, where (main function?), for which operations (allocations) , and how you handle an OOM error.
(I don't really mean that subjectively, turning this into a question of preference, I just like to see different approaches that account for different conditions or fit different situations. So feel free to offer answers for GUI apps, services - user-mode stuff ....)
Some exemplary reactions to OOM to show what I mean:
GUI app: Message box, exit process
non-GUI app: Log error, exit process
service: try to recover, e.g. kill the thread that raised an exception, but continue execution
critical app: try again until an allocation succeeds (reducing the requested amount of memory)
hands from OOM, let STL / boost / OS handle it
Thank you for your answers!
The best-explained way will receive the great honour of being an accepted answer :D - even if it only consists of a MessageBox line, but explains why evering else was useless, wrong or unneccessary.
Edit: I appreciate your answers so far, but I'm missing a bit of an actual answer; what I mean is most of you say don't mind OOM since you can't do anything when there's no memory left (system hangs / poor performance). But does that mean to avoid any error handling for OOM? Or only do a simple try-catch in the main showing a MessageBox?
On most modern OSes, OOM will occur long after the system has become completely unusable, since before actually running out, the virtual memory system will start paging physical RAM out to make room for allocating additional virtual memory and in all likelihood the hard disk will begin to thrash like crazy as pages have to be swapped in and out at higher and higher frequencies.
In short, you have much more serious concerns to deal with before you go anywhere near OOM conditions.
Side note: At the moment, the above statement isn't as true as it used to be, since 32-bit machines with loads of physical RAM can exhaust their address space before they start to page. But this is still not common and is only temporary, as 64-bit ramps up and approaches mainstream adoption.
Edit: It seems that 64-bit is already mainstream. While perusing the Dell web site, I couldn't find a single 32-bit system on offer.
You do the exact same thing you do when:
you created 10,000 windows
you allocated 10,000 handles
you created 2,000 threads
you exceeded your quota of kernel pool memory
you filled up the hard disk to capacity.
You send your customer a very humble message where you apologize for writing such crappy code and promise a delivery date for the bug fix. Any else is not nearly good enough. How you want to be notified about it is up to you.
Basically, you should do whatever you can to avoid having the user lose important data. If disk space is available, you might write out recovery files. If you want to be super helpful, you might allocate recovery files while your program is open, to ensure that they will be available in case of emergency.
Simply display a message or dialog box (depending on whether your in a terminal or window system), saying "Error: Out of memory", possibly with debugging info, and include an option for your user to file a bug report, or a web link to where they can do that.
If your really out of memory then, in all honesty, there's no point doing anything other than gracefully exiting, trying to handle the error is useless as there is nothing you can do.
In my case, what happens when you have an app that fragments the memory up so much it cannot allocate the contiguous block needed to process the huge amount of nodes?
Well, I split the processing up as much as I could.
For OOM, you can do the same thing, chop your processes up into as many pieces as possible and do them sequentially.
Of course, for handling the error until you get to fix it (if you can!), you typically let it crash. Then you determine that those memory allocs are failing (like you never expected) and put a error message direct to the user along the lines of "oh dear, its all gone wrong. log a call with the support dept". In all cases, you inform the user however you like. Though, its established practice to use whatever mechanism the app currently uses - if it writes to a log file, do that, if it displays an error dialog, do the same, if it uses the Windows 'send info to microsoft' dialog, go right ahead and let that be the bearer of bad tidings - users are expecting it, so don't try to be clever and do something else.
It depends on your app, your skill level, and your time. If it needs to be running 24/7 then obviously you must handle it. It depends on the situation. Perhaps it may be possible to try a slower algorithm but one that requires less heap. Maybe you can add functionality so that if OOM does occur your app is capable of cleaning itself up, and so you can try again.
So I think the answer is 'ALL OF THE ABOVE!', apart from LET IT CRASH. You take pride in your work, right?
Don't fall into the 'there's loads of memory so it probably won't happen' trap. If every app writer took that attitude you'd see OOM far more often, and not all apps are running on a desktop machines, take a mobile phone for example, it's highly likely for you to run into OOM on a RAM starved platform like that, trust me!
If all else fails display a useful message (assuming there's enough memory for a MessageBox!)
I am developing a large program which uses a lot of memory. The program is quite experimental and I add and remove big chunks of code all the time. Sometimes I will add a routine that is rather too memory hungry and the HDD drive will start thrashing and the program (and the whole system) will slow to a snails pace. It can easily take 5 mins to shut it down!
What I would like is a mechanism for avoiding this scenario. Either a run time procedure or even something to be done before running the program, which can say something like "If you run this program there is a risk of HDD thrashing - aborting now to avoid slowing to a snails pace".
Any ideas?
EDIT: Forgot to mention, my program uses multiple threads.
You could consider using SetProcessWorkingSetSize . This would be useful in debugging, because your app will crash with a fatal exception when it runs out of memory instead of dragging your machine into a thrashing situation.
http://msdn.microsoft.com/en-us/library/ms686234%28VS.85%29.aspx
Similar SO question
Set Windows process (or user) memory limit
Windows XP is terrible when there are multiple threads or processes accessing the disk at the same time. This is effectively what you experience when your application begins to swap, as the OS is writing out some pages while reading in others. Windows XP (and Server 2003 for that matter) is utterly trash for this. This is a real shame, as it means that swapping is almost synonymous with thrashing on these systems.
Your options:
Microsoft fixed this problem in Vista and Server 2008. So stop using a 9 year old OS. :)
Use unbuffered I/O to read/write data to a file, and implement your own paging inside your application. Implementing your own "swap" like this enables you to avoid thrashing.
See here many more details of this problem: How to obtain good concurrent read performance from disk
I'm not familiar with Windows programming, but under Unix you can limit the amount of memory that a program can use with setrlimit(). Maybe there is something similar. The goal is to get the program to abort once it uses to much memory, rather than thrashing. The limit would be a bit less than the total physical memory on the machine. I would guess somewhere between 75% and 90%, but some experimentation would be necessary to find the optimal setting.
Chances are your program could use some memory management. While there are a few programs that do need to hold everything in memory at once, odds are good that with a little bit of foresight you might be able to rework your program to reuse or discard a lot of the memory you need.
Your program will run much faster too. If you are using that much memory, then basically all of your built-in first and second level caches are likely overflowing, meaning the CPU is mostly waiting on memory loads instead of processing your code's instructions.
I'd rather determine reasonable minimum requirements for the computer your program is supposed to run on, and during installation either warn the user if there's not enough memory available, or refuse to install.
Telling him each time he's starting the program is nonsensical.
I have a program that loads a file (anywhere from 10MB to 5GB) a chunk at a time (ReadFile), and for each chunk performs a set of mathematical operations (basically calculates the hash).
After calculating the hash, it stores info about the chunk in an STL map (basically <chunkID, hash>) and then writes the chunk itself to another file (WriteFile).
That's all it does. This program will cause certain PCs to choke and die. The mouse begins to stutter, the task manager takes > 2 min to show, ctrl+alt+del is unresponsive, running programs are slow.... the works.
I've done literally everything I can think of to optimize the program, and have triple-checked all objects.
What I've done:
Tried different (less intensive) hashing algorithms.
Switched all allocations to nedmalloc instead of the default new operator
Switched from stl::map to unordered_set, found the performance to still be abysmal, so I switched again to Google's dense_hash_map.
Converted all objects to store pointers to objects instead of the objects themselves.
Caching all Read and Write operations. Instead of reading a 16k chunk of the file and performing the math on it, I read 4MB into a buffer and read 16k chunks from there instead. Same for all write operations - they are coalesced into 4MB blocks before being written to disk.
Run extensive profiling with Visual Studio 2010, AMD Code Analyst, and perfmon.
Set the thread priority to THREAD_MODE_BACKGROUND_BEGIN
Set the thread priority to THREAD_PRIORITY_IDLE
Added a Sleep(100) call after every loop.
Even after all this, the application still results in a system-wide hang on certain machines under certain circumstances.
Perfmon and Process Explorer show minimal CPU usage (with the sleep), no constant reads/writes from disk, few hard pagefaults (and only ~30k pagefaults in the lifetime of the application on a 5GB input file), little virtual memory (never more than 150MB), no leaked handles, no memory leaks.
The machines I've tested it on run Windows XP - Windows 7, x86 and x64 versions included. None have less than 2GB RAM, though the problem is always exacerbated under lower memory conditions.
I'm at a loss as to what to do next. I don't know what's causing it - I'm torn between CPU or Memory as the culprit. CPU because without the sleep and under different thread priorities the system performances changes noticeably. Memory because there's a huge difference in how often the issue occurs when using unordered_set vs Google's dense_hash_map.
What's really weird? Obviously, the NT kernel design is supposed to prevent this sort of behavior from ever occurring (a user-mode application driving the system to this sort of extreme poor performance!?)..... but when I compile the code and run it on OS X or Linux (it's fairly standard C++ throughout) it performs excellently even on poor machines with little RAM and weaker CPUs.
What am I supposed to do next? How do I know what the hell it is that Windows is doing behind the scenes that's killing system performance, when all the indicators are that the application itself isn't doing anything extreme?
Any advice would be most welcome.
I know you said you had monitored memory usage and that it seems minimal here, but the symptoms sound very much like the OS thrashing like crazy, which would definitely cause general loss of OS responsiveness like you're seeing.
When you run the application on a file say 1/4 to 1/2 the size of available physical memory, does it seem to work better?
What I suspect may be happening is that Windows is "helpfully" caching your disk reads into memory and not giving up that cache memory to your application for use, forcing it to go to swap. Thus, even though swap use is minimal (150MB), it's going in and out constantly as you calculate the hash. This then brings the system to its knees.
Some things to check:
Antivirus software. These often scan files as they're opened to check for viruses. Is your delay occuring before any data is read by the application?
General system performance. Does copying the file using Explorer also show this problem?
Your code. Break it down into the various stages. Write a program that just reads the file, then one that reads and writes the files, then one that just hashes random blocks of ram (i.e. remove the disk IO part) and see if any particular step is problematic. If you can get a profiler then use this as well to see if there any slow spots in your code.
EDIT
More ideas. Perhaps your program is holding on to the GDI lock too much. This would explain everything else being slow without high CPU usage. Only one app at a time can have the GDI lock. Is this a GUI app, or just a simple console app?
You also mentioned RtlEnterCriticalSection. This is a costly operation, and can hang the system quite easily, i.e. mismatched Enters and Leaves. Are you multi-threading at all? Is the slow down due to race conditions between threads?
XPerf is your guide here - watch the PDC Video about it, and then take a trace of the misbehaving app. It will tell you exactly what's happening throughout the system, it is extremely powerful.
I like the disk-caching/thrashing suggestions, but if that's not it, here are some scattershot suggestions:
What non-MSVC libraries, if any, are you linking to?
Can your program be modified (#ifdef'd) to run without a GUI? Does the problem occur?
You added ::Sleep(100) after each loop in each thread, right? How many threads are you talking about? A handful or hundreds? How long does each loop take, roughly? What happens if you make that ::Sleep(10000)?
Is your program perhaps doing something else that locks a limited resources (ProcExp can show you what handles are being acquired ... of course you might have difficulty with ProcExp not responding:-[)
Are you sure CriticalSections are userland-only? I recall that was so back when I worked on Windows (or so I believed), but Microsoft could have modified that. I don't see any guarantee in the MSDN article Critical Section Objects (http://msdn.microsoft.com/en-us/library/ms682530%28VS.85%29.aspx) ... and this leads me to wonder: Anti-convoy locks in Windows Server 2003 SP1 and Windows Vista
Hmmm... presumably we're all multi-processor now, so are you setting the spin count on the CS?
How about running a debugging version of one of these OSes and monitoring the kernel debugging output (using DbgView)... possibly using the kernel debugger from the Platform SDK ... if MS still calls it that?
I wonder whether VMMap (another SysInternal/MS utility) might help with the Disk caching hypothesis.
It turns out that this is a bug in the Visual Studio compiler. Using a different compiler resolves the issue entirely.
In my case, I installed and used the Intel C++ Compiler and even with all optimizations disabled I did not see the fully-system hang that I was experiencing w/ the Visual Studio 2005 - 2010 compilers on this library.
I'm not certain as to what is causing the compiler to generate such broken code, but it looks like we'll be buying a copy of the Intel compiler.
It sounds like you're poking around fixing things without knowing what the problem is. Take stackshots. They will tell you what your program is doing when the problem occurs. It might not be easy to get the stackshots if the problem occurs on other machines where you cannot use an IDE or a stack sampler. One possibility is to kill the app and get a stack dump when it's acting up. You need to reproduce the problem in an environment where you can get a stack dump.
Added: You say it performs well on OSX and Linux, and poorly on Windows. I assume the ratio of completion time is some fairly large number, like 10 or 100, if you've even had the patience to wait for it. I said this in the comment, but it is a key point. The program is waiting for something, and you need to find out what. It could be any of the things people mentioned, but it is not random.
Every program, all the time while it runs, has a call stack consisting of a hierarchy of call instructions at specific addresses. If at a point in time it is calculating, the last instruction on the stack is a non-call instruction. If it is in I/O the stack may reach into a few levels of library calls that you can't see into. That's OK. Every call instruction on the stack is waiting. It is waiting for the work it requested to finish. If you look at the call stack, and look at where the call instructions are in your code, you will know what your program is waiting for.
Your program, since it is taking so long to complete, is spending nearly all of its time waiting for something to finish, and as I said, that's what you need to find out. Get a stack dump while it's being slow, and it will give you the answer. The chance that it will miss it is 1/the-slowness-ratio.
Sorry to be so elemental about this, but lots of people (and profiler makers) don't get it. They think they have to measure.