FLUTTER - Checking if a string contains another one - list

I am working on an English vocabulary learning app. Some of the exercises given to the users are written quizzes. They have to translate French words into English words and vice versa.
To make the checking a little more sophisticated than just "1" or "0" (TypedWord == expectedWord), I have been working with similarities between strings and that worked well (for spelling mistakes for example).
I had also used the contains function, so that for example, if the user adds an article in front of the expected word, it doesn't consider it wrong. (Ex : Ecole (School is expected), but user writes "A school").
So I was checking with lines such as "if (typedWord.contains(word)==true) then...". It works fine for the article problem.
But it prompts another issue :
Ex : A bough --> the expected French word is "branche". If user types "une branche", it considers it correct, which is great. But if user types "débrancher" (to unplug), it considers it correct as well as the word "branche" is a part of "débrancher"...
How could I keep this from happening ? Any idea of other ways to go about it ?
I read the three proposed answers which are really interesting. The thing is that some of the words are compound.... "Ex : kitchen appliance, garden tool" etc... so then I think the "space" functions might be problematic...

In this case, separate the whole answer with the "space", then compare it with the correct word.
For an example:
User's answer: That is my school
Separate it with space, so that you will find an array of words:
that, is, my, school.
Then compare each word with your word. It will give you the correct answer.
The flutter code will be like below:
usersAnswer?.split(" ").forEach((word){
if(word == correctAnswer)
print("this is a correct answer");
});

You can split the string by space and check if the resulting array has the word you're looking for.
typedWord.split(' ').contains('debranche');
So if typedWord is 'une branchethesplit(' ') will turn it into this array: ['une', 'branche'].
Now when you check if this array contains('branche') it will check if the exact string branche exists which in this case it does and returns true.
However if it's 'une debranche' the resulting array would be: ['une', 'debranche'] and because this array has no value equal to 'branche' it will return false. Remember that when you use split it turns the string into an array and by using contains on an array it checks whether or not an item of exactly the value you provide contains exists or not, whereas in a string it checks if part of that string matches the given value or not.

You could check for whitespaces before and after the correct word: something like if (typedWord.contains(' '+word+' ')==true) then..., so that "débrancher" gets marked as wrong. This is kind of strict, though: if the sentence must be completed with some punctuation, it would be rejected by this check. You'll probably want some RegExp that allows punctuation but not whitespaces.

Related

(C++) Can the color of text change as it is typed?

I have a list of instructions in my program and they are activated by entering a string. There are a large number of possible instructions. You could call them commands if you like.
I already have a program that can successfully execute the instructions I've added so far.
For example, adding a person to the database would require the user to enter add "John" "Doe".
This would output to the screen Added John Doe to the database, ID#1234. The IDs are random.
I know how to add colors; in this output text, "John Doe" would be colored green.
What I'm wondering is, can I make it so that color changes as one types? Because I learned how to use some kind of keyboard mode change so that when I type a password, all characters are displayed as * of any color I desire, or even nothing displayed at all, through "display" of \0, and I know how to do that. I was wondering if the color could change before the complete string (extracted with std::getline(std::cin, str);) is typed.
The first reason I want the colors to change is because when there are so many commands, and I already have more complex commands than that, I want to provide a way for the user to be able to correct syntax mistakes before they press enter. Something like Windows PowerShell, perhaps, which was written in C#. I know that C# is a very different language than C++, but if C# can achieve something like that, I want to see if C++ can as well. My hope is that it doesn't require thousands of lines of application-specific code, especially considering that PowerShell is an actual application and not a simple terminal-run executable. And while PowerShell appears to be open-source, I don't understand C#. See the bottom for the second reason.
I have no idea if this is possible, but because similar manipulation of entered text is possible (as I said, I know how to add colors and also mask text as some other single character like *), I want to know if this is also possible.
Simple examples:
Firstly, the user should know when they have not entered a valid command, and when they have. I want the text to be in red until the letters entered so far consist of an actual keyword, like add. So, the text would be red until the second d is added, when it reverts to white, and if another letter is entered, it becomes red again.
Example 1: add "John Elias" "Doe"
After the space, the text after "add" should be red no matter what, unless the character after the space is a quotation mark. In order to tell the user that they have not terminated the string, the text beyond the (orange?) quotation mark should be orange. When the final quotation mark is entered, the entire content of the quotation marks (including the quotation marks) should be some other color (probably green?) to tell the user that they have successfully entered an argument. The same applies to any instances of quotation-mark arguments. Note that a space is allowed in a quotation argument.
Example 2: list-info 1234
In this command, it gets more complex. list is a separate command, so the text should be red until t is entered, and it turns white. But then it turns red again after that, until o is entered, and it turns white again. The numerical argument following it should be red if the entered character isn't a digit. If it is, it's still red, because the only valid IDs are 3- or 4-digit numbers. It should turn green(?) once a third digit is entered, and still stay green when another digit is entered. But if a fifth digit is entered (or another character for that matter), the number turns red again. Although this would better be implemented as returning an error if the entered number is invalid, I would still like to know if this can be done as well.
Example 3: add "John" "Elias" "Doe" "fourth-string"
Since there is an overloaded function that enables an explicit first-middle-last name to be stored as well, it should be ok if there is a third string. But if there is a fourth string added, then it should be in red no matter what because add cannot take more than 3 arguments.
My question is, are any of these things possible? And yes, I am aware that it is almost certainly better to just implement an error system, but my intention is to expand my coding ability, and that is the second reason, and coding an error system will not do that because I have already done that for every command.
For reference, I'm operating in Linux Ubuntu 18.04, I compile with g++, my code conforms to C++17, I use ANSI escape sequences for color, bold, etc., and for masking characters with something like * I use a pointer to a char array (passed by address as char**) and a C-style FILE* to reference the input stream stdin (because I haven't bothered to conform it to a typical C++ implementation yet, learning ways to advance my current skills is my priority at this point in time).

How to check if my string input followed the correct syntax in C++?

I'm new to this site and this is my first time to ask here.
My problem is I want to check if my string follows a correct pattern or syntax. I'm doing it with C++ String (std::string). I have already done this using C-Style string, however, I want to do it this time in C++ String. Sample problem below:
Input: 2y'' + 3y' - 2y = 0
or y'' = 4y
I want to check if the derivative input is in correct syntax like (a)y'' + (b)y' + (c)y = 0, a second order homogeneous equation. However, I still want to input a non-standard form equation like the second sample input that can be transposed and make it to standard form.
What I did before with it is remove all the white spaces, loop the entire string and check every index. Eg. if 'y' is found the next char should be '\'' or an arithmetic symbol like '-' or '+' or '=' then if it does not match, then, it must return false.
Or maybe I am just implementing this wrong. I'm new to programming and just taking a computer science course. Note: Sorry for my bad English and sorry if I did not written my code here. Its just way too long.
Regular expressions might be the answer. They're commonly used for checking whether a string first a format, or finding parts of a string that do.
RegExr is a great tool to both learn and test your regular expressions.

Checking if a string contains an English sentence

As of right now, I decided to take a dictionary and iterate through the entire thing. Every time I see a newline, I make a string containing from that newline to the next newline, then I do string.find() to see if that English word is somewhere in there. This takes a VERY long time, each word taking about 1/2-1/4 a second to verify.
It is working perfectly, but I need to check thousands of words a second. I can run several windows, which doesn't affect the speed (Multithreading), but it still only checks like 10 a second. (I need thousands)
I'm currently writing code to pre-compile a large array containing every word in the English language, which should speed it up a lot, but still not get the speed I want. There has to be a better way to do this.
The strings I'm checking will look like this:
"hithisisastringthatmustbechecked"
but most of them contained complete garbage, just random letters.
I can't check for impossible compinations of letters, because that string would be thrown out because of the 'tm', in between 'thatmust'.
You can speed up the search by employing the Knuth–Morris–Pratt (KMP) algorithm.
Go through every dictionary word, and build a search table for it. You need to do it only once. Now your search for individual words will proceed at faster pace, because the "false starts" will be eliminated.
There are a lot of strategies for doing this quickly.
Idea 1
Take the string you are searching and make a copy of each possible substring beginning at some column and continuing through the whole string. Then store each one in an array indexed by the letter it begins with. (If a letter is used twice store the longer substring.
So the array looks like this:
a - substr[0] = "astringthatmustbechecked"
b - substr[1] = "bechecked"
c - substr[2] = "checked"
d - substr[3] = "d"
e - substr[4] = "echecked"
f - substr[5] = null // since there is no 'f' in it
... and so forth
Then, for each word in the dictionary, search in the array element indicated by its first letter. This limits the amount of stuff that has to be searched. Plus you can't ever find a word beginning with, say 'r', anywhere before the first 'r' in the string. And some words won't even do a search if the letter isn't in there at all.
Idea 2
Expand upon that idea by noting the longest word in the dictionary and get rid of letters from those strings in the arrays that are longer than that distance away.
So you have this in the array:
a - substr[0] = "astringthatmustbechecked"
But if the longest word in the list is 5 letters, there is no need to keep any more than:
a - substr[0] = "astri"
If the letter is present several times you have to keep more letters. So this one has to keep the whole string because the "e" keeps showing up less than 5 letters apart.
e - substr[4] = "echecked"
You can expand upon this by using the longest words starting with any particular letter when condensing the strings.
Idea 3
This has nothing to do with 1 and 2. Its an idea that you could use instead.
You can turn the dictionary into a sort of regular expression stored in a linked data structure. It is possible to write the regular expression too and then apply it.
Assume these are the words in the dictionary:
arun
bob
bill
billy
body
jose
Build this sort of linked structure. (Its a binary tree, really, represented in such a way that I can explain how to use it.)
a -> r -> u -> n -> *
|
b -> i -> l -> l -> *
| | |
| o -> b -> * y -> *
| |
| d -> y -> *
|
j -> o -> s -> e -> *
The arrows denote a letter that has to follow another letter. So "r" has to be after an "a" or it can't match.
The lines going down denote an option. You have the "a or b or j" possible letters and then the "i or o" possible letters after the "b".
The regular expression looks sort of like: /(arun)|(b(ill(y+))|(o(b|dy)))|(jose)/ (though I might have slipped a paren). This gives the gist of creating it as a regex.
Once you build this structure, you apply it to your string starting at the first column. Try to run the match by checking for the alternatives and if one matches, more forward tentatively and try the letter after the arrow and its alternatives. If you reach the star/asterisk, it matches. If you run out of alternatives, including backtracking, you move to the next column.
This is a lot of work but can, sometimes, be handy.
Side note I built one of these some time back by writing a program that wrote the code that ran the algorithm directly instead of having code looking at the binary tree data structure.
Think of each set of vertical bar options being a switch statement against a particular character column and each arrow turning into a nesting. If there is only one option, you don't need a full switch statement, just an if.
That was some fast character matching and really handy for some reason that eludes me today.
How about a Bloom Filter?
A Bloom filter, conceived by Burton Howard Bloom in 1970 is a
space-efficient probabilistic data structure that is used to test
whether an element is a member of a set. False positive matches are
possible, but false negatives are not; i.e. a query returns either
"inside set (may be wrong)" or "definitely not in set". Elements can
be added to the set, but not removed (though this can be addressed
with a "counting" filter). The more elements that are added to the
set, the larger the probability of false positives.
The approach could work as follows: you create the set of words that you want to check against (this is done only once), and then you can quickly run the "in/not-in" check for every sub-string. If the outcome is "not-in", you are safe to continue (Bloom filters do not give false negatives). If the outcome is "in", you then run your more sophisticated check to confirm (Bloom filters can give false positives).
It is my understanding that some spell-checkers rely on bloom filters to quickly test whether your latest word belongs to the dictionary of known words.
This code was modified from How to split text without spaces into list of words?:
from math import log
words = open("english125k.txt").read().split()
wordcost = dict((k, log((i+1)*log(len(words)))) for i,k in enumerate(words))
maxword = max(len(x) for x in words)
def infer_spaces(s):
"""Uses dynamic programming to infer the location of spaces in a string
without spaces."""
# Find the best match for the i first characters, assuming cost has
# been built for the i-1 first characters.
# Returns a pair (match_cost, match_length).
def best_match(i):
candidates = enumerate(reversed(cost[max(0, i-maxword):i]))
return min((c + wordcost.get(s[i-k-1:i], 9e999), k+1) for k,c in candidates)
# Build the cost array.
cost = [0]
for i in range(1,len(s)+1):
c,k = best_match(i)
cost.append(c)
# Backtrack to recover the minimal-cost string.
costsum = 0
i = len(s)
while i>0:
c,k = best_match(i)
assert c == cost[i]
costsum += c
i -= k
return costsum
Using the same dictionary of that answer and testing your string outputs
>>> infer_spaces("hithisisastringthatmustbechecked")
294.99768817854056
The trick here is finding out what threshold you can use, keeping in mind that using smaller words makes the cost higher (if the algorithm can't find any usable word, it returns inf, since it would split everything to single-letter words).
In theory, I think you should be able to train a Markov model and use that to decide if a string is probably a sentence or probably garbage. There's another question about doing this to recognize words, not sentences: How do I determine if a random string sounds like English?
The only difference for training on sentences is that your probability tables will be a bit larger. In my experience, though, a modern desktop computer has more than enough RAM to handle Markov matrices unless you are training on the entire Library of Congress (which is unnecessary- even 5 or so books by different authors should be enough for very accurate classification).
Since your sentences are mashed together without clear word boundaries, it's a bit tricky, but the good news is that the Markov model doesn't care about words, just about what follows what. So, you can make it ignore spaces, by first stripping all spaces from your training data. If you were going to use Alice in Wonderland as your training text, the first paragraph would, perhaps, look like so:
alicewasbeginningtogetverytiredofsittingbyhersisteronthebankandofhavingnothingtodoonceortwiceshehadpeepedintothebookhersisterwasreadingbutithadnopicturesorconversationsinitandwhatistheuseofabookthoughtalicewithoutpicturesorconversation
It looks weird, but as far as a Markov model is concerned, it's a trivial difference from the classical implementation.
I see that you are concerned about time: Training may take a few minutes (assuming you have already compiled gold standard "sentences" and "random scrambled strings" texts). You only need to train once, you can easily save the "trained" model to disk and reuse it for subsequent runs by loading from disk, which may take a few seconds. Making a call on a string would take a trivially small number of floating point multiplications to get a probability, so after you finish training it, it should be very fast.

Regular expression for validating names and surnames?

Although this seems like a trivial question, I am quite sure it is not :)
I need to validate names and surnames of people from all over the world. Imagine a huge list of miilions of names and surnames where I need to remove as well as possible any cruft I identify. How can I do that with a regular expression? If it were only English ones I think that this would cut it:
^[a-z -']+$
However, I need to support also these cases:
other punctuation symbols as they might be used in different countries (no idea which, but maybe you do!)
different Unicode letter sets (accented letter, greek, japanese, chinese, and so on)
no numbers or symbols or unnecessary punctuation or runes, etc..
titles, middle initials, suffixes are not part of this data
names are already separated by surnames.
we are prepared to force ultra rare names to be simplified (there's a person named '#' in existence, but it doesn't make sense to allow that character everywhere. Use pragmatism and good sense.)
note that many countries have laws about names so there are standards to follow
Is there a standard way of validating these fields I can implement to make sure that our website users have a great experience and can actually use their name when registering in the list?
I would be looking for something similar to the many "email address" regexes that you can find on google.
I sympathize with the need to constrain input in this situation, but I don't believe it is possible - Unicode is vast, expanding, and so is the subset used in names throughout the world.
Unlike email, there's no universally agreed-upon standard for the names people may use, or even which representations they may register as official with their respective governments. I suspect that any regex will eventually fail to pass a name considered valid by someone, somewhere in the world.
Of course, you do need to sanitize or escape input, to avoid the Little Bobby Tables problem. And there may be other constraints on which input you allow as well, such as the underlying systems used to store, render or manipulate names. As such, I recommend that you determine first the restrictions necessitated by the system your validation belongs to, and create a validation expression based on those alone. This may still cause inconvenience in some scenarios, but they should be rare.
I'll try to give a proper answer myself:
The only punctuations that should be allowed in a name are full stop, apostrophe and hyphen. I haven't seen any other case in the list of corner cases.
Regarding numbers, there's only one case with an 8. I think I can safely disallow that.
Regarding letters, any letter is valid.
I also want to include space.
This would sum up to this regex:
^[\p{L} \.'\-]+$
This presents one problem, i.e. the apostrophe can be used as an attack vector. It should be encoded.
So the validation code should be something like this (untested):
var name = nameParam.Trim();
if (!Regex.IsMatch(name, "^[\p{L} \.\-]+$"))
throw new ArgumentException("nameParam");
name = name.Replace("'", "'"); //' does not work in IE
Can anyone think of a reason why a name should not pass this test or a XSS or SQL Injection that could pass?
complete tested solution
using System;
using System.Text.RegularExpressions;
namespace test
{
class MainClass
{
public static void Main(string[] args)
{
var names = new string[]{"Hello World",
"John",
"João",
"タロウ",
"やまだ",
"山田",
"先生",
"мыхаыл",
"Θεοκλεια",
"आकाङ्क्षा",
"علاء الدين",
"אַבְרָהָם",
"മലയാളം",
"상",
"D'Addario",
"John-Doe",
"P.A.M.",
"' --",
"<xss>",
"\""
};
foreach (var nameParam in names)
{
Console.Write(nameParam+" ");
var name = nameParam.Trim();
if (!Regex.IsMatch(name, #"^[\p{L}\p{M}' \.\-]+$"))
{
Console.WriteLine("fail");
continue;
}
name = name.Replace("'", "'");
Console.WriteLine(name);
}
}
}
}
I would just allow everything (except an empty string) and assume the user knows what his name is.
There are 2 common cases:
You care that the name is accurate and are validating against a real paper passport or other identity document, or against a credit card.
You don't care that much and the user will be able to register as "Fred Smith" (or "Jane Doe") anyway.
In case (1), you can allow all characters because you're checking against a paper document.
In case (2), you may as well allow all characters because "123 456" is really no worse a pseudonym than "Abc Def".
I would think you would be better off excluding the characters you don't want with a regex. Trying to get every umlaut, accented e, hyphen, etc. will be pretty insane. Just exclude digits (but then what about a guy named "George Forman the 4th") and symbols you know you don't want like ##$%^ or what have you. But even then, using a regex will only guarantee that the input matches the regex, it will not tell you that it is a valid name.
EDIT after clarifying that this is trying to prevent XSS: A regex on a name field is obviously not going to stop XSS on its own. However, this article has a section on filtering that is a starting point if you want to go that route:
s/[\<\>\"\'\%\;\(\)\&\+]//g;
"Secure Programming for Linux and Unix HOWTO" by David A. Wheeler, v3.010 Edition (2003)
v3.72, 2015-09-19 is a more recent version.
BTW, do you plan to only permit the Latin alphabet, or do you also plan to try to validate Chinese, Arabic, Hindi, etc.?
As others have said, don't even try to do this. Step back and ask yourself what you are actually trying to accomplish. Then try to accomplish it without making any assumptions about what people's names are, or what they mean.
I don’t think that’s a good idea. Even if you find an appropriate regular expression (maybe using Unicode character properties), this wouldn’t prevent users from entering pseudo-names like John Doe, Max Mustermann (there even is a person with that name), Abcde Fghijk or Ababa Bebebe.
You could use the following regex code to validate 2 names separeted by a space with the following regex code:
^[A-Za-zÀ-ú]+ [A-Za-zÀ-ú]+$
or just use:
[[:lower:]] = [a-zà-ú]
[[:upper:]] =[A-ZÀ-Ú]
[[:alpha:]] = [A-Za-zÀ-ú]
[[:alnum:]] = [A-Za-zÀ-ú0-9]
It's a very difficult problem to validate something like a name due to all the corner cases possible.
Corner Cases
Anything anything here
Sanitize the inputs and let them enter whatever they want for a name, because deciding what is a valid name and what is not is probably way outside the scope of whatever you're doing; given the range of potential strange - and legal names is nearly infinite.
If they want to call themselves Tricyclopltz^2-Glockenschpiel, that's their problem, not yours.
A very contentious subject that I seem to have stumbled along here. However sometimes it's nice to head dear little-bobby tables off at the pass and send little Robert to the headmasters office along with his semi-colons and SQL comment lines --.
This REGEX in VB.NET includes regular alphabetic characters and various circumflexed european characters. However poor old James Mc'Tristan-Smythe the 3rd will have to input his pedigree in as the Jim the Third.
<asp:RegularExpressionValidator ID="RegExValid1" Runat="server"
ErrorMessage="ERROR: Please enter a valid surname<br/>" SetFocusOnError="true" Display="Dynamic"
ControlToValidate="txtSurname" ValidationGroup="MandatoryContent"
ValidationExpression="^[A-Za-z'\-\p{L}\p{Zs}\p{Lu}\p{Ll}\']+$">
This one worked perfectly for me in JavaScript:
^[a-zA-Z]+[\s|-]?[a-zA-Z]+[\s|-]?[a-zA-Z]+$
Here is the method:
function isValidName(name) {
var found = name.search(/^[a-zA-Z]+[\s|-]?[a-zA-Z]+[\s|-]?[a-zA-Z]+$/);
return found > -1;
}
Steps:
first remove all accents
apply the regular expression
To strip the accents:
private static string RemoveAccents(string s)
{
s = s.Normalize(NormalizationForm.FormD);
StringBuilder sb = new StringBuilder();
for (int i = 0; i < s.Length; i++)
{
if (CharUnicodeInfo.GetUnicodeCategory(s[i]) != UnicodeCategory.NonSpacingMark) sb.Append(s[i]);
}
return sb.ToString();
}
This somewhat helps:
^[a-zA-Z]'?([a-zA-Z]|\.| |-)+$
This one should work
^([A-Z]{1}+[a-z\-\.\']*+[\s]?)*
Add some special characters if you need them.

Tokenize the text depending on some specific rules. Algorithm in C++

I am writing a program which will tokenize the input text depending upon some specific rules. I am using C++ for this.
Rules
Letter 'a' should be converted to token 'V-A'
Letter 'p' should be converted to token 'C-PA'
Letter 'pp' should be converted to token 'C-PPA'
Letter 'u' should be converted to token 'V-U'
This is just a sample and in real time I have around 500+ rules like this. If I am providing input as 'appu', it should tokenize like 'V-A + C-PPA + V-U'. I have implemented an algorithm for doing this and wanted to make sure that I am doing the right thing.
Algorithm
All rules will be kept in a XML file with the corresponding mapping to the token. Something like
<rules>
<rule pattern="a" token="V-A" />
<rule pattern="p" token="C-PA" />
<rule pattern="pp" token="C-PPA" />
<rule pattern="u" token="V-U" />
</rules>
1 - When the application starts, read this xml file and keep the values in a 'std::map'. This will be available until the end of the application(singleton pattern implementation).
2 - Iterate the input text characters. For each character, look for a match. If found, become more greedy and look for more matches by taking the next characters from the input text. Do this until we are getting a no match. So for the input text 'appu', first look for a match for 'a'. If found, try to get more match by taking the next character from the input text. So it will try to match 'ap' and found no matches. So it just returns.
3 - Replace the letter 'a' from input text as we got a token for it.
4 - Repeat step 2 and 3 with the remaining characters in the input text.
Here is a more simple explanation of the steps
input-text = 'appu'
tokens-generated=''
// First iteration
character-to-match = 'a'
pattern-found = true
// since pattern found, going recursive and check for more matches
character-to-match = 'ap'
pattern-found = false
tokens-generated = 'V-A'
// since no match found for 'ap', taking the first success and replacing it from input text
input-text = 'ppu'
// second iteration
character-to-match = 'p'
pattern-found = true
// since pattern found, going recursive and check for more matches
character-to-match = 'pp'
pattern-found = true
// since pattern found, going recursive and check for more matches
character-to-match = 'ppu'
pattern-found = false
tokens-generated = 'V-A + C-PPA'
// since no match found for 'ppu', taking the first success and replacing it from input text
input-text = 'u'
// third iteration
character-to-match = 'u'
pattern-found = true
tokens-generated = 'V-A + C-PPA + V-U' // we'r done!
Questions
1 - Is this algorithm looks fine for this problem or is there a better way to address this problem?
2 - If this is the right method, std::map is a good choice here? Or do I need to create my own key/value container?
3 - Is there a library available which can tokenize string like the above?
Any help would be appreciated
:)
So you're going through all of the tokens in your map looking for matches? You might as well use a list or array, there; it's going to be an inefficient search regardless.
A much more efficient way of finding just the tokens suitable for starting or continuing a match would be to store them as a trie. A lookup of a letter there would give you a sub-trie which contains only the tokens which have that letter as the first letter, and then you just continue searching downward as far as you can go.
Edit: let me explain this a little further.
First, I should explain that I'm not familiar with these the C++ std::map, beyond the name, which makes this a perfect example of why one learns the theory of this stuff as well as than details of particular libraries in particular programming languages: unless that library is badly misusing the name "map" (which is rather unlikely), the name itself tells me a lot about the characteristics of the data structure. I know, for example, that there's going to be a function that, given a single key and the map, will very efficiently search for and return the value associated with that key, and that there's also likely a function that will give you a list/array/whatever of all of the keys, which you could search yourself using your own code.
My interpretation of your data structure is that you have a map where the keys are what you call a pattern, those being a list (or array, or something of that nature) of characters, and the values are tokens. Thus, you can, given a full pattern, quickly find the token associated with it.
Unfortunately, while such a map is a good match to converting your XML input format to a internal data structure, it's not a good match to the searches you need to do. Note that you're not looking up entire patterns, but the first character of a pattern, producing a set of possible tokens, followed by a lookup of the second character of a pattern from within the set of patterns produced by that first lookup, and so on.
So what you really need is not a single map, but maps of maps of maps, each keyed by a single character. A lookup of "p" on the top level should give you a new map, with two keys: p, producing the C-PPA token, and "anything else", producing the C-PA token. This is effectively a trie data structure.
Does this make sense?
It may help if you start out by writing the parsing code first, in this manner: imagine someone else will write the functions to do the lookups you need, and he's a really good programmer and can do pretty much any magic that you want. Writing the parsing code, concentrate on making that as simple and clean as possible, creating whatever interface using these arbitrary functions you need (while not getting trivial and replacing the whole thing with one function!). Now you can look at the lookup functions you ended up with, and that tells you how you need to access your data structure, which will lead you to the type of data structure you need. Once you've figured that out, you can then work out how to load it up.
This method will work - I'm not sure that it is efficient, but it should work.
I would use the standard std::map rather than your own system.
There are tools like lex (or flex) that can be used for this. The issue would be whether you can regenerate the lexical analyzer that it would construct when the XML specification changes. If the XML specification does not change often, you may be able to use tools such as lex to do the scanning and mapping more easily. If the XML specification can change at the whim of those using the program, then lex is probably less appropriate.
There are some caveats - notably that both lex and flex generate C code, rather than C++.
I would also consider looking at pattern matching technology - the sort of stuff that egrep in particular uses. This has the merit of being something that can be handled at runtime (because egrep does it all the time). Or you could go for a scripting language - Perl, Python, ... Or you could consider something like PCRE (Perl Compatible Regular Expressions) library.
Better yet, if you're going to use the boost library, there's always the Boost tokenizer library -> http://www.boost.org/doc/libs/1_39_0/libs/tokenizer/index.html
You could use a regex (perhaps the boost::regex library). If all of the patterns are just strings of letters, a regex like "(a|p|pp|u)" would find a greedy match. So:
Run a regex_search using the above pattern to locate the next match
Plug the match-text into your std::map to get the replace-text.
Print the non-matched consumed input and replace-text to your output, then repeat 1 on the remaining input.
And done.
It may seem a bit complicated, but the most efficient way to do that is to use a graph to represent a state-chart. At first, i thought boost.statechart would help, but i figured it wasn't really appropriate. This method can be more efficient that using a simple std::map IF there are many rules, the number of possible characters is limited and the length of the text to read is quite high.
So anyway, using a simple graph :
0) create graph with "start" vertex
1) read xml configuration file and create vertices when needed (transition from one "set of characters" (eg "pp") to an additional one (eg "ppa")). Inside each vertex, store a transition table to the next vertices. If "key text" is complete, mark vertex as final and store the resulting text
2) now read text and interpret it using the graph. Start at the "start" vertex. ( * ) Use table to interpret one character and to jump to new vertex. If no new vertex has been selected, an error can be issued. Otherwise, if new vertex is final, print the resulting text and jump back to start vertex. Go back to (*) until there is no more text to interpret.
You could use boost.graph to represent the graph, but i think it is overly complex for what you need. Make your own custom representation.