Fill Matrix in Spiral Form from center - c++

I recently finished making an algorithm for a project I'm working on.
Briefly, a part of my project needs to fill a matrix, the requirements of how to do it are these:
- Fill the matrix in form of spiral, from the center.
- The size of the matrix must be dynamic, so the spiral can be large or small.
- Every two times a cell of the matrix is filled, //DO STUFF must be executed.
In the end, the code that I made works, it was my best effort and I am not able to optimize it more, it bothers me a bit having had to use so many ifs, and I was wondering if someone could take a look at my code to see if it is possible to optimize it further or some constructive comment (it works well, but it would be great if it was faster, since this algorithm will be executed several times in my project). Also so that other people can use it!
#include <stdio.h>
typedef unsigned short u16_t;
const u16_t size = 7; //<-- CHANGE HERE!!! just odd numbers and bigger than 3
const u16_t maxTimes = 2;
u16_t array_cont[size][size] = { 0 };
u16_t counter = 3, curr = 0;
u16_t endColumn = (size - 1) / 2, endRow = endColumn;
u16_t startColumn = endColumn + 1, startRow = endColumn + 1;
u16_t posLoop = 2, buffer = startColumn, i = 0;
void fillArray() {
if (curr < maxTimes) {
if (posLoop == 0) { //Top
for (i = buffer; i <= startColumn && curr < maxTimes; i++, curr++)
array_cont[endRow][i] = counter++;
if (curr == maxTimes) {
if (i <= startColumn) {
buffer = i;
} else {
buffer = endRow;
startColumn++;
posLoop++;
}
} else {
buffer = endRow;
startColumn++;
posLoop++;
fillArray();
}
} else if (posLoop == 1) { //Right
for (i = buffer; i <= startRow && curr < maxTimes; i++, curr++)
array_cont[i][startColumn] = counter++;
if (curr == maxTimes) {
if (i <= startRow) {
buffer = i;
} else {
buffer = startColumn;
startRow++;
posLoop++;
}
} else {
buffer = startColumn;
startRow++;
posLoop++;
fillArray();
}
} else if (posLoop == 2) { //Bottom
for (i = buffer; i >= endColumn && curr < maxTimes; i--, curr++)
array_cont[startRow][i] = counter++;
if (curr == maxTimes) {
if (i >= endColumn) {
buffer = i;
} else {
buffer = startRow;
endColumn--;
posLoop++;
}
} else {
buffer = startRow;
endColumn--;
posLoop++;
fillArray();
}
} else if (posLoop == 3) { //Left
for (i = buffer; i >= endRow && curr < maxTimes; i--, curr++)
array_cont[i][endColumn] = counter++;
if (curr == maxTimes) {
if (i >= endRow) {
buffer = i;
} else {
buffer = endColumn;
endRow--;
posLoop = 0;
}
} else {
buffer = endColumn;
endRow--;
posLoop = 0;
fillArray();
}
}
}
}
int main(void) {
array_cont[endColumn][endColumn] = 1;
array_cont[endColumn][endColumn + 1] = 2;
//DO STUFF
u16_t max = ((size * size) - 1) / maxTimes;
for (u16_t j = 0; j < max; j++) {
fillArray();
curr = 0;
//DO STUFF
}
//Demostration
for (u16_t x = 0; x < size; x++) {
for (u16_t y = 0; y < size; y++)
printf("%-4d ", array_cont[x][y]);
printf("\n");
}
return 0;
}

Notice that the numbers along the diagonal (1, 9, 25, 49) are the squares of the odd numbers. That's an important clue, since it suggests that the 1 in the center of the matrix should be treated as the end of a spiral.
From the end of each spiral, the x,y coordinates should be adjusted up and to the right by 1. Then the next layer of the spiral can be constructed by moving down, left, up, and right by the same amount.
For example, starting from the position of the 1, move up and to the right (to the position of the 9), and then form a loop with the following procedure:
move down, and place the 2
move down, and place the 3
move left, and place the 4
move left, and place the 5
etc.
Thus the code looks something like this:
int size = 7;
int matrix[size][size];
int dy[] = { 1, 0, -1, 0 };
int dx[] = { 0, -1, 0, 1 };
int directionCount = 4;
int ringCount = (size - 1) / 2;
int y = ringCount;
int x = ringCount;
int repeatCount = 0;
int value = 1;
matrix[y][x] = value++;
for (int ring = 0; ring < ringCount; ring++)
{
y--;
x++;
repeatCount += 2;
for (int direction = 0; direction < directionCount; direction++)
for (int repeat = 0; repeat < repeatCount; repeat++)
{
y += dy[direction];
x += dx[direction];
matrix[y][x] = value++;
}
}

I saw already many approaches for doing a spiral. All a basically drawing it, by following a path.
BUT, you can also come up with an analytical calculation formula for a spiral.
So, no recursion or iterative solution by following a path or such. We can directly calculate the indices in the matrix, if we have the running number.
I will start with the spiral in mathematical positive direction (counter clockwise) in a cartesian coordinate system. We will concentrate on X and Y coordinates.
I made a short Excel and derived some formulas from that. Here is a short picture:
From the requirements we know that the matrix will be quadratic. That makes things easier. A little bit trickier is, to get the matrix data symmetrical. But with some simple formulas, derived from the prictures, this is not really a problem.
And then we can calculate x and y coordinates with some simple statements. See the below example program with long variable names for better understanding. The code is made using some step by step approach to illustrate the implementation. Of course it can be made more compact easily. Anyway. Let's have a look.
#include <iostream>
#include <cmath>
#include <iomanip>
int main() {
// Show some example values
for (long step{}; step < 81; ++step) {
// Calculate result
const long roundedSquareRoot = std::lround(std::sqrt(step));
const long roundedSquare = roundedSquareRoot * roundedSquareRoot;
const long distance = std::abs(roundedSquare - step) - roundedSquareRoot;
const long rsrIsOdd = (roundedSquareRoot % 2);
const long x = (distance + roundedSquare - step - rsrIsOdd) / (rsrIsOdd ? -2 : 2);
const long y = (-distance + roundedSquare - step - rsrIsOdd) / (rsrIsOdd ? -2 : 2);
// Show ouput
std::cout << "Step:" << std::setw(4) << step << std::setw(3) << x << ' ' << std::setw(3) << y << '\n';
}
}
So, you see that we really have an analytical solution. Given any number we can calculate the x and y coordinate using a formula. Cool.
Getting indices in a matrix is just adding some offset.
With that gained know how, we can now easily calculate the complete matrix. And, since there is no runtime activity needed at all, we can let the compiler do the work. We will simply use constexpr functions for everything.
Then the compiler will create this matrix at compile time. At runtime, nothing will happen.
Please see a very compact solution:
#include <iostream>
#include <iomanip>
#include <array>
constexpr size_t MatrixSize = 15u;
using MyType = long;
static_assert(MatrixSize > 0 && MatrixSize%2, "Matrix size must be odd and > 0");
constexpr MyType MatrixHalf = MatrixSize / 2;
using Matrix = std::array<std::array<MyType, MatrixSize>, MatrixSize >;
// Some constexpr simple mathematical functions ------------------------------------------------------------------------------
// No need for <cmath>
constexpr MyType myAbs(MyType v) { return v < 0 ? -v : v; }
constexpr double mySqrtRecursive(double x, double c, double p) {return c == p? c: mySqrtRecursive(x, 0.5 * (c + x / c), c); }
constexpr MyType mySqrt(MyType x) {return (MyType)(mySqrtRecursive((double)x,(double)x,0.0)+0.5); }
// Main constexpr function will fill the matrix with a spiral pattern during compile time -------------------------------------
constexpr Matrix fillMatrix() {
Matrix matrix{};
for (int i{}; i < (MatrixSize * MatrixSize); ++i) {
const MyType rsr{ mySqrt(i) }, rs{ rsr * rsr }, d{ myAbs(rs - i) - rsr }, o{ rsr % 2 };
const size_t col{ (size_t)(MatrixHalf +((d + rs - i - o) / (o ? -2 : 2)))};
const size_t row{ (size_t)(MatrixHalf -((-d + rs - i - o) / (o ? -2 : 2)))};
matrix[row][col] = i;
}
return matrix;
}
// This is a compile time constant!
constexpr Matrix matrix = fillMatrix();
// All the above has been done during compile time! -----------------------------------------
int main() {
// Nothing to do. All has beend done at compile time already!
// The matrix is already filled with a spiral pattern
// Just output
for (const auto& row : matrix) {
for (const auto& col : row) std::cout << std::setw(5) << col << ' '; std::cout << '\n';
}
}
Different coordinate systems or other spiral direction can be adapted easily.
Happy coding.

Related

How many time intervals do I need for a DFS in a graph?

Problem:
Let's say you are doing a breadth first search on a graph. You start at a specific point and then spread outwards. During one time interval and under a given condition you "infect" your neighbors. I want to know how many time-intervals it takes to traverse the entire graph (i.e. infect all nodes).
This question is a general question. However, I will lean on a LeetCode example to provide something that is reproducible.
My approach:
Basic bfs using a queue. During each iteration, I insert a spacer element to the queue. If I find this spacer, I know one time interval is up.
elements in queue q:
q: a, b, c, timer // a, b and c are infected at first moment in time
q: d, e, timer // above elements infect, d and e.
q: timer // we only have a timer, total traversal took 2 time intervals
Why my approach does not work:
The basic flaw in my approach is that I might push elements to q multiple times, if they will get infected from multiple sides.
Example grid with queue q. q stored indices of nodes in graph. 1 is healthy, 2 is infected:
1,1
2,2
q: {0,0}, {0,1}, timer // top 2 elements are in queue. They got infected by bottom 2 elements.
process first element
2,1
2,2
q: {0,1}, timer, {0,1}
process 2nd element
2,2
2,2
q: timer, {0,1}, timer
We push the same element to q twice, leading to an incorrect time. (time == 2, instead of time == 1).
How can I fix this error?
Example problem taken from LeetCode:
My approach used to (not) solve LeetCode problem 994.
class Solution {
struct position {
position(size_t i, size_t j) : i_(i), j_(j), valid_(true) {}
position(bool valid) : i_(0), j_(0), valid_(valid) {}
const size_t i_;
const size_t j_;
const bool valid_;
};
public:
int orangesRotting(vector<vector<int>>& grid) {
if (grid.empty()) return -1;
size_t fresh_orange = 0;
std::queue<position> q;
for (size_t i = 0; i < grid.size(); ++i) {
for (size_t j = 0; j < grid.at(0).size(); ++j) {
int orange = grid.at(i).at(j);
if (orange == 1) {
++fresh_orange;
} else if (orange == 2) {
q.emplace(i, j);
}
}
}
size_t minutes = 0;
q.emplace(false);
while(!q.empty()) {
const position pos = q.front();
q.pop();
if (!pos.valid_ && !q.empty()) {
++minutes;
q.emplace(false);
}
if (!pos.valid_) continue;
// bfs next: top, right, bottom, left
const size_t old_size = q.size();
if (pos.i_ > 0)
if (grid.at(pos.i_ - 1).at(pos.j_) == 1) q.emplace(pos.i_ - 1, pos.j_);
if (pos.j_ < grid.at(0).size() - 1)
if (grid.at(pos.i_).at(pos.j_ + 1) == 1) q.emplace(pos.i_, pos.j_ + 1);
if (pos.i_ < grid.size() - 1)
if (grid.at(pos.i_ + 1).at(pos.j_) == 1) q.emplace(pos.i_ + 1, pos.j_);
if (pos.j_ > 0)
if (grid.at(pos.i_).at(pos.j_ - 1) == 1) q.emplace(pos.i_, pos.j_ - 1);
if (grid.at(pos.i_).at(pos.j_) == 1) {
--fresh_orange;
grid.at(pos.i_).at(pos.j_) = 2;
}
}
return fresh_orange == 0 ? minutes : -1;
}
};
Input that reproduces my problem: [[2,2],[1,1],[0,0],[2,0]].
Okay. I have the (obvious) solution: You just keep track of who will get infected in the next round. I am using -1 as a marker for "will get infected soon".
Example grid with queue q. q stored indices of nodes in graph. 1 is healthy, 2 is infected:
-1,-1
2, 2
q: {0,0}, {0,1}, timer // top 2 elements are in queue. They got infected by bottom 2 elements.
process first element
2,-1
2, 2
q: {0,1}, timer, // we do not push back {0,1} since we know it will have symptoms soon
process 2nd element
2,2
2,2
q: time
To those of you that are interested in the LeetCode solution:
class Solution {
struct position {
position(size_t i, size_t j) : i_(i), j_(j), valid_(true) {}
position(bool valid) : i_(0), j_(0), valid_(valid) {}
const size_t i_;
const size_t j_;
const bool valid_;
};
public:
int orangesRotting(vector<vector<int>>& grid) {
if (grid.empty()) return -1;
size_t fresh_orange = 0;
std::queue<position> q;
for (size_t i = 0; i < grid.size(); ++i) {
for (size_t j = 0; j < grid.at(0).size(); ++j) {
int orange = grid.at(i).at(j);
if (orange == 1) {
++fresh_orange;
} else if (orange == 2) {
q.emplace(i, j);
}
}
}
size_t minutes = 0;
q.emplace(false);
while(!q.empty()) {
const position pos = q.front();
q.pop();
if (!pos.valid_ && !q.empty()) {
++minutes;
q.emplace(false);
}
if (!pos.valid_) continue;
// bfs next: top, right, bottom, left
const size_t old_size = q.size();
if (pos.i_ > 0) {
if (grid.at(pos.i_ - 1).at(pos.j_) == 1) {
grid.at(pos.i_ - 1).at(pos.j_) = -1;
q.emplace(pos.i_ - 1, pos.j_);
}
}
if (pos.j_ < grid.at(0).size() - 1) {
if (grid.at(pos.i_).at(pos.j_ + 1) == 1) {
grid.at(pos.i_).at(pos.j_ + 1) = -1;
q.emplace(pos.i_, pos.j_ + 1);
}
}
if (pos.i_ < grid.size() - 1) {
if (grid.at(pos.i_ + 1).at(pos.j_) == 1) {
grid.at(pos.i_ + 1).at(pos.j_) = -1;
q.emplace(pos.i_ + 1, pos.j_);
}
}
if (pos.j_ > 0) {
if (grid.at(pos.i_).at(pos.j_ - 1) == 1) {
grid.at(pos.i_).at(pos.j_ - 1) = -1;
q.emplace(pos.i_, pos.j_ - 1);
}
}
if (grid.at(pos.i_).at(pos.j_) == 1 || grid.at(pos.i_).at(pos.j_) == -1) {
--fresh_orange;
grid.at(pos.i_).at(pos.j_) = 2;
}
}
return fresh_orange == 0 ? minutes : -1;
}
};
Looks pretty good!
Here is another approach (depth first search) using std::count_if:
// The following block might slightly improve the execution time;
// Can be removed;
static const auto __optimize__ = []() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout.tie(nullptr);
return 0;
}();
// Most of headers are already included;
// Can be removed;
#include <cstdint>
#include <vector>
#include <algorithm>
static const struct Solution {
static const int orangesRotting(
std::vector<std::vector<int>>& grid
) {
ValueType minutes = 0;
ValueType fresh = 0;
for (ValueType row = 0; row < std::size(grid); ++row) {
fresh += std::count_if(std::begin(grid[row]), std::end(grid[row]), [&](ValueType cell) {
return cell == 1;
});
}
for (ValueType prev_fresh = fresh; fresh > 0; ++minutes) {
for (ValueType row = 0; row < std::size(grid); ++row) {
for (ValueType col = 0; col < std::size(grid[row]); ++col) {
if (grid[row][col] == minutes + 2) {
fresh -= isRotten(grid, row + 1, col, minutes) +
isRotten(grid, row - 1, col, minutes) +
isRotten(grid, row, col + 1, minutes) +
isRotten(grid, row, col - 1, minutes);
}
}
}
if (fresh == std::exchange(prev_fresh, fresh)) {
return -1;
}
}
return minutes;
}
private:
using ValueType = std::uint_fast16_t;
static const bool isRotten(
std::vector<std::vector<int>>& grid,
const int row,
const int col,
const int minutes
) {
if (
row < 0 || row >= std::size(grid) ||
col < 0 || col >= std::size(grid[row]) ||
grid[row][col] != 1
) {
return false;
}
grid[row][col] = minutes + 3;
return true;
}
};

Space Invaders – 2D Vector Movement Algorithm

I'm building Space Invaders in C++ (using the MBed platform) for a microcontroller. I've used a 2D Vector of object pointers to organise the invaders.
The movement algorithm is below, and runs in the main while loop for the game. Basically, I get the highest/lowest x and y values of invaders in the vector, and use those to set bounds based on screensize (the HEIGHT variable);
I also get the first invader's position, velocity, and width, which I apply changes to based on the bounds above.
Then I iterate through the whole vector again and apply all those changes. It sort of works – the invaders move – but the bounds don't seem to take effect, and so they fly off screen. I feel like I'm missing something really dumb, thanks in advance!
void Army::move_army() {
int maxy = HEIGHT - 20;
int Ymost = 0; // BOTTOM
int Yleast = 100; // TOP
int Xmost = 0; // LEFT
int Xleast = 100; // RIGHT
int first_row = _rows;
int first_column = _columns;
int firstWidth = 0;
Vector2D firstPos;
Vector2D firstVel;
for (int i = 0; i < _rows; i++) {
for (int n = 0; n < _columns; n++) {
bool state = invaders[i][n]->get_death();
if (!state) {
if (i < first_row && n < first_column) {
firstPos = invaders[i][n]->get_pos();
firstVel = invaders[i][n]->get_velocity();
firstWidth = invaders[i][n]->get_width();
}
Vector2D pos = invaders[i][n]->get_pos();
if (pos.y > Ymost) {Ymost = pos.y;} // BOTTOM
else if (pos.y < Yleast) {Yleast = pos.y;} // TOP
else if (pos.x > Xmost) {Xmost = pos.x;} // LEFT
else if (pos.x < Xleast) {Xleast = pos.x;} // RIGHT
}
}
}
firstVel.y = 0;
if (Xmost >= (WIDTH - 8) || Xleast <= 2) {
firstVel.x = -firstVel.x;
firstPos.y += _inc;
// reverse x velocity
// increment y position
}
else if (Ymost > maxy) {
_inc = -_inc;
// reverse increment
}
else if (Yleast < 2) {
_inc = -_inc;
// reverse increment
}
for (int i = 0; i < _rows; i++) {
int setx = firstPos.x;
if (i > 0) {firstPos.y += 9;}
for (int n = 0; n < _columns; n++) {
invaders[i][n]->set_velocity(firstVel);
invaders[i][n]->set_pos(setx,firstPos.y);
setx += firstWidth + 2;
}
}
It looks like you have your assignment cases reversed. Assignment always goes: right <- left, so in the first case you're changing the YMost value, not pos.y. It looks like if you swap those four assignments in your bounds checking it should work. Good luck!

Different results VS C++ and GNU g++

I have a program that works in VS C++ and does not work with g++. Here is the code:
#define _USE_MATH_DEFINES
#include <cmath>
#include <iostream>
#include <vector>
#include <cstdio>
#include <algorithm>
#include <set>
#define EP 1e-10
using namespace std;
typedef pair<long long, long long> ii;
typedef pair<bool, int> bi;
typedef vector<ii> vii;
// Returns the orientation of three points in 2D space
int orient2D(ii pt0, ii pt1, ii pt2)
{
long long result = (pt1.first - pt0.first)*(pt2.second - pt0.second)
- (pt1.second - pt0.second)*(pt2.first - pt0.first);
return result == 0 ? 0 : result < 0 ? -1 : 1;
}
// Returns the angle derived from law of cosines center-pt1-pt2.
// Defined to be negative if pt2 is to the right of segment pt1 to center
double angle(ii center, ii pt1, ii pt2)
{
double aS = pow(center.first - pt1.first, 2) + pow(center.second - pt1.second, 2);
double bS = pow(pt2.first - pt1.first, 2) + pow(pt2.second - pt1.second, 2);
double cS = pow(center.first - pt2.first, 2) + pow(center.second - pt2.second, 2);
/* long long aS = (center.first - pt1.first)*(center.first - pt1.first) + (center.second - pt1.second)*(center.second - pt1.second);
long long bS = (pt2.first - pt1.first)*(pt2.first - pt1.first) + (pt2.second - pt1.second)*(pt2.second - pt1.second);
long long cS = (center.first - pt2.first)*(center.first - pt2.first) + (center.second - pt2.second)*(center.second - pt2.second);*/
int sign = orient2D(pt1, center, pt2);
return sign == 0 ? 0 : sign * acos((aS + bS - cS) / ((sqrt(aS) * sqrt(bS) * 2)));
}
// Computes the average point of the set of points
ii centroid(vii &pts)
{
ii center(0, 0);
for (int i = 0; i < pts.size(); ++i)
{
center.first += pts[i].first;
center.second += pts[i].second;
}
center.first /= pts.size();
center.second /= pts.size();
return center;
}
// Uses monotone chain to convert a set of points into a convex hull, ordered counter-clockwise
vii convexHull(vii &pts)
{
sort(pts.begin(), pts.end());
vii up, dn;
for (int i = 0; i < pts.size(); ++i)
{
while (up.size() > 1 && orient2D(up[up.size()-2], up[up.size()-1], pts[i]) >= 0)
up.pop_back();
while (dn.size() > 1 && orient2D(dn[dn.size()-2], dn[dn.size()-1], pts[i]) <= 0)
dn.pop_back();
up.push_back(pts[i]);
dn.push_back(pts[i]);
}
for (int i = up.size()-2; i > 0; --i)
{
dn.push_back(up[i]);
}
return dn;
}
// Tests if a point is critical on the polygon, i.e. if angle center-qpt-polygon[i]
// is larger (smaller) than center-qpt-polygon[i-1] and center-qpt-polygon[i+1].
// This is true iff qpt-polygon[i]-polygon[i+1] and qpt-polygon[i]-polygon[i-1]
// are both left turns (min) or right turns (max)
bool isCritical(vii &polygon, bool mx, int i, ii qpt, ii center)
{
int ip1 = (i + 1) % polygon.size();
int im1 = (i + polygon.size() - 1) % polygon.size();
int p1sign = orient2D(qpt, polygon[i], polygon[ip1]);
int m1sign = orient2D(qpt, polygon[i], polygon[im1]);
if (p1sign == 0 && m1sign == 0)
{
return false;
}
if (mx)
{
return p1sign <= 0 && m1sign <= 0;
}
else
{
return p1sign >= 0 && m1sign >= 0;
}
}
// Conducts modified binary search on the polygon to find tangent lines in O(log n) time.
// This is equivalent to finding a max or min in a "parabola" that is rotated and discrete.
// Vanilla binary search does not work and neither does vanilla ternary search. However, using
// the fact that there is only a single max and min, we can use the slopes of the points at start
// and mid, as well as their values when compared to each other, to determine if the max or min is
// in the left or right section
bi find_tangent(vii &polygon, bool mx, ii qpt, int start, int end, ii center)
{
// When query is small enough, iterate the points. This avoids more complicated code dealing with the cases not possible as
// long as left and right are at least one point apart. This does not affect the asymptotic runtime.
if (end - start <= 4)
{
for (int i = start; i < end; ++i)
{
if (isCritical(polygon, mx, i, qpt, center))
{
return bi(true, i);
}
}
return bi(false, -1);
}
int mid = (start + end) / 2;
// use modulo to wrap around the polygon
int startm1 = (start + polygon.size() - 1) % polygon.size();
int midm1 = (mid + polygon.size() - 1) % polygon.size();
// left and right angles
double startA = angle(center, qpt, polygon[start]);
double midA = angle(center, qpt, polygon[mid]);
// minus 1 angles, to determine slope
double startm1A = angle(center, qpt, polygon[startm1]);
double midm1A = angle(center, qpt, polygon[midm1]);
int startSign = abs(startm1A - startA) < EP ? 0 : (startm1A < startA ? 1 : -1);
int midSign = abs(midm1A - midA) < EP ? 0 : (midm1A < midA ? 1 : -1);
bool left = true;
// naively 27 cases: left and left angles can be <, ==, or >,
// slopes can be -, 0, or +, and each left and left has slopes,
// 3 * 3 * 3 = 27. Some cases are impossible, so here are the remaining 18.
if (abs(startA - midA) < EP)
{
if (startSign == -1)
{
left = !mx;
}
else
{
left = mx;
}
}
else if (startA < midA)
{
if (startSign == 1)
{
if (midSign == 1)
{
left = false;
}
else if (midSign == -1)
{
left = mx;
}
else
{
left = false;
}
}
else if (startSign == -1)
{
if (midSign == -1)
{
left = true;
}
else if (midSign == 1)
{
left = !mx;
}
else
{
left = true;
}
}
else
{
if (midSign == -1)
{
left = false;
}
else
{
left = true;
}
}
}
else
{
if (startSign == 1)
{
if (midSign == 1)
{
left = true;
}
else if (midSign == -1)
{
left = mx;
}
else
{
left = true;
}
}
else if (startSign == -1)
{
if (midSign == -1)
{
left = false;
}
else if (midSign == 1)
{
left = !mx;
}
else
{
left = false;
}
}
else
{
if (midSign == 1)
{
left = true;
}
else
{
left = false;
}
}
}
if (left)
{
return find_tangent(polygon, mx, qpt, start, mid+1, center);
}
else
{
return find_tangent(polygon, mx, qpt, mid, end, center);
}
}
int main(){
int n, m;
cin >> n >> m;
vii rawPoints(n);
for (int i = 0; i < n; ++i)
{
cin >> rawPoints[i].first >> rawPoints[i].second;
}
vii polygon = convexHull(rawPoints);
set<ii> points(polygon.begin(), polygon.end());
ii center = centroid(polygon);
for (int i = 0; i < m; ++i)
{
ii pt;
cin >> pt.first >> pt.second;
bi top = find_tangent(polygon, true, pt, 0, polygon.size(), center);
bi bot = find_tangent(polygon, false, pt, 0, polygon.size(), center);
// a query point is inside if it is collinear with its max (top) and min (bot) angled points, it is a polygon point, or if none of the points are critical
if (!top.first || orient2D(polygon[top.second], pt, polygon[bot.second]) == 0 || points.count(pt))
{
cout << "INSIDE" << endl;
}
else
{
cout << polygon[top.second].first << " " << polygon[top.second].second << " " << polygon[bot.second].first << " " << polygon[bot.second].second << endl;
}
}
}
My suspicion is there's something wrong with the angle function. I have narrowed it down to either that or find_tangent. I also see different results in g++ when I switch from double to long long in the angle function. The double results are closer to correct, but I can't see why it should be any different. The values I'm feeding in are small and no overflow/ rounding should be causing issues. I have also seen differences in doing pow(x, 2) or x*x when I assign to a double. I don't understand why this would make a difference.
Any help would be appreciated!
EDIT: Here is the input file: https://github.com/brycesandlund/Coursework/blob/master/Java/PrintPoints/points.txt
Here is the correct result:
https://github.com/brycesandlund/Coursework/blob/master/CompGeo/CompGeo/correct.txt
Here is the incorrect result:
https://github.com/brycesandlund/Coursework/blob/master/CompGeo/CompGeo/fast.txt
The problem was with this piece of code:
// Computes the average point of the set of points
ii centroid(vii &pts)
{
ii center(0LL, 0LL);
for (int i = 0; i < pts.size(); ++i)
{
center.first += pts[i].first;
center.second += pts[i].second;
}
center.first /= pts.size(); //right here!!
center.second /= pts.size();
return center;
}
I don't know why but g++ was taking the negative center.first and turning it into a positive, overflowed long long when dividing by the unsigned integer pts.size. By converting the statements into:
center.first /= (long long)pts.size();
center.second /= (long long)pts.size();
The output from g++ and VS c++ matches.

Placing random numbers in a grid

I need to place numbers within a grid such that it doesn't collide with each other. This number placement should be random and can be horizontal or vertical. The numbers basically indicate the locations of the ships. So the points for the ships should be together and need to be random and should not collide.
I have tried it:
int main()
{
srand(time(NULL));
int Grid[64];
int battleShips;
bool battleShipFilled;
for(int i = 0; i < 64; i++)
Grid[i]=0;
for(int i = 1; i <= 5; i++)
{
battleShips = 1;
while(battleShips != 5)
{
int horizontal = rand()%2;
if(horizontal == 0)
{
battleShipFilled = false;
while(!battleShipFilled)
{
int row = rand()%8;
int column = rand()%8;
while(Grid[(row)*8+(column)] == 1)
{
row = rand()%8;
column = rand()%8;
}
int j = 0;
if(i == 1) j= (i+1);
else j= i;
for(int k = -j/2; k <= j/2; k++)
{
int numberOfCorrectLocation = 0;
while(numberOfCorrectLocation != j)
{
if(row+k> 0 && row+k<8)
{
if(Grid[(row+k)*8+(column)] == 1) break;
numberOfCorrectLocation++;
}
}
if(numberOfCorrectLocation !=i) break;
}
for(int k = -j/2; k <= j/2; k++)
Grid[(row+k)*8+(column)] = 1;
battleShipFilled = true;
}
battleShips++;
}
else
{
battleShipFilled = false;
while(!battleShipFilled)
{
int row = rand()%8;
int column = rand()%8;
while(Grid[(row)*8+(column)] == 1)
{
row = rand()%8;
column = rand()%8;
}
int j = 0;
if(i == 1) j= (i+1);
else j= i;
for(int k = -j/2; k <= j/2; k++)
{
int numberOfCorrectLocation = 0;
while(numberOfCorrectLocation != i)
{
if(row+k> 0 && row+k<8)
{
if(Grid[(row)*8+(column+k)] == 1) break;
numberOfCorrectLocation++;
}
}
if(numberOfCorrectLocation !=i) break;
}
for(int k = -j/2; k <= j/2; k++)
Grid[(row)*8+(column+k)] = 1;
battleShipFilled = true;
}
battleShips++;
}
}
}
}
But the code i have written is not able to generate the numbers randomly in the 8x8 grid.
Need some guidance on how to solve this. If there is any better way of doing it, please tell me...
How it should look:
What My code is doing:
Basically, I am placing 5 ships, each of different size on a grid. For each, I check whether I want to place it horizontally or vertically randomly. After that, I check whether the surrounding is filled up or not. If not, I place them there. Or I repeat the process.
Important Point: I need to use just while, for loops..
You are much better of using recursion for that problem. This will give your algorithm unwind possibility. What I mean is that you can deploy each ship and place next part at random end of the ship, then check the new placed ship part has adjacent tiles empty and progress to the next one. if it happens that its touches another ship it will due to recursive nature it will remove the placed tile and try on the other end. If the position of the ship is not valid it should place the ship in different place and start over.
I have used this solution in a word search game, where the board had to be populated with words to look for. Worked perfect.
This is a code from my word search game:
bool generate ( std::string word, BuzzLevel &level, CCPoint position, std::vector<CCPoint> &placed, CCSize lSize )
{
std::string cPiece;
if ( word.size() == 0 ) return true;
if ( !level.inBounds ( position ) ) return false;
cPiece += level.getPiece(position)->getLetter();
int l = cPiece.size();
if ( (cPiece != " ") && (word[0] != cPiece[0]) ) return false;
if ( pointInVec (position, placed) ) return false;
if ( position.x >= lSize.width || position.y >= lSize.height || position.x < 0 || position.y < 0 ) return false;
placed.push_back(position);
bool used[6];
for ( int t = 0; t < 6; t++ ) used[t] = false;
int adj;
while ( (adj = HexCoord::getRandomAdjacentUnique(used)) != -1 )
{
CCPoint nextPosition = HexCoord::getAdjacentGridPositionInDirection((eDirection) adj, position);
if ( generate ( word.substr(1, word.size()), level, nextPosition, placed, lSize ) ) return true;
}
placed.pop_back();
return false;
}
CCPoint getRandPoint ( CCSize size )
{
return CCPoint ( rand() % (int)size.width, rand() % (int)size.height);
}
void generateWholeLevel ( BuzzLevel &level,
blockInfo* info,
const CCSize &levelSize,
vector<CCLabelBMFont*> wordList
)
{
for ( vector<CCLabelBMFont*>::iterator iter = wordList.begin();
iter != wordList.end(); iter++ )
{
std::string cWord = (*iter)->getString();
// CCLog("Curront word %s", cWord.c_str() );
vector<CCPoint> wordPositions;
int iterations = 0;
while ( true )
{
iterations++;
//CCLog("iteration %i", iterations );
CCPoint cPoint = getRandPoint(levelSize);
if ( generate (cWord, level, cPoint, wordPositions, levelSize ) )
{
//Place pieces here
for ( int t = 0; t < cWord.size(); t++ )
{
level.getPiece(wordPositions[t])->addLetter(cWord[t]);
}
break;
}
if ( iterations > 1500 )
{
level.clear();
generateWholeLevel(level, info, levelSize, wordList);
return;
}
}
}
}
I might add that shaped used in the game was a honeycomb. Letter could wind in any direction, so the code above is way more complex then what you are looking for I guess, but will provide a starting point.
I will provide something more suitable when I get back home as I don't have enough time now.
I can see a potential infinite loop in your code
int j = 0;
if(i == 1) j= (i+1);
else j= i;
for(int k = -j/2; k <= j/2; k++)
{
int numberOfCorrectLocation = 0;
while(numberOfCorrectLocation != i)
{
if(row+k> 0 && row+k<8)
{
if(Grid[(row)*8+(column+k)] == 1) break;
numberOfCorrectLocation++;
}
}
if(numberOfCorrectLocation !=i) break;
}
Here, nothing prevents row from being 0, as it was assignd rand%8 earlier, and k can be assigned a negative value (since j can be positive). Once that happens nothing will end the while loop.
Also, I would recommend re-approaching this problem in a more object oriented way (or at the very least breaking up the code in main() into multiple, shorter functions). Personally I found the code a little difficult to follow.
A very quick and probably buggy example of how you could really clean your solution up and make it more flexible by using some OOP:
enum Orientation {
Horizontal,
Vertical
};
struct Ship {
Ship(unsigned l = 1, bool o = Horizontal) : length(l), orientation(o) {}
unsigned char length;
bool orientation;
};
class Grid {
public:
Grid(const unsigned w = 8, const unsigned h = 8) : _w(w), _h(h) {
grid.resize(w * h);
foreach (Ship * sp, grid) {
sp = nullptr;
}
}
bool addShip(Ship * s, unsigned x, unsigned y) {
if ((x <= _w) && (y <= _h)) { // if in valid range
if (s->orientation == Horizontal) {
if ((x + s->length) <= _w) { // if not too big
int p = 0; //check if occupied
for (int c1 = 0; c1 < s->length; ++c1) if (grid[y * _w + x + p++]) return false;
p = 0; // occupy if not
for (int c1 = 0; c1 < s->length; ++c1) grid[y * _w + x + p++] = s;
return true;
} else return false;
} else {
if ((y + s->length) <= _h) {
int p = 0; // check
for (int c1 = 0; c1 < s->length; ++c1) {
if (grid[y * _w + x + p]) return false;
p += _w;
}
p = 0; // occupy
for (int c1 = 0; c1 < s->length; ++c1) {
grid[y * _w + x + p] = s;
p += _w;
}
return true;
} else return false;
}
} else return false;
}
void drawGrid() {
for (int y = 0; y < _h; ++y) {
for (int x = 0; x < _w; ++x) {
if (grid.at(y * w + x)) cout << "|S";
else cout << "|_";
}
cout << "|" << endl;
}
cout << endl;
}
void hitXY(unsigned x, unsigned y) {
if ((x <= _w) && (y <= _h)) {
if (grid[y * _w + x]) cout << "You sunk my battleship" << endl;
else cout << "Nothing..." << endl;
}
}
private:
QVector<Ship *> grid;
unsigned _w, _h;
};
The basic idea is create a grid of arbitrary size and give it the ability to "load" ships of arbitrary length at arbitrary coordinates. You need to check if the size is not too much and if the tiles aren't already occupied, that's pretty much it, the other thing is orientation - if horizontal then increment is +1, if vertical increment is + width.
This gives flexibility to use the methods to quickly populate the grid with random data:
int main() {
Grid g(20, 20);
g.drawGrid();
unsigned shipCount = 20;
while (shipCount) {
Ship * s = new Ship(qrand() % 8 + 2, qrand() %2);
if (g.addShip(s, qrand() % 20, qrand() % 20)) --shipCount;
else delete s;
}
cout << endl;
g.drawGrid();
for (int i = 0; i < 20; ++i) g.hitXY(qrand() % 20, qrand() % 20);
}
Naturally, you can extend it further, make hit ships sink and disappear from the grid, make it possible to move ships around and flip their orientation. You can even use diagonal orientation. A lot of flexibility and potential to harness by refining an OOP based solution.
Obviously, you will put some limits in production code, as currently you can create grids of 0x0 and ships of length 0. It's just a quick example anyway. I am using Qt and therefore Qt containers, but its just the same with std containers.
I tried to rewrite your program in Java, it works as required. Feel free to ask anything that is not clearly coded. I didn't rechecked it so it may have errors of its own. It can be further optimized and cleaned but as it is past midnight around here, I would rather not do that at the moment :)
public static void main(String[] args) {
Random generator = new Random();
int Grid[][] = new int[8][8];
for (int battleShips = 0; battleShips < 5; battleShips++) {
boolean isHorizontal = generator.nextInt(2) == 0 ? true : false;
boolean battleShipFilled = false;
while (!battleShipFilled) {
// Select a random row and column for trial
int row = generator.nextInt(8);
int column = generator.nextInt(8);
while (Grid[row][column] == 1) {
row = generator.nextInt(8);
column = generator.nextInt(8);
}
int lengthOfBattleship = 0;
if (battleShips == 0) // Smallest ship should be of length 2
lengthOfBattleship = (battleShips + 2);
else // Other 4 ships has the length of 2, 3, 4 & 5
lengthOfBattleship = battleShips + 1;
int numberOfCorrectLocation = 0;
for (int k = 0; k < lengthOfBattleship; k++) {
if (isHorizontal && row + k > 0 && row + k < 8) {
if (Grid[row + k][column] == 1)
break;
} else if (!isHorizontal && column + k > 0 && column + k < 8) {
if (Grid[row][column + k] == 1)
break;
} else {
break;
}
numberOfCorrectLocation++;
}
if (numberOfCorrectLocation == lengthOfBattleship) {
for (int k = 0; k < lengthOfBattleship; k++) {
if (isHorizontal)
Grid[row + k][column] = 1;
else
Grid[row][column + k] = 1;
}
battleShipFilled = true;
}
}
}
}
Some important points.
As #Kindread said in an another answer, the code has an infinite loop condition which must be eliminated.
This algorithm will use too much resources to find a solution, it should be optimized.
Code duplications should be avoided as it will result in more maintenance cost (which might not be a problem for this specific case), and possible bugs.
Hope this answer helps...

C++ time spent allocating vectors

I am trying to speed up a piece of code that is ran a total of 150,000,000 times.
I have analysed it using "Very Sleepy", which has indicated that the code is spending the most time in these 3 areas, shown in the image:
The code is as follows:
double nonLocalAtPixel(int ymax, int xmax, int y, int x , vector<nodeStructure> &nodeMST, int squareDimension, Mat &inputImage) {
vector<double> nodeWeights(8,0);
vector<double> nodeIntensities(8,0);
bool allZeroWeights = true;
int numberEitherside = (squareDimension - 1) / 2;
int index = 0;
for (int j = y - numberEitherside; j < y + numberEitherside + 1; j++) {
for (int i = x - numberEitherside; i < x + numberEitherside + 1; i++) {
// out of range or the centre pixel
if (j<0 || i<0 || j>ymax || i>xmax || (j == y && i == x)) {
index++;
continue;
}
else {
int centreNodeIndex = y*(xmax+1) + x;
int thisNodeIndex = j*(xmax+1) + i;
// add to intensity list
Scalar pixelIntensityScalar = inputImage.at<uchar>(j, i);
nodeIntensities[index] = ((double)*pixelIntensityScalar.val);
// find weight from p to q
float weight = findWeight(nodeMST, thisNodeIndex, centreNodeIndex);
if (weight!=0 && allZeroWeights) {
allZeroWeights = false;
}
nodeWeights[index] = (weight);
index++;
}
}
}
// find min b
int minb = -1;
int bCost = -1;
if (allZeroWeights) {
return 0;
}
else {
// iteratate all b values
for (int i = 0; i < nodeWeights.size(); i++) {
if (nodeWeights[i]==0) {
continue;
}
double thisbCost = nonLocalWithb(nodeIntensities[i], nodeIntensities, nodeWeights);
if (bCost<0 || thisbCost<bCost) {
bCost = thisbCost;
minb = nodeIntensities[i];
}
}
}
return minb;
}
Firstly, I assume the spent time indicated by Very Sleepy means that the majority of time is spent allocating the vector and deleting the vector?
Secondly, are there any suggestions to speed this code up?
Thanks
use std::array
reuse the vectors by passing it as an argument of the function or a global variable if possible (not aware of the structure of the code so I need more infos)
allocate one 16 vector size instead of two vectors of size 8. Will make your memory less fragmented
use parallelism if findWeight is thread safe (you need to provide more details on that too)