I am making a slider control in visual studio in MFC, I want to set the range from 14 to 100 and step size should be 0.25 as 14.25, 14.50, 14.75 .
How can can make an custom slider control?
A CSliderCtrl wraps a trackbar control. As such, the former shares the same limitations with the latter. Specifically, the range is set through the TBM_SETRANGE message (or the TBM_SETRANGEMIN and TBM_SETRANGEMAX messages). Either message takes an integral value, so you cannot have the control operate on fractional values.
If you need the integral values supported by the control to represent fractional values, you will have to perform the mapping in client code (scaling and translation). Possible mappings are:
Set the range from 0 * 4 to (100 - 14) * 4 (i.e. 0 to 344). The control position x represents the value 14 + x / 4.
Set the range from 14 * 4 to 100 * 4 (i.e. 56 to 400). The control position x then represents the value x / 4.
In general, fractional values cannot accurately be represented when using floating point values. In this case, however, there is no loss in accuracy; any integer value divided by a power-of-two (such as 4) can be accurately represented by a floating point value (so long as the result is still in range).
Related
I need to compress floating point numbers (4 bytes) to 1 byte(0 to 0xFF) to send to another device. The floating point numbers range from -100000.0 to 100000.0.
The other device will decode from 1 byte back to floating point numbers. How do it do it with minimum data loss?
Thanks, JC
One solution is to use quantization. Divide 100000 to 127 intervals. Send the interval number to which float belongs to and a sign in lowest or highest bit
In your case the interval = 787,4
For example, you have input like 100. Send 1. Input 1000,147732. Send 2
On the device you can restore number by its interval.
The easiest solution is to restore the number as a middle of the interval. For example, every float that belongs to the first interval will be restored as 393.7
If you have some stats for digits distribution and it's not uniform, you can play around it by changing the intervals length and quantize frequent floats more precisely
I'm attempting to convert 12-bit RGGB color values into 8-bit RGGB color values, but with my current method it gives strange results.
Logically, I thought that simply dividing the 12-bit RGGB into 8-bit RGGB would work and be pretty simple:
// raw_color_array contains R,G1,G2,B in a bayer pattern with each element
// ranging from 0 to 4096
for(int i = 0; i < array_size; i++)
{
raw_color_array[i] /= 16; // 4096 becomes 256 and so on
}
However, in practice this actually does not work. Given, for example, a small image with water and a piece of ice in it you can see what actually happens in the conversion (right most image).
Why does this happen? and how can I get the same (or close to) image on the left, but as 8-bit values instead? Thanks!
EDIT: going off of #MSalters answer, I get a better quality image but the colors are still drasticaly skewed. What resources can I look into for converting 12-bit data to 8-bit data without a steep loss in quality?
It appears that your raw 12 bits data isn't on a linear scale. That is quite common for images. For a non-linear scale, you can't use a linear transformation like dividing by 16.
A non-linear transform like sqrt(x*16) would also give you an 8 bits value. So would std::pow(x, 12.0/8.0)
A known problem with low-gradient images is that you get banding. If your images has an area where the original value varies from say 100 to 200, the 12-to-8 bit reduction will shrink that to less than 100 different values. You get rounding , and with naive (local) rounding you get bands. Linear or non-linear, there will then be some inputs x that all map to y, and some that map to y+1. This can be mitigated by doing the transformation in floating point, and then adding a random value between -1.0 and +1.0 before rounding. This effectively breaks up the band structure.
After you clarified that this 12bit data is only for one color, here is my simple answer:
Since you want to convert its value to its 8 bit equivalent, it obviously means you lost some of the data (4bits). This is the reason why you are not getting the same output.
After clarification:
If you want to retain the actual colour values!
Apply de-mosaicking in the 12 Bit image and then scale the resultant data to 8 - Bit. So that the colour loss due to de-mosaicking will be less compared to the previous approach.
You say that your 12-bits represent 2^12 bits of one colour. That is incorrect. There are reds, greens and blues in your image. Look at the histogram. I made this with ImageMagick at the command line:
convert cells.jpg histogram:png:h.png
If you want 8-bits per pixel, rather than trying to blindly/statically apportion 3 bits to Green, 2 bits to Red and 3 bits to Blue, you would probably be better off going with an 8-bit palette so you can have 250+ colours of all variations rather than restricting yourself to just 8 blue shades, 4 reds an 8 green. So, like this:
convert cells.jpg -colors 254 PNG8:result.png
Here is the result of that beside the original:
The process above is called "quantisation" and if you want to implement it in C/C++, there is a writeup here.
Background: I am trying to configure a DMX turntable in LabVIEW, it has two settings for rotating: coarse (360 degrees in 255 points) and fine (1 degree in 255 points). I need to be able to firstly execute a command to move to the closest available DMX position in coarse mode, then make up the difference in fine mode.
e.g. I want to turn to 90 degrees, this is equivalent to a DMX value of 63.75 however this is rounded down to 63. The real value in degrees is now 88.94 so I need to make up the extra 1.06 degrees by using the fine setting (I can only make up 1 degree but 89.94 is close enough to 90).
I can execute the coarse setting just fine however I need some kind of "if" statement to say "if real degree value is less than input value, make up the difference". Case Structures do not provide enough control to use this complicated "if" statement, what can I use instead?
255 coarse steps * 255 fine steps per coarse step = 65025 possible steps.
360 degrees / 65025 = ~ 0.00536 degrees per step.
Divide your desired angle by this constant, then use this as the X input to quotient and remainder. Y would be 255. The Quotient will represent the coarse value to adjust and the Remainder represents the fine value.
63 coarse steps and 191 fine steps.
You don't need any condition. Use the Quotient and Remainder function with 255/4 to get 63 and .75. Do the 63 coarse movement, then take the .75 and multiply it by 360. This will tell you many fine steps you need to take (270, which is 255 + 15. You can use Q&R again to know how many whole turns to make and how much you have left in the last turn).
I am using letter_regcog example from OpenCV, it used dataset from UCI which have structure like this:
Attribute Information:
1. lettr capital letter (26 values from A to Z)
2. x-box horizontal position of box (integer)
3. y-box vertical position of box (integer)
4. width width of box (integer)
5. high height of box (integer)
6. onpix total # on pixels (integer)
7. x-bar mean x of on pixels in box (integer)
8. y-bar mean y of on pixels in box (integer)
9. x2bar mean x variance (integer)
10. y2bar mean y variance (integer)
11. xybar mean x y correlation (integer)
12. x2ybr mean of x * x * y (integer)
13. xy2br mean of x * y * y (integer)
14. x-ege mean edge count left to right (integer)
15. xegvy correlation of x-ege with y (integer)
16. y-ege mean edge count bottom to top (integer)
17. yegvx correlation of y-ege with x (integer)
example:
T,2,8,3,5,1,8,13,0,6,6,10,8,0,8,0,8
I,5,12,3,7,2,10,5,5,4,13,3,9,2,8,4,10
now I have segmented image of letter and want to transform it into data like this to put recognize it but I don't understand the mean of all value like "6. onpix total # on pixels" what is it mean ? Can you please explain the mean of these value. thanks.
I am not familiar with OpenCV's letter_recog example, but this appears to be a feature vector, or set of statistics about the image of a letter that is used to classify the future occurrences of the letter. The results of your segmentation should leave you with a binary mask with 1's on the letter and 0's everywhere else. onpix is simply the total count of pixels that fall on the letter, or in other words, the sum of your binary mask.
Most of the rest values in the list need to be calculated based on the set of pixels with a value of 1 in your binary mask. x and y are just the position of the pixel. For instance, x-bar is just the sample mean of all of the x positions of all pixels that have a 1 in the mask. You should be able to easily find references on the web for mathematical definitions of mean, variance, covariance and correlation.
14-17 are a little different since they are based on edge pixels, but the calculations should be similar, just over a different set of pixels.
My name is Antonio Bernal.
In page 3 of this article you will find a good description for each value.
Letter Recognition Using Holland-Style Adaptive Classifiers.
If you have any doubt let me know.
I am trying to make this algorithm work, but my problem is that I do not know how to scale the values to fit them to the range 0-15.
Do you have any idea how to do this?
Another Link from Google scholar -> Letter Recognition Using Holland-Style Adaptive Classifiers
I have an array of point data, the values of points are represented as x co-ordinate and y co-ordinate.
These points could be in the range of 500 upto 2000 points or more.
The data represents a motion path which could range from the simple to very complex and can also have cusps in it.
Can I represent this data as one spline or a collection of splines or some other format with very tight compression.
I have tried representing them as a collection of beziers but at best I am getting a saving of 40 %.
For instance if I have an array of 500 points , that gives me 500 x and 500 y values so I have 1000 data pieces.
I around 100 quadratic beziers from this. each bezier is represented as controlx, controly, anchorx, anchory.
which gives me 100 x 4 = 400 pcs of data.
So input = 1000pcs , output = 400pcs.
I would like to further tighen this, any suggestions?
By its nature, spline is an approximation. You can reduce the number of splines you use to reach a higher compression ratio.
You can also achieve lossless compression by using some kind of encoding scheme. I am just making this up as I am typing, using the range example in previous answer (1000 for x and 400 for y),
Each point only needs 19 bits (10 for x, 9 for y). You can use 3 bytes to represent a coordinate.
Use 2 byte to represent displacement up to +/- 63.
Use 1 byte to represent short displacement up to +/- 7 for x, +/- 3 for y.
To decode the sequence properly, you would need some prefix to identify the type of encoding. Let's say we use 110 for full point, 10 for displacement and 0 for short displacement.
The bit layout will look like this,
Coordinates: 110xxxxxxxxxxxyyyyyyyyyy
Dislacement: 10xxxxxxxyyyyyyy
Short Displacement: 0xxxxyyy
Unless your sequence is totally random, you can easily achieve high compression ratio with this scheme.
Let's see how it works using a short example.
3 points: A(500, 400), B(550, 380), C(545, 381)
Let's say you were using 2 byte for each coordinate. It will take 16 bytes to encode this without compression.
To encode the sequence using the compression scheme,
A is first point so full coordinate will be used. 3 bytes.
B's displacement from A is (50, -20) and can be encoded as displacement. 2 bytes.
C's displacement from B is (-5, 1) and it fits the range of short displacement 1 byte.
So you save 10 bytes out of 16 bytes. Real compression ratio is totally depending on the data pattern. It works best on points forming a moving path. If the points are random, only 25% saving can be achieved.
If for example you use 32-bit integers for point coords and there is range limit, like x: 0..1000, y:0..400, you can pack (x, y) into a single 32-bit variable.
That way you achieve another 50% compression.
You could do a frequency analysis of the numbers you are trying to encode and use varying bit lengths to represent them, of course here I am vaguely describing Huffman coding
Firstly, only keep enough decimal points in your data that you actually need. Removing these would reduce your accuracy, but its a calculated loss. To do that, try converting your number to a string, locating the dot's position, and cutting of those many characters from the end. That could process faster than math, IMO. Lastly you can convert it back to a number.
150.234636746 -> "150.234636746" -> "150.23" -> 150.23
Secondly, try storing your data relative to the last number ("relative values"). Basically subtract the last number from this one. Then later to "decompress" it you can keep an accumulator variable and add them up.
A A A A R R
150, 200, 250 -> 150, 50, 50