How to compute first N digits of Euler number in c++? [duplicate] - c++

Can anyone explain how this code for computing of e works? Looks very easy for such complicated task, but I can't even understand the process. It has been created by Xavier Gourdon in 1999.
int main() {
int N = 9009, a[9009], x = 0;
for (int n = N - 1; n > 0; --n) {
a[n] = 1;
}
a[1] = 2, a[0] = 0;
while (N > 9) {
int n = N--;
while (--n) {
a[n] = x % n;
x = 10 * a[n-1] + x/n;
}
printf("%d", x);
}
return 0;
}

I traced the algorithm back to a 1995 paper by Stanley Rabinowitz and Stan Wagon. It's quite interesting.
A bit of background first. Start with the ordinary decimal representation of e:
e = 2.718281828...
This can be expressed as an infinite sum as follows:
e = 2 + 1⁄10(7 + 1⁄10(1 + 1⁄10(8 + 1⁄10(2 + 1⁄10(8 + 1⁄10(1 ...
Obviously this isn't a particularly useful representation; we just have the same digits of e wrapped up inside a complicated expression.
But look what happens when we replace these 1⁄10 factors with the reciprocals of the natural numbers:
e = 2 + 1⁄2(1 + 1⁄3(1 + 1⁄4(1 + 1⁄5(1 + 1⁄6(1 + 1⁄7(1 ...
This so-called mixed-radix representation gives us a sequence consisting of the digit 2 followed by a repeating sequence of 1's. It's easy to see why this works. When we expand the brackets, we end up with the well-known Taylor series for e:
e = 1 + 1 + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! + 1/7! + ...
So how does this algorithm work? Well, we start by filling an array with the mixed-radix number (0; 2; 1; 1; 1; 1; 1; ...). To generate each successive digit, we simply multiply this number by 10 and spit out the leftmost digit.*
But since the number is represented in mixed-radix form, we have to work in a different base at each digit. To do this, we work from right to left, multiplying the nth digit by 10 and replacing it with the resulting value modulo n. If the result was greater than or equal to n, we carry the value x/n to the next digit to the left. (Dividing by n changes the base from 1/n! to 1/(n-1)!, which is what we want). This is effectively what the inner loop does:
while (--n) {
a[n] = x % n;
x = 10 * a[n-1] + x/n;
}
Here, x is initialized to zero at the start of the program, and the initial 0 at the start of the array ensures that it is reset to zero every time the inner loop finishes. As a result, the array will gradually fill with zeroes from the right as the program runs. This is why n can be initialized with the decreasing value N-- at each step of the outer loop.
The additional 9 digits at the end of the array are presumably included to safeguard against rounding errors. When this code is run, x reaches a maximum value of 89671, which means the quotients will be carried across multiple digits.
Notes:
This is a type of spigot algorithm, because it outputs successive digits of e using simple integer arithmetic.
As noted by Rabinowitz and Wagon in their paper, this algorithm was actually invented 50 years ago by A.H.J. Sale
* Except at the first iteration where it outputs two digits ("27")

Related

Finding the non zero digit after mutiplying each element in array

Input:
N = 4
arr = {3, 23, 30, 45}
Output:
5
Explanation:
Product of these numbers is 93150. Rightmost
non-zero digit is 5.
can u solve this question in c++ and run this code for input i give u.enter image description here
// my code for this question
int rightmostNonZeroDigit(int N,arr[])
{
// Write your code here.
long int t = 1;
for (int i = 0; i < N; i++)
{
t = t * arr[i];
}
while (t > 0)
{
if ((t % 10) != 0)
{
return (t % 10);
}
t = t / 10;
}
return -1;
}
// what changes should i make in this code
This is actually a nice little challenge. You are multiplying (based from a short estimation on your input image) about 500 numbers with 3 digits each. The product of all these number will never fit into any standard integer type provided by C++.
Suppose your variable t holds some four digit number "abcd". You can write it like
t = a * 1000 + b * 100 + c * 10 + d
Now if you multiply t with any other number x you get
t * x = a * x * 1000 + b * x * 100 + c * x * 10 + d * x
As you can see the last digit of t*x is only determined by d*x. All the other components have trailing zeros since they are some multiple of a power of ten. That means to get the last digit of any multiplication, you just have to multiply the two last digits of the numbers.
Now you are not interested in the last digit, but in the last non-zero digit. You will get the right result if you only ever keep the last non-zero digit in t while calculating the product of all the numbers. In your code you could do something like this:
for (int i = 0; i < N; i++) {
t = t * arr[i];
// the following will remove all trailing zeros
while ( t != 0 && t % 10 == 0 ) {
t = t / 10;
}
// the following will remove all but the last digit
t = t % 10;
}
This works because trailing zeros in the intermediate result will never influence anything but the number of trailing zeros in the final result. And digits before the last non-zero digit will also never contribute to the last non-zero digit in the final result.
Addition
On godbolt you can find a live example with your test input arr = {3,23,30,45}.
Important Edit
As #MohammedfaizKhan pointed out there are cases where the above code fails. For example if we take the numbers arr = {15,2}. The code from above yields 1 because it truncates the 1 in 15 before multiplying it with 2. If we call D the operation that tuncates a number to the first non zero digit, the above program could be written like:
code from above produces
step one
t = D(1 * 15) = 5
step two
t = D(5 * 2 ) = 1
The correct result would be 3. Apparently we cannot remove all leading digits. We could try to increase the number of leading nonzero digits that are kept in each step. For example in the code above, we could use t = t % 100 instead of t = t % 10. There is however a counter example for each number of digits we are trying to keep:
The numbers 2^n and 5^n don't have trailing zeros because they are no multiple of ten because a multiple of 10 must have 2 and 5 in its prime factorization. Their product 2^n * 5^n = (2*5)^n = 10^n however has exactly n trailing zeros.
In conclusion we should keep as many leading nonzero digits as we can fit into our data type. For an 64bit unsigned int this would be for example 19 digits. However we also must not overflow while doing the multiplication with the array elements. Because your array elements are all no longer than 3 digits, we should be safe if we keep the leading 15 digits or something like that.
So in conclusion the following program should do the correct thing:
unsigned long long int t = 1;
for (int i = 0; i < N; i++) {
t = t * arr[i];
// the following will remove all trailing zeros
while ( t != 0 && t % 10 == 0 ) {
t = t / 10;
}
// the following will remove all but the last 15 digits
t = t % 1000000000000000;
}
The trick is to retain only the final non-zero digit on each step.
#include <iostream>
int main() {
int arr[] = {3, 23, 30, 45};
int n = 1;
for (auto&& i : arr){
if (!(n *= i)) break; // Zero in input needs special treatment
for (; !(n % 10); n /= 10); // Remove trailing zeros
n %= 10; // Retain single digit
}
std::cout << n;
}
is one way.

Find minimum number of digits required to make a given number

We have to find the minimum number of digits required to make a given number, for example: 14 => 95 (9 + 5 = 14) is two digits which is the minimum to form 14.
int moves(int n) {
int m = 0; // Minimum count
while (n-9 >= 0) { // To place maximum number of 9's
n -= 9;
m++;
}
if (n == 0) { // If only nines made up the number
return m;
}
else {
m++;
return m;
}
}
I am getting a TLE (runtime time limit exceeded) by an online judge. How can I improve it or is there a better approach?
Your code starts by looking at how many times 9 fits into that number. This can be done way more easily:
int m = n/9;
This suffices since we do an integer division, in which the remainder is thrown away. Note that if n would be float or another floating type, this would not work.
The question left is if it is divisible by 9 or not. If not, we have one additional digit. This can be done by the modulo operator (made it verbose for ease of understanding):
bool divisible_by_nine = (n % 9 == 0);
Assuming that you might not know the modulo operator, it returns the remainder of an integer division, 47 % 9 = 2 since 47 / 9 = 5 remainder 2.
Without it, you would go with
int remainder = n - 9*m;
bool divisible = (remainder == 0);
Combined:
int required_digits(int number)
{
bool divisible = (number % 9 == 0);
return number/9 + (divisible ? 0 : 1);
}
Or in a single line, depending on how verbose you want it to be:
int required_digits(int number)
{
return number/9 + (number % 9 == 0 ? 0 : 1);
}
Since there isn't any loop, this is in Θ(1) and thus should work in your required time limit.
(Technically, the processor might as well handle the division somewhat like you did internally, but it is very efficient at that. To be absolutely correct, I'd have to add "assuming that division is a constant time operation".)
Your solution works fine. You can try the shorter:
return (n%9==0)? n/9 : n/9 +1 ;
Shorter, but less easy to read...
Or a compromise:
if (n%9==0) // n can be divided by 9
return n/9;
else
return n/9+1;
Explanation
We know that every number a can be represented as
(a_n * 10 ^ n) + ... + (a_2 * 10 ^ 2) + (a_1 * 10) + (a_0)
where a_k are digits
and 10^n = 11...11 * 9 + 1 (n digits 1).
Meaning that number 10^n can be represented as the sum of 11...11 + 1 digits.
Now we can write a as (a_n * 11..11 * 9 + a_n) + ...
After grouping by 9 (help, I don't know English term for this. Factoring?)
(a_n * 11..11 + a_n-1 * 11..11 + ... a_1) * 9 + (a_n + a_n-1 + ... + a_1 + a_0)
Which I'll write as b_9 * 9 + b_1.
This means that number a can be represented as the sum of b_9 digits 9 + how much is needed for b_1 (this is recursive by the way)
To recapitulate:
Let's call function f
If -10 < digit < 10, the result is 1.
Two counters are needed, c1 and c2.
Iterate over digits
For every ith digit, multiply by i digit number 11..11 and add the result to c1
Add the ith digit to c2
The result is c_1 + f(c_2)
And for practice, implement this in a non-recursive way.
As you guess, you need to iterate on a lower number to a bigger one, like 111119 is fine, but we want the lowest one... Your answer is wrong. The lowest would be 59!
You can brute force and it will work, but for a bigger number you will struggle, so you need to guess first: How many minimum digits do I need to find my solution?
For instance, if you want to find 42, just add as much 9 you need to overflow the result!
9 + 9 + 9 + 9 + 9 = 45. When you find the overflow, you know that the answer is lower than 99999.
Now how much do I need to decrease the value to get the correct answer, 3 as expected?
So 99996, 99969, etc... will be valid! But you want to lower, so you have to decrease the greatest unit (the left one of course!).
The answer would be 69999 = 42!
int n = 14;
int r = 0;
for (int i = i; i < 10 /*if you play with long or long long*/; i++)
if (i * 9 >= n)
{
for (int j = 0; j < i; j++)
r = r * 10 + 9;
while (is_correct(r, n) == false)
{
// Code it yourself!!
}
return (r);
}
Now it correctly returns true or false. You can make it return the number that r is actually a decrease what you need to decrease! It's not the fastest way possible, and there is always a faster way, with a binary shift, but this algorithm would work just fine!

How to reduce execution time in C++ for the following code?

I have written this code which has an execution time of 3.664 sec but the time limit is 3 seconds.
The question is this-
N teams participate in a league cricket tournament on Mars, where each
pair of distinct teams plays each other exactly once. Thus, there are a total
of (N × (N­1))/2 matches. An expert has assigned a strength to each team,
a positive integer. Strangely, the Martian crowds love one­sided matches
and the advertising revenue earned from a match is the absolute value of
the difference between the strengths of the two matches. Given the
strengths of the N teams, find the total advertising revenue earned from all
the matches.
Input format
Line 1 : A single integer, N.
Line 2 : N space ­separated integers, the strengths of the N teams.
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
int stren[200000];
for(int a=0;a<n;a++)
cin>>stren[a];
long long rev=0;
for(int b=0;b<n;b++)
{
int pos=b;
for(int c=pos;c<n;c++)
{
if(stren[pos]>stren[c])
rev+=(long long)(stren[pos]-stren[c]);
else
rev+=(long long)(stren[c]-stren[pos]);
}
}
cout<<rev;
}
Can you please give me a solution??
Rewrite your loop as:
sort(stren);
for(int b=0;b<n;b++)
{
rev += (2 * b - n + 1) * static_cast<long long>(stren[b]);
}
Live code here
Why does it workYour loops make all pairs of 2 numbers and add the difference to rev. So in a sorted array, bth item is subtracted (n-1-b) times and added b times. Hence the number 2 * b - n + 1
There can be 1 micro optimization that possibly is not needed:
sort(stren);
for(int b = 0, m = 1 - n; b < n; b++, m += 2)
{
rev += m * static_cast<long long>(stren[b]);
}
In place of the if statement, use
rev += std::abs(stren[pos]-stren[c]);
abs returns the positive difference between two integers. This will be much quicker than an if test and ensuing branching. The (long long) cast is also unnecessary although the compiler will probably optimise that out.
There are other optimisations you could make, but this one should do it. If your abs function is poorly implemented on your system, you could always make use of this fast version for computing the absolute value of i:
(i + (i >> 31)) ^ (i >> 31) for a 32 bit int.
This has no branching at all and would beat even an inline ternary! (But you should use int32_t as your data type; if you have 64 bit int then you'll need to adjust my formula.) But we are in the realms of micro-optimisation here.
for(int b = 0; b < n; b++)
{
for(int c = b; c < n; c++)
{
rev += abs(stren[b]-stren[c]);
}
}
This should give you a speed increase, might be enough.
An interesting approach might be to collapse down the strengths from an array - if that distribution is pretty small.
So:
std::unordered_map<int, int> strengths;
for (int i = 0; i < n; ++i) {
int next;
cin >> next;
++strengths[next];
}
This way, we can reduce the number of things we have to sum:
long long rev = 0;
for (auto a = strengths.begin(); a != strengths.end(); ++a) {
for (auto b = std::next(a), b != strengths.end(); ++b) {
rev += abs(a->first - b->first) * (a->second * b->second);
// ^^^^ stren diff ^^^^^^^^ ^^ number of occurences ^^
}
}
cout << rev;
If the strengths tend to be repeated a lot, this could save a lot of cycles.
What exactly we are doing in this problem is: For all combinations of pairs of elements, we are adding up the absolute values of the differences between the elements of the pair. i.e. Consider the sample input
3 10 3 5
Ans (Take only absolute values) = (3-10) + (3-3) + (3-5) + (10-3) + (10-5) + (3-5) = 7 + 0 + 2 + 7 + 5 + 2 = 23
Notice that I have fixed 3, iterated through the remaining elements, found the differences and added them to Ans, then fixed 10, iterated through the remaining elements and so on till the last element
Unfortunately, N(N-1)/2 iterations are required for the above procedure, which wouldn't be ok for the time limit.
Could we better it?
Let's sort the array and repeat this procedure. After sorting, the sample input is now 3 3 5 10
Let's start by fixing the greatest element, 10 and iterating through the array like how we did before (of course, the time complexity is the same)
Ans = (10-3) + (10-3) + (10-5) + (5-3) + (5-3) + (3-3) = 7 + 7 + 5 + 2 + 2 = 23
We could rearrange the above as
Ans = (10)(3)-(3+3+5) + 5(2) - (3+3) + 3(1) - (3)
Notice a pattern? Let's generalize it.
Suppose we have an array of strengths arr[N] of size N indexed from 0
Ans = (arr[N-1])(N-1) - (arr[0] + arr[1] + ... + arr[N-2]) + (arr[N-2])(N-2) - (arr[0] + arr[1] + arr[N-3]) + (arr[N-3])(N-3) - (arr[0] + arr[1] + arr[N-4]) + ... and so on
Right. So let's put this new idea to work. We'll introduce a 'sum' variable. Some basic DP to the rescue.
For i=0 to N-1
sum = sum + arr[i]
Ans = Ans + (arr[i+1]*(i+1)-sum)
That's it, you just have to sort the array and iterate only once through it. Excluding the sorting part, it's down to N iterations from N(N-1)/2, I suppose that's called O(N) time EDIT: That is O(N log N) time overall
Hope it helped!

Finding the smallest possible number which cannot be represented as sum of 1,2 or other numbers in the sequence

I am a newbie in C++ and need logical help in the following task.
Given a sequence of n positive integers (n < 10^6; each given integer is less than 10^6), write a program to find the smallest positive integer, which cannot be expressed as a sum of 1, 2, or more items of the given sequence (i.e. each item could be taken 0 or 1 times). Examples: input: 2 3 4, output: 1; input: 1 2 6, output: 4
I cannot seem to construct the logic out of it, why the last output is 4 and how to implement it in C++, any help is greatly appreciated.
Here is my code so far:
#include<iostream>
using namespace std;
const int SIZE = 3;
int main()
{
//Lowest integer by default
int IntLowest = 1;
int x = 0;
//Our sequence numbers
int seq;
int sum = 0;
int buffer[SIZE];
//Loop through array inputting sequence numbers
for (int i = 0; i < SIZE; i++)
{
cout << "Input sequence number: ";
cin >> seq;
buffer[i] = seq;
sum += buffer[i];
}
int UpperBound = sum + 1;
int a = buffer[x] + buffer[x + 1];
int b = buffer[x] + buffer[x + 2];
int c = buffer[x + 1] + buffer[x + 2];
int d = buffer[x] + buffer[x + 1] + buffer[x + 2];
for (int y = IntLowest - 1; y < UpperBound; y++)
{
//How should I proceed from here?
}
return 0;
}
What the answer of Voreno suggests is in fact solving 0-1 knapsack problem (http://en.wikipedia.org/wiki/Knapsack_problem#0.2F1_Knapsack_Problem). If you follow the link you can read how it can be done without constructing all subsets of initial set (there are too much of them, 2^n). And it would work if the constraints were a bit smaller, like 10^3.
But with n = 10^6 it still requires too much time and space. But there is no need to solve knapsack problem - we just need to find first number we can't get.
The better solution would be to sort the numbers and then iterate through them once, finding for each prefix of your array a number x, such that with that prefix you can get all numbers in interval [1..x]. The minimal number that we cannot get at this point is x + 1. When you consider the next number a[i] you have two options:
a[i] <= x + 1, then you can get all numbers up to x + a[i],
a[i] > x + 1, then you cannot get x + 1 and you have your answer.
Example:
you are given numbers 1, 4, 12, 2, 3.
You sort them (and get 1, 2, 3, 4, 12), start with x = 0, consider each element and update x the following way:
1 <= x + 1, so x = 0 + 1 = 1.
2 <= x + 1, so x = 1 + 2 = 3.
3 <= x + 1, so x = 3 + 3 = 6.
4 <= x + 1, so x = 6 + 4 = 10.
12 > x + 1, so we have found the answer and it is x + 1 = 11.
(Edit: fixed off-by-one error, added example.)
I think this can be done in O(n) time and O(log2(n)) memory complexities.
Assuming that a BSR (highest set bit index) (floor(log2(x))) implementation in O(1) is used.
Algorithm:
1 create an array of (log2(MAXINT)) buckets, 20 in case of 10^6, Each bucket contains the sum and min values (init: min = 2^(i+1)-1, sum = 0). (lazy init may be used for small n)
2 one pass over the input, storing each value in the buckets[bsr(x)].
for (x : buffer) // iterate input
buckets[bsr(x)].min = min(buckets[bsr(x)].min, x)
buckets[bsr(x)].sum += x
3 Iterate over buckets, maintaining unreachable:
int unreachable = 1 // 0 is always reachable
for(b : buckets)
if (unreachable >= b.min)
unreachable += b.sum
else
break
return unreachable
This works because, assuming we are at bucket i, lets consider the two cases:
unreachable >= b.min is true: because this bucket contains values in the range [2^i...2^(i+1)-1], this implies that 2^i <= b.min. in turn, b.min <= unreachable. therefor unreachable+b.min >= 2^(i+1). this means that all values in the bucket may be added (after adding b.min all the other values are smaller) i.e. unreachable += b.sum.
unreachable >= b.min is false: this means that b.min (the smallest number the the remaining sequence) is greater than unreachable. thus we need to return unreachable.
The output of the second input is 4 because that is the smallest positive number that cannot be expressed as a sum of 1,2 or 6 if you can take each item only 0 or 1 times. I hope this can help you understand more:
You have 3 items in that list: 1,2,6
Starting from the smallest positive integer, you start checking if that integer can be the result of the sum of 1 or more numbers of the given sequence.
1 = 1+0+0
2 = 0+2+0
3 = 1+2+0
4 cannot be expressed as a result of the sum of one of the items in the list (1,2,6). Thus 4 is the smallest positive integer which cannot be expressed as a sum of the items of that given sequence.
The last output is 4 because:
1 = 1
2 = 2
1 + 2 = 3
1 + 6 = 7
2 + 6 = 8
1 + 2 + 6 = 9
Therefore, the lowest integer that cannot be represented by any combination of your inputs (1, 2, 6) is 4.
What the question is asking:
Part 1. Find the largest possible integer that can be represented by your input numbers (ie. the sum of all the numbers you are given), that gives the upper bound
UpperBound = sum(all_your_inputs) + 1
Part 2. Find all the integers you can get, by combining the different integers you are given. Ie if you are given a, b and c as integers, find:
a + b, a + c, b + c, and a + b + c
Part 2) + the list of integers, gives you all the integers you can get using your numbers.
cycle for each integer from 1 to UpperBound
for i = 1 to UpperBound
if i not = a number in the list from point 2)
i = your smallest integer
break
This is a clumsy way of doing it, but I'm sure that with some maths it's possible to find a better way?
EDIT: Improved solution
//sort your input numbers from smallest to largest
input_numbers = sort(input_numbers)
//create a list of integers that have been tried numbers
tried_ints = //empty list
for each input in input_numbers
//build combinations of sums of this input and any of the previous inputs
//add the combinations to tried_ints, if not tried before
for 1 to input
//check whether there is a gap in tried_ints
if there_is_gap
//stop the program, return the smallest integer
//the first gap number is the smallest integer

Calculating Binomial Coefficient (nCk) for large n & k

I just saw this question and have no idea how to solve it. can you please provide me with algorithms , C++ codes or ideas?
This is a very simple problem. Given the value of N and K, you need to tell us the value of the binomial coefficient C(N,K). You may rest assured that K <= N and the maximum value of N is 1,000,000,000,000,000. Since the value may be very large, you need to compute the result modulo 1009.
Input
The first line of the input contains the number of test cases T, at most 1000. Each of the next T lines consists of two space separated integers N and K, where 0 <= K <= N and 1 <= N <= 1,000,000,000,000,000.
Output
For each test case, print on a new line, the value of the binomial coefficient C(N,K) modulo 1009.
Example
Input:
3
3 1
5 2
10 3
Output:
3
10
120
Notice that 1009 is a prime.
Now you can use Lucas' Theorem.
Which states:
Let p be a prime.
If n = a1a2...ar when written in base p and
if k = b1b2...br when written in base p
(pad with zeroes if required)
Then
(n choose k) modulo p = (a1 choose b1) * (a2 choose b2) * ... * (ar choose br) modulo p.
i.e. remainder of n choose k when divided by p is same as the remainder of
the product (a1 choose b1) * .... * (ar choose br) when divided by p.
Note: if bi > ai then ai choose bi is 0.
Thus your problem is reduced to finding the product modulo 1009 of at most log N/log 1009 numbers (number of digits of N in base 1009) of the form a choose b where a <= 1009 and b <= 1009.
This should make it easier even when N is close to 10^15.
Note:
For N=10^15, N choose N/2 is more than
2^(100000000000000) which is way
beyond an unsigned long long.
Also, the algorithm suggested by
Lucas' theorem is O(log N) which is
exponentially faster than trying to
compute the binomial coefficient
directly (even if you did a mod 1009
to take care of the overflow issue).
Here is some code for Binomial I had written long back, all you need to do is to modify it to do the operations modulo 1009 (there might be bugs and not necessarily recommended coding style):
class Binomial
{
public:
Binomial(int Max)
{
max = Max+1;
table = new unsigned int * [max]();
for (int i=0; i < max; i++)
{
table[i] = new unsigned int[max]();
for (int j = 0; j < max; j++)
{
table[i][j] = 0;
}
}
}
~Binomial()
{
for (int i =0; i < max; i++)
{
delete table[i];
}
delete table;
}
unsigned int Choose(unsigned int n, unsigned int k);
private:
bool Contains(unsigned int n, unsigned int k);
int max;
unsigned int **table;
};
unsigned int Binomial::Choose(unsigned int n, unsigned int k)
{
if (n < k) return 0;
if (k == 0 || n==1 ) return 1;
if (n==2 && k==1) return 2;
if (n==2 && k==2) return 1;
if (n==k) return 1;
if (Contains(n,k))
{
return table[n][k];
}
table[n][k] = Choose(n-1,k) + Choose(n-1,k-1);
return table[n][k];
}
bool Binomial::Contains(unsigned int n, unsigned int k)
{
if (table[n][k] == 0)
{
return false;
}
return true;
}
Binomial coefficient is one factorial divided by two others, although the k! term on the bottom cancels in an obvious way.
Observe that if 1009, (including multiples of it), appears more times in the numerator than the denominator, then the answer mod 1009 is 0. It can't appear more times in the denominator than the numerator (since binomial coefficients are integers), hence the only cases where you have to do anything are when it appears the same number of times in both. Don't forget to count multiples of (1009)^2 as two, and so on.
After that, I think you're just mopping up small cases (meaning small numbers of values to multiply/divide), although I'm not sure without a few tests. On the plus side 1009 is prime, so arithmetic modulo 1009 takes place in a field, which means that after casting out multiples of 1009 from both top and bottom, you can do the rest of the multiplication and division mod 1009 in any order.
Where there are non-small cases left, they will still involve multiplying together long runs of consecutive integers. This can be simplified by knowing 1008! (mod 1009). It's -1 (1008 if you prefer), since 1 ... 1008 are the p-1 non-zero elements of the prime field over p. Therefore they consist of 1, -1, and then (p-3)/2 pairs of multiplicative inverses.
So for example consider the case of C((1009^3), 200).
Imagine that the number of 1009s are equal (don't know if they are, because I haven't coded a formula to find out), so that this is a case requiring work.
On the top we have 201 ... 1008, which we'll have to calculate or look up in a precomputed table, then 1009, then 1010 ... 2017, 2018, 2019 ... 3026, 3027, etc. The ... ranges are all -1, so we just need to know how many such ranges there are.
That leaves 1009, 2018, 3027, which once we've cancelled them with 1009's from the bottom will just be 1, 2, 3, ... 1008, 1010, ..., plus some multiples of 1009^2, which again we'll cancel and leave ourselves with consecutive integers to multiply.
We can do something very similar with the bottom to compute the product mod 1009 of "1 ... 1009^3 - 200 with all the powers of 1009 divided out". That leaves us with a division in a prime field. IIRC that's tricky in principle, but 1009 is a small enough number that we can manage 1000 of them (the upper limit on the number of test cases).
Of course with k=200, there's an enormous overlap which could be cancelled more directly. That's what I meant by small cases and non-small cases: I've treated it like a non-small case, when in fact we could get away with just "brute-forcing" this one, by calculating ((1009^3-199) * ... * 1009^3) / 200!
I don't think you want to calculate C(n,k) and then reduce mod 1009. The biggest one, C(1e15,5e14) will require something like 1e16 bits ~ 1000 terabytes
Moreover executing the loop in snakiles answer 1e15 times seems like it might take a while.
What you might use is, if
n = n0 + n1*p + n2*p^2 ... + nd*p^d
m = m0 + m1*p + m2*p^2 ... + md*p^d
(where 0<=mi,ni < p)
then
C(n,m) = C(n0,m0) * C(n1,m1) *... * C(nd, nd) mod p
see, eg http://www.cecm.sfu.ca/organics/papers/granville/paper/binomial/html/binomial.html
One way would be to use pascal's triangle to build a table of all C(m,n) for 0<=m<=n<=1009.
psudo code for calculating nCk:
result = 1
for i=1 to min{K,N-K}:
result *= N-i+1
result /= i
return result
Time Complexity: O(min{K,N-K})
The loop goes from i=1 to min{K,N-K} instead of from i=1 to K, and that's ok because
C(k,n) = C(k, n-k)
And you can calculate the thing even more efficiently if you use the GammaLn function.
nCk = exp(GammaLn(n+1)-GammaLn(k+1)-GammaLn(n-k+1))
The GammaLn function is the natural logarithm of the Gamma function. I know there's an efficient algorithm to calculate the GammaLn function but that algorithm isn't trivial at all.
The following code shows how to obtain all the binomial coefficients for a given size 'n'. You could easily modify it to stop at a given k in order to determine nCk. It is computationally very efficient, it's simple to code, and works for very large n and k.
binomial_coefficient = 1
output(binomial_coefficient)
col = 0
n = 5
do while col < n
binomial_coefficient = binomial_coefficient * (n + 1 - (col + 1)) / (col + 1)
output(binomial_coefficient)
col = col + 1
loop
The output of binomial coefficients is therefore:
1
1 * (5 + 1 - (0 + 1)) / (0 + 1) = 5
5 * (5 + 1 - (1 + 1)) / (1 + 1) = 15
15 * (5 + 1 - (2 + 1)) / (2 + 1) = 15
15 * (5 + 1 - (3 + 1)) / (3 + 1) = 5
5 * (5 + 1 - (4 + 1)) / (4 + 1) = 1
I had found the formula once upon a time on Wikipedia but for some reason it's no longer there :(