class members with different read-only and writable states in different classes - c++

i would like a class with some members, that each member can changes in a particular class (each member to have two different states in two different classes, writable and read-only). What is the best way to implement the following problem?
class myRepository
{
...
int writableIn_A;
int writableIn_B;
...
};
myRepository repository;
class A
{
...
void f_A()
{
cout << repository.writableIn_A; //ok
cout << repository.writableIn_B; //ok
repository.writableIn_A = 10; //ok
repository.writableIn_B = 20; //compile error
}
...
};
class B
{
...
void f_B()
{
cout << repository.writableIn_A; //ok
cout << repository.writableIn_B; //ok
repository.writableIn_A = 10; //compile error
repository.writableIn_B = 20; //ok
}
...
};

You could make writableIn_A and writableIn_B into member functions that return proxy objects. These objects could then be friends with A and B resp.
#include <utility>
template <class T, class U>
class FriendOf {
public:
friend T;
explicit FriendOf(U& r) : i(&r) {}
operator const U& () const { return *i; }
private: // only available to friends:
template<class V>
U& operator=(V&& v) {
*i = std::forward<V>(v);
return *i;
}
U* i;
};
Then return instances of these proxy objects:
class A;
class B;
class SingletonRepository {
public:
static SingletonRepository& getInstance() {
static SingletonRepository ins;
return ins;
}
auto writableIn_A() { return FriendOf<A,int>(m_writableIn_A); }
auto writableIn_B() { return FriendOf<B,int>(m_writableIn_B); }
private:
SingletonRepository() = default;
int m_writableIn_A = 0;
int m_writableIn_B = 0;
};
And the usage will be pretty similar to what you wanted:
class A {
void f_A() {
std::cout << SingletonRepository::getInstance().writableIn_A(); // ok
std::cout << SingletonRepository::getInstance().writableIn_B(); // ok
SingletonRepository::getInstance().writableIn_A() = 10; // ok
// SingletonRepository::getInstance().writableIn_B() = 20; // error
}
};
class B {
void f_B() {
std::cout << SingletonRepository::getInstance().writableIn_A(); // ok
std::cout << SingletonRepository::getInstance().writableIn_B(); // ok
// SingletonRepository::getInstance().writableIn_A() = 10; // error
SingletonRepository::getInstance().writableIn_B() = 20; // ok
}
};
Demo

The issue is completely unrelated to Singleton. To restrict access you can make things private and to grant a specific class access to the private parts you can make it a friend. For finer control of access of individual members you can inherit from base classes that manage access of only their members:
#include <iostream>
class friend_of_A {
int x = 0;
friend struct A;
public:
int get_x() { return x; }
};
class friend_of_B {
int y = 0;
friend struct B;
public:
int get_y() { return y;}
};
struct TheClass : friend_of_A , friend_of_B {
};
struct A {
A(TheClass& c) {
std::cout << c.get_x() << c.get_y();
c.x = 42;
//c.y = 42; // ERROR
}
};
struct B {
B(TheClass& c) {
std::cout << c.get_x() << c.get_y();
// c.x = 42; // ERROR
c.y = 42;
}
};
With another layer, you could even grant access only to a int& get_x() for write-access while the member itself can be hidden completely. And perhaps the members in the bases should be protected or TheClass be made a friend as well.

Related

Access child class functions from a vector of a parent class without downcasting

How can one access child class functions from a vector of a parent class without downcasting?
example:
class a {
public:
...
};
class b : public a {
double output() { // both child class have memeber function called output,
// but they return different data type.
return 0;
}
};
class c : public a {
bool output() { return false; }
};
// main
vector<a> vec;
b obj;
c obj2;
vec.push_back(obj);
vec.push_back(obj2);
for (int i = 0; i < vec.size(); i++) {
cout << vec[i].output();
}
Error:
error: no member function called "output" found in a
I have tried function overridding:
class a{
public:
auto output()
};
This approach don't work because I sometimes need to pass multiple parameters and this function doesn't allow that and will throw me the error: Function output expected 0 parameters, received x parameters.
It is possible like this
#include <iostream>
#include <vector>
struct result
{
enum
{
BOOL,
DOUBLE
} tag;
union ret {
double d;
bool b;
} r;
};
std::ostream &operator<<(std::ostream &s, const result &r)
{
switch (r.tag)
{
case result::DOUBLE:
s << r.r.d;
break;
case result::BOOL:
s << r.r.b;
break;
default:
break;
}
return s;
}
class a
{
public:
virtual result output() = 0;
};
class b : public a
{
result output() override
{
result r{result::DOUBLE, 132.};
return r;
}
};
class c : public a
{
result output() override
{
result r{result::BOOL, false};
return r;
}
};
int main(int argc, char const *argv[])
{
std::vector<a *> vec;
a *obj = new b;
a *obj2 = new c;
vec.push_back(obj);
vec.push_back(obj2);
for (int i = 0; i < vec.size(); i++)
{
std::cout << vec[i]->output() << std::endl;
}
return 0;
}
but its ugly. even more then

How the base class calls the closure passed by the derived class in c++?

I have a base class, and it have a member function that sometime will be called. Usually, this function have a parameter that pointing to itself.
class Base {
public:
std::function<bool(Base *, int)> foo;
private:
int x{};
public:
static std::shared_ptr<Base> create() {
return std::make_shared<Base>();
}
Base() = default;
const std::function<bool(Base *, int)> &getFoo() const {
return foo;
}
void setFoo(const std::function<bool(Base *, int)> &foo) {
Base::foo = foo;
}
int getX() const {
return x;
}
void setX(int x) {
Base::x = x;
}
};
But when I have a derived class, how can I set this member function? Although the base class pointer can point to a subclass object, but I directly passed into the derived object, the compiler does not pass.
class Derived : public Base {
public:
static std::shared_ptr<Derived> create() {
return std::make_shared<Derived>();
}
};
int main() {
auto d = Derived::create();
d->setX(77);
d->setFoo([](Derived *derived, int x) -> bool { return derived->getX() > x; });
if (d->getFoo()) {
auto res = d->foo(d.get(), 99);
std::cout << res << std::endl;
}
return 0;
}
error: no viable conversion from '(lambda at
main.cpp:62:15)' to 'const
std::function'
b->setFoo([](Derived *derived, int x) -> bool { return derived->getX() > x; });
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So, is there any good idea to pass a closure to base class, and base class call it instead of derived class, and the most important thing is that closure have a parameter which is point to who pass the closure!
Note
I am going to assume that for some reason the closure in question needs access to Derived's methods/data members, and the OP's example does not convey that very well. Otherwise, why not just use Base * as the input parameter:
b->setFoo([](Base *derived, int x) -> bool { return derived->getX() > x; });
#user3655463's answer contains the full code for this case.
Simple solution
In case the CRTP solution proposed by #Yuki does not work for you, you could just use Base * as an argument of the closure and static_cast it in the closure body (the compiler can optimize away the cast), like this:
int main() {
auto d = Derived::create();
d->setX(77);
d->setFoo([](Base *derived, int x) -> bool {
return static_cast<Derived *>(derived)->getX() > x;
});
if (d->getFoo()) {
auto res = d->foo(d.get(), 99);
std::cout << res << std::endl;
}
return 0;
}
Live example.
If you really need the type in the closure to be Derived *
In case having Base * in the closure is not acceptable, you could hide the setFoo method from Base with a special implementation in Derived which will do the cast for you:
class Derived : public Base {
public:
static std::shared_ptr<Derived> create() {
return std::make_shared<Derived>();
}
template <typename Closure>
void setFoo(Closure foo) {
Base::setFoo([foo](Base *base, int x) {
return foo(static_cast<Derived *>(base), x);
});
}
};
int main() {
auto d = Derived::create();
d->setX(77);
d->setFoo([](Derived *derived, int x) -> bool {
return derived->getX() > x;
});
if (d->getFoo()) {
auto res = d->foo(d.get(), 99);
std::cout << res << std::endl;
}
return 0;
}
This allows you to use the same interface as you have in your original main funciton.
Live example.
If you have a lot of derived classes, and don't want to hide that method over and over again in each class
Now things get a bit complicated, and note that it's a good chance doing something like this would be overengineering in your case, but I just want to demonstrate that it can be done - here is where CRTP comes into play. It is used to implement a mixin which provides an implementation of the setFoo method:
template <typename ConcreteDerived, typename DirectBase>
class EnableSetFooAndInherit : public DirectBase {
public:
template <typename Closure>
void setFoo(Closure foo) {
DirectBase::setFoo([foo](DirectBase *base, int x) {
return foo(static_cast<ConcreteDerived *>(base), x);
});
}
};
class Derived : public EnableSetFooAndInherit<Derived, Base> {
public:
static std::shared_ptr<Derived> create() {
return std::make_shared<Derived>();
}
};
class Derived2 : public EnableSetFooAndInherit<Derived2, Base> {
public:
static std::shared_ptr<Derived2> create() {
return std::make_shared<Derived2>();
}
};
int main() {
auto d = Derived::create();
d->setX(77);
d->setFoo([](Derived *derived, int x) -> bool {
return derived->getX() > x;
});
if (d->getFoo()) {
auto res = d->foo(d.get(), 99);
std::cout << res << std::endl;
}
auto d2 = Derived2::create();
d2->setX(77);
d2->setFoo([](Derived2 *derived, int x) -> bool {
return derived->getX() < x;
});
if (d2->getFoo()) {
auto res = d2->foo(d.get(), 99);
std::cout << res << std::endl;
}
return 0;
}
Live example.
If a template base solution fits your style then this might work.
template <typename D>
class Base {
public:
std::function<bool(D*, int)> foo;
private:
int x{};
public:
static std::shared_ptr<Base> create() { return std::make_shared<Base>(); }
Base() = default;
const std::function<bool(D*, int)>& getFoo() const { return foo; }
void setFoo(const std::function<bool(D*, int)>& foo) { Base::foo = foo; }
int getX() const { return x; }
void setX(int x) { Base::x = x; }
};
class Derived : public Base<Derived> {
public:
static std::shared_ptr<Derived> create() { return std::make_shared<Derived>(); }
};
int main() {
auto d = Derived::create();
d->setX(77);
d->setFoo([](Derived* derived, int x) -> bool { return derived->getX() > x; });
if (d->getFoo()) {
auto res = d->foo(d.get(), 99);
std::cout << res << std::endl;
}
return 0;
}
Can't you just use Base (just as you designed):
d->setFoo([](Base* derived, int x) -> bool { return derived->getX() > x; });
Whole code:
#include <algorithm>
#include <iostream>
#include <vector>
#include <functional>
#include <memory>
class Base {
public:
std::function<bool(Base *, int)> foo;
private:
int x{};
public:
static std::shared_ptr<Base> create() {
return std::make_shared<Base>();
}
Base() = default;
const std::function<bool(Base *, int)> &getFoo() const {
return foo;
}
void setFoo(const std::function<bool(Base *, int)> &foo) {
Base::foo = foo;
}
int getX() const {
return x;
}
void setX(int x) {
Base::x = x;
}
};
class Derived : public Base {
public:
static std::shared_ptr<Derived> create() {
return std::make_shared<Derived>();
}
};
int main() {
auto d = Derived::create();
d->setX(77);
d->setFoo([](Base* derived, int x) -> bool { return derived->getX() > x; });
if (d->getFoo()) {
auto res = d->foo(d.get(), 99);
std::cout << res << std::endl;
}
return 0;
}

Redefine a constant member variable in inherited class

Say I wish to define a member variable in a parent class and set its value in an inherited class. Perhaps these identify functionality available in the class or the nature of the child class. For example:
class A
{
public:
inline int getX() { return x; }
protected:
const int x = 0;
};
class B : public A
{
protected:
const int x = 10;
};
class C : public A
{
protected:
const int x = 50;
};
It should go without saying that scope issues will prevent the above from working properly. However, is there a way to make this work as intended?
Since the variable is meant to identify the nature of the inherited classes, I would prefer if it were const - this problem would not arise if it were not const and merely redefined in the constructor, so far as I can tell.
While fiddling with the compiler trying to make sure my example code made sense, I actually came across the fact that the way I was attempting to define the constants was C++11-specific. That led me to look into the ways it was done before, and I found this question, which shed some light on the matter indirectly.
Defining a variable in this way should be done by having the base class take an argument in its constructor, in the form of:
class A
{
public:
A( const int& type ) : x(type) {}
inline int getX() { return x; }
protected:
const int x;
};
class B : public A
{
public:
B() : A(10) {}
};
class C : public A
{
public:
C() : A(50) {}
};
This will work as intended and allow the constant x to be redefined by inherited classes.
To demonstrate the point I made in my comment, here is an example of what I think you're trying to do (deduced from comments).
I have provided both duck-typed and polymorphic solutions in the same program with a timed run through each.
I use 10 million samples of each to eliminate memory cache noise.
You will notice that the run time of the polymorphic solution is significantly less than that of the duck-typed solution.
#ifdef _WIN32
#include <Windows.h>
double get_cpu_time(){
FILETIME a,b,c,d;
if (GetProcessTimes(GetCurrentProcess(),&a,&b,&c,&d) != 0){
// Returns total user time.
// Can be tweaked to include kernel times as well.
return
(double)(d.dwLowDateTime |
((unsigned long long)d.dwHighDateTime << 32)) * 0.0000001;
}else{
// Handle error
return 0;
}
}
#else
#include <sys/time.h>
inline double get_cpu_time() noexcept {
return (double)clock() / CLOCKS_PER_SEC;
}
#endif
#include <iostream>
#include <vector>
#include <memory>
struct A
{
A(bool copy_) : copy{copy_} {}
virtual ~A() = default;
const bool copy = false;
};
struct RealA : public A
{
RealA() : A { false } {}
};
struct CopyA : public A
{
CopyA() : A { true } {}
};
// A Thing holder will hold any object which has an interface supports do_something_to(T& thing)
struct AHolder {
template<class Thing>
AHolder(std::unique_ptr<Thing> ptr)
: _ptr { std::move(ptr) }
{
}
template<class Thing, class...Args>
static AHolder construct(Args&&...args)
{
return AHolder { std::make_unique<model<Thing>>(std::forward<Args>(args)...) };
}
void do_something() const {
_ptr->do_something();
}
private:
struct concept {
virtual ~concept() = default;
virtual void do_something() = 0;
};
template<class Thing> struct model : concept {
template<class...Args>
model(Args&&...args) : _thing { std::forward<Args>(args)... } {}
private:
void do_something() override {
do_something_to(_thing);
}
Thing _thing;
};
std::unique_ptr<concept> _ptr;
};
using namespace std;
size_t copies_processed = 0;
size_t reals_processed = 0;
void do_something_to(const CopyA&)
{
// simulate work
++copies_processed;
}
void do_something_to(const RealA&)
{
// simulate work
++reals_processed;
}
int main(int argc, char **argv) {
std::vector<std::unique_ptr<A>> duck_typing;
std::vector<AHolder> polymorphic;
constexpr size_t samples = 10000000;
for (size_t i = 0 ; i < samples ; ++i) {
if (i % 2) {
duck_typing.push_back(make_unique<RealA>());
polymorphic.emplace_back(AHolder::construct<RealA>());
}
else {
duck_typing.push_back(make_unique<CopyA>());
polymorphic.emplace_back(AHolder::construct<CopyA>());
}
}
auto duck_start = get_cpu_time();
// nasty duck-typing solution
for (const auto& ptr : duck_typing) {
if (ptr->copy) {
do_something_to(*(static_cast<CopyA*>(ptr.get())));
}
else {
do_something_to(*(static_cast<RealA*>(ptr.get())));
}
}
auto duck_stop = get_cpu_time();
auto poly_start = get_cpu_time();
for (const auto& a_like : polymorphic) {
a_like.do_something();
}
auto poly_stop = get_cpu_time();
cout << "duck typing : " << duck_stop - duck_start << endl;
cout << "polymorphic : " << poly_stop - poly_start << endl;
cout << "copies processed : " << copies_processed << endl;
cout << "reals processed : " << reals_processed << endl;
return 0;
}
sample output :
duck typing : 0.162985
polymorphic : 0.137561
copies processed : 10000000
reals processed : 10000000

Virtual static variable

I need to assign unique integer value to each descendant of class Base that should be accessible by using pointer to those classes or its typenames.
I implemented it such way
class Base {
public:
int idCompType = InvalidCompType;
virtual int getCompType() = 0;
}
then in each descendant of base I should declare idCompType (for templates) and override getCompType (for pointers):
class Real1: public Base {
public:
int idCompType = 1;
int getCompType() override { return idCompType; }
}
now I can find comp type from pointer to base
Base *comp = getComp(...);
std::cout << comp->getCompType();
or using typename in template:
template <typename T>
int getType() {
return T::idCompType;
}
Is there a way to make it even simpler without double declaration idCompType and getCompType() in each descendant class? In Object Pascal I achieved this using virtual static methods, but their are not allowed in C++..
PS: the question is not about virtual static methods - virtual static method is just the one of the possible solutions and the way my problem was solved in other language.
My recommendation:
Changes to Base:
class Base {
public:
virtual int getCompType() = 0;
protected:
static int getNextCompType()
{
static int nextType = 0;
return ++nextType;
}
};
Changes to the derived class:
class Real1: public Base {
public:
static int getCompTypeImpl()
{
static int myType = Base::getNextCompType();
return myType;
}
int getCompType() override
{
return getCompTypeImpl();
}
};
Here's a working program:
#include <iostream>
class Base {
public:
virtual int getCompType() = 0;
protected:
static int getNextCompType()
{
static int nextType = 0;
return ++nextType;
}
};
class Real1: public Base {
public:
static int getCompTypeImpl()
{
static int myType = Base::getNextCompType();
return myType;
}
int getCompType() override
{
return getCompTypeImpl();
}
};
class Real2: public Base {
public:
static int getCompTypeImpl()
{
static int myType = Base::getNextCompType();
return myType;
}
int getCompType() override
{
return getCompTypeImpl();
}
};
template <typename T> int getCompType()
{
return T::getCompTypeImpl();
}
int main()
{
Real1 v1;
Real2 v2;
std::cout << v1.getCompType() << std::endl;
std::cout << v2.getCompType() << std::endl;
std::cout << getCompType<Real1>() << std::endl;
std::cout << getCompType<Real2>() << std::endl;
};
Output:
1
2
1
2
Here is a slight variant of #Sahu's version.
Instead of implementing the same getCompTypeImpl() in every derived class, put it in Base class.
template<typename T>
static int getCompTypeImpl()
{
return getNextCompType<T>();
}
Modify getNextCompType() to
template<typename T>
static int getNextCompType()
{
auto iter = m_table.find(std::type_index(typeid(T)));
if (iter != m_table.end())
{
return iter->second;
}
else
{
m_table.insert(std::make_pair(std::type_index(typeid(T)), ++nextType));
return nextType;
}
}
And finally introduce 2 new static data members.
private:
static std::map<std::type_index, int> m_table;
static int nextType;
Please find the full code here.
Admittedly this introduces 2 new static members and does a bit more work
than the original version from Sahu. But, this removes the burden of implementing the methods in
all the derived classes.
Yet another variation of #R Sahu's answer to eliminate duplication of code in the derived classes:
#include <iostream>
class Base {
public:
virtual int getCompType() const = 0;
template <typename T>
static int getCompTypeOf()
{
static int compType = getNextCompType();
return compType;
}
private:
static int getNextCompType()
{
static int nextType = 0;
return ++nextType;
}
};
template <typename Derived, typename DeriveFrom = Base>
class TypeAssigner : DeriveFrom {
public:
int getCompType() const override
{
return Base::getCompTypeOf<Derived>();
}
};
class Real1: public TypeAssigner<Real1> {};
class Real2: public TypeAssigner<Real2> {};
class Real3 : public TypeAssigner<Real3, Real2> {};
int main()
{
Real1 v1;
Real2 v2;
Real3 v3;
std::cout << v1.getCompType() << '\n';
std::cout << v2.getCompType() << '\n';
std::cout << v3.getCompType() << '\n';
std::cout << Base::getCompTypeOf<Real1>() << '\n';
std::cout << Base::getCompTypeOf<Real2>() << '\n';
std::cout << Base::getCompTypeOf<Real3>() << '\n';
};

Property like features in C++?

My use is pretty complicated. I have a bunch of objs and they are all passed around by ptr (not reference or value unless its an enum which is byval). At a specific point in time i like to call CheckMembers() which will check if each member has been set or is null. By default i cant make it all null because i wouldnt know if i set it to null or if it is still null bc i havent touch it since the ctor.
To assign a variable i still need the syntax to be the normal var = p; var->member = new Type;. I generate all the classes/members. So my question is how can i implement a property like feature where i can detect if the value has been set or left as the default?
I am thinking maybe i can use C++ with CLR/.NET http://msdn.microsoft.com/en-us/library/z974bes2.aspx but i never used it before and have no idea how well it will work and what might break in my C++ prj (it uses rtti, templates, etc).
Reality (edit): this proved to be tricky, but the following code should handle your requirements. It uses a simple counter in the base class. The counter is incremented once for every property you wish to track, and then decremented once for every property that is set. The checkMembers() function only has to verify that the counter is equal to zero. As a bonus, you could potentially report how many members were not initialized.
#include <iostream>
using namespace std;
class PropertyBase
{
public:
int * counter;
bool is_set;
};
template <typename T>
class Property : public PropertyBase
{
public:
T* ptr;
T* operator=(T* src)
{
ptr = src;
if (!is_set) { (*counter)--; is_set = true; }
return ptr;
}
T* operator->() { return ptr; }
~Property() { delete ptr; }
};
class Base
{
private:
int counter;
protected:
void TrackProperty(PropertyBase& p)
{
p.counter = &counter;
counter++;
}
public:
bool checkMembers() { return (counter == 0); }
};
class OtherObject : public Base { }; // just as an example
class MyObject : public Base
{
public:
Property<OtherObject> x;
Property<OtherObject> y;
MyObject();
};
MyObject::MyObject()
{
TrackProperty(x);
TrackProperty(y);
}
int main(int argc, char * argv[])
{
MyObject * object1 = new MyObject();
MyObject * object2 = new MyObject();
object1->x = new OtherObject();
object1->y = new OtherObject();
cout << object1->checkMembers() << endl; // true
cout << object2->checkMembers() << endl; // false
delete object1;
delete object2;
return 0;
}
There are a number of ways to do this, with varying tradeoffs in terms of space overhead. For example, here's one option:
#include <iostream>
template<typename T, typename OuterClass>
class Property
{
public:
typedef void (OuterClass::*setter)(const T &value);
typedef T &value_type;
typedef const T &const_type;
private:
setter set_;
T &ref_;
OuterClass *parent_;
public:
operator value_type() { return ref_; }
operator const_type() const { return ref_; }
Property<T, OuterClass> &operator=(const T &value)
{
(parent_->*set_)(value);
return *this;
}
Property(T &ref, OuterClass *parent, setter setfunc)
: set_(setfunc), ref_(ref), parent_(parent)
{ }
};
struct demo {
private:
int val_p;
void set_val(const int &newval) {
std::cout << "New value: " << newval << std::endl;
val_p = newval;
}
public:
Property<int, demo> val;
demo()
: val(val_p, this, &demo::set_val)
{ }
};
int main() {
demo d;
d.val = 42;
std::cout << "Value is: " << d.val << std::endl;
return 0;
}
It's possible to get less overhead (this has up to 4 * sizeof(void*) bytes overhead) using template accessors - here's another example:
#include <iostream>
template<typename T, typename ParentType, typename AccessTraits>
class Property
{
private:
ParentType *get_parent()
{
return (ParentType *)((char *)this - AccessTraits::get_offset());
}
public:
operator T &() { return AccessTraits::get(get_parent()); }
operator T() { return AccessTraits::get(get_parent()); }
operator const T &() { return AccessTraits::get(get_parent()); }
Property &operator =(const T &value) {
AccessTraits::set(get_parent(), value);
return *this;
}
};
#define DECL_PROPERTY(ClassName, ValueType, MemberName, TraitsName) \
struct MemberName##__Detail : public TraitsName { \
static ptrdiff_t get_offset() { return offsetof(ClassName, MemberName); }; \
}; \
Property<ValueType, ClassName, MemberName##__Detail> MemberName;
struct demo {
private:
int val_;
struct AccessTraits {
static int get(demo *parent) {
return parent->val_;
}
static void set(demo *parent, int newval) {
std::cout << "New value: " << newval << std::endl;
parent->val_ = newval;
}
};
public:
DECL_PROPERTY(demo, int, val, AccessTraits)
demo()
{ val_ = 0; }
};
int main() {
demo d;
d.val = 42;
std::cout << "Value is: " << (int)d.val << std::endl;
return 0;
}
This only consumes one byte for the property struct itself; however, it relies on unportable offsetof() behavior (you're not technically allowed to use it on non-POD structures). For a more portable approach, you could stash just the this pointer of the parent class in a member variable.
Note that both classes are just barely enough to demonstrate the technique - you'll want to overload operator* and operator->, etc, as well.
Here's my temporary alternative. One that doesn't ask for constructor parameters.
#include <iostream>
#include <cassert>
using namespace std;
template <class T>
class Property
{
bool isSet;
T v;
Property(Property&p) { }
public:
Property() { isSet=0; }
T operator=(T src) { v = src; isSet = 1; return v; }
operator T() const { assert(isSet); return v; }
bool is_set() { return isSet; }
};
class SomeType {};
enum SomeType2 { none, a, b};
class MyObject
{
public:
Property<SomeType*> x;
Property<SomeType2> y;
//This should be generated. //Consider generating ((T)x)->checkMembers() when type is a pointer
bool checkMembers() { return x.is_set() && y.is_set(); }
};
int main(int argc, char * argv[])
{
MyObject* p = new MyObject();
p->x = new SomeType;
cout << p->checkMembers() << endl; // false
p->y = a;
cout << p->checkMembers() << endl; // true
delete p->x;
delete p;
}