How to track Continuous Job execution per Thing in AWS-IoT - amazon-web-services

I use AWS IoT to manage Things.
I have a Dynamic Thing Group with Continuous IoT Job attached, so every Thing eventually (based on conditions) can be added to this Group and a thing will be notified on a Job to be executed. This one works perfect.
Now I need to track Job SUCCEEDED event for every Thing (Job execution). How can I do this using AWS IoT services?
I was trying to do this using AWS IoT Rules with the following SQL expression:
SELECT * FROM '$aws/events/jobExecution/my-continuous-job-id/succeeded'
but without success, no events were observed. However, at the same time I can see that Job was successfully executed as in Thing as in the AWS IoT Web Console.

After some research I found the answer. So to handle job execution events one should activate this feature in AWS IoT Core explicitly which is not obvious from the first glance:
AWS Web Console:
AWS IoT -> Settings -> Manage Events -> Check "Job execution: success, failed, rejected, canceled, removed"
AWS CLI:
aws iot update-event-configurations --event-configurations "{\"JOB_EXECUTION\":{\"Enabled\": true}}"
Docs: https://docs.aws.amazon.com/iot/latest/developerguide/iot-events.html

Related

How are AWS IOT Jobs different to Topic subscription?

In AWS IOT we can make device subscribe to a topic. When a message is received on a topic, the device can be programmed to execute some code.
AWS IOT Jobs seems similar in that the device listens on the job and executes certain code when job is received.
How are AWS IOT Jobs different to Topic subscription?
The primary purpose of jobs is to notify devices of a software or
firmware update.
AWS IOT Job Doc
AWS IOT Events activities (like subscribing to a topic) would be the generic implementation for doing stuff when a device gets a message. IOT jobs are more of a managed workflow for doing a specific activity- like notifying devices of a firmware update and using CodeSigning.
Just want to add an important point to what #Bobshark wrote.
Yes, Amazon engineers implemented a set of endpoints to manage a whole job lifecycle on a single device and the process of gradually rolling out jobs over a fleet of devices.
However, IoT jobs are not tied down to using MQTT as the transport protocol. As the AWS docs [1] mention:
Devices can communicate with the AWS IoT Jobs service through these methods:
MQTT
HTTP Signature Version 4
HTTP TLS
My personal advice: Use jobs if you would have to implement your own update procedure (such as progress reporting, gradual rollouts, etc.) otherwise.
[1] https://docs.aws.amazon.com/iot/latest/developerguide/jobs-devices.html

Idea and guidelines on end to end AWS solution

I want to build an end to end automated system which consists of the following steps:
Getting data from source to landing bucket AWS S3 using AWS Lambda
Running some transformation job using AWS Lambda and storing in processed bucket of AWS S3
Running Redshift copy command using AWS Lambda to push the transformed/processed data from AWS S3 to AWS Redshift
From the above points, I've completed pulling data, transforming data and running manual copy command from a Redshift using a SQL query tool.
Doubts:
I've heard AWS CloudWatch can be used to schedule/automate things but never worked on it. So, if I want to achieve the steps above in a streamlined fashion, how to go about it?
Should I use Lambda to trigger copy and insert statements? Or are there better AWS services to do the same?
Any other suggestion on other AWS Services and of the likes are most welcome.
Constraint: Want as many tasks as possible to be serverless (except for semantic layer, Redshift).
CloudWatch:
Your options here are either to use CloudWatch Alarms or Events.
With alarms, you can respond to any metric of your system (eg CPU utilization, Disk IOPS, count of Lambda invocations etc) when it crosses some threshold, and when this alarm is triggered, invoke a lambda function (or send SNS notification etc) to perform a task.
With events you can use either a cron expression or some AWS service event (eg EC2 instance state change, SNS notification etc) to then trigger another service (eg Lambda), so you could for example run some kind of clean-up operation via lambda on a regular schedule, or create a snapshot of an EBS volume when its instance is shut down.
Lambda itself is a very powerful tool, and should allow you to program a decent copy/insert function in a language you are familiar with. AWS has several GitHub repos with lots of examples too, see for example the serverless examples and many samples. There may be other services which could work for you in your specific case, but part of Lambda's power is its flexibility.

How to terminate AWS EMR Cluster automatically after some time

I currently have a task at hand to Terminate a long-running EMR cluster after a set period of time (based on some metric). Google Dataproc has this capability in something called "Cluster Scheduled Deletion" Listed here: Cluster Scheduled Deletion
Is this something that is possible on EMR natively? Maybe using Cloudwatch metrics? Or can I write a long-running jar which will sit on the EMR Master node and just poll yarn for some idle time metric and then shut down the cluster after a set period of time?
Edit: For more clarification. I would like some functionality wherein the cluster is terminated based on idle for some x amount of time. e.g. If the cluster has been up for a while but no jobs have been run for say 1 hour and the cluster is just sitting there doing nothing, then I'd like the ability to terminate the cluster.
The easiest method would be used to Amazon EMR Metrics and Dimensions for Amazon CloudWatch. There is an isIdle boolean that "indicates that a cluster is no longer performing work".
You could create a CloudWatch Alarm that says if it is True for more than x minutes, then trigger the alarm. This would send a message to Amazon SNS, which can trigger a Lambda function to shutdown the cluster.
Components:
Amazon CloudWatch Alarm
Amazon SNS queue
AWS Lambda function
Update: This apparently isn't suitable (see comments below).
An alternate method would be:
Use Amazon CloudWatch Events to schedule a Lambda function every x seconds
The Lambda function looks for any clusters with a particular tag that indicates how long to wait until shutdown (eg 40 minutes). If the tag is not present, the cluster remains untouched.
The Lambda function queries the cluster state (somehow -- probably via a Hadoop API call), then:
If the cluster is idle and there is no Idle Since tag, add an Idle Since tag with the current timestamp
If the cluster is idle and it been more than x minutes since the timestamp in the Idle Since tag, terminate the cluster.
If the cluster is not idle, remove the Idle Since tag (if present)
Keeping in mind the clarification that you have provided in your question, there could be 3 possible ways to do that.
1) Using AWS CloudWatch metric isIdle of an EMR cluster. This metric tracks whether a cluster is live, but not currently running tasks. You can set an alarm to fire when the cluster has been idle for a given period of time, such as thirty minutes.
Reference: https://docs.aws.amazon.com/emr/latest/ManagementGuide/UsingEMR_ViewingMetrics.html
2) [Recommended] Using AWS CloudWatch event/rule and AWS Lambda function to check for Idle EMR clusters. You can achieve visibility on the AWS Console level and can easily enable and disable it.
[Recommended] Solution using 2nd Approach
Keeping in mind the need for this, I have developed a small framework to achieve that using the 2nd solution mentioned above. This framework is an AWS based solution using AWS CloudWatch and AWS Lambda using a Python script that is using Boto3 to terminate AWS EMR clusters that have been idle for a specified period of time.
You specify the maximum idle time threshold and AWS CloudWatch event/rule triggers an AWS Lambda function that queries all AWS EMR clusters in WAITING state and for each, compares the current time with AWS EMR cluster's ready time in case of no EMR steps added so far or compares the current time with AWS EMR cluster's last step's end time. If the threshold has been compromised, the AWS EMR will be terminated after removing termination protection if enabled. If not, it will skip that AWS EMR cluster.
AWS CloudWatch event/rule will decide how often AWS Lambda function should check for idle AWS EMR clusters.
You can disable the AWS CloudWatch event/rule at any time to disable this framework in a single click without deleting its AWS CloudFormation stack.
AWS Lambda function is using Python 3.7 as its runtime environment.
You can get the code and use it from GitHub here: https://github.com/abdullahkhawer/auto-terminate-idle-emr
Note: Any contributions, improvements, and suggestions to this solution that I developed will be highly appreciated.
3) Some other custom solution based on a Shell that runs against a CRON job on an EMR cluster's master node but you will lose its visibility on the AWS Console level and you may require SSH access as well.
I had to do a similar implementation and just considering Cluster Elapsed time was not solving our problem.
so we came up with a approach to hit the Hadoop API, you can find them here
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ResourceManagerRest.html#Cluster_Scheduler_API
So here is what we did,
Ask the user who brings up a cluster to add a Tag like "AutoShutDown":"True:BufferMinutes", here "AutoShutDown" is the key and "True:BufferMinutes" is the value of the Tag
Here BufferMinutes is the time in minutes (30, 60 etc.)
create a Lambda to hit the hadoop api of all those clusters configured with step 1 (if the user does not add the Tag then the cluster is untouched) and fetch the end time of the last job that was completed (only if all jobs are either completed / terminated), if any job is still running then do nothing and exit.
now
datetime_difference = (current_time - lastFinished)
if(datetime_difference > requested_time)
{
terminate_cluster
}
Create a cloud watch trigger and add the lambda created as target to it, schedule the trigger to run as required.
Note: Lambda is written in python, so boto3 is used and client will be "emr" same like what abdullahkhawer mentioned in his solution above.
This implementation gives flexibility to the user to choose and reduces a great deal of burden on dev-ops.

Kafka + AWS lambda

Is it possible to integrate AWS Lambda with Apache Kafka ?
I want to put a consumer in a lambda function. When a consumer receive a message the lambda function execute.
Continuing the point by Arafat. We have successfully built an infrastructure to consume from Kafka using AWS Lambdas. Here are some gotcha's:
Make sure to consistently batch and commit while reading when consuming.
If you are storing the batches to s3, make sure to clean your file descriptors.
If you are forwarding the batches to another service make sure to clean the variables. Variable caching in AWS Lambda might result in memory overflows.
A good idea is to check how much time you have left while from the context object in the Lambda and give yourself some wiggle room to do something with the buffer you populated in your consumer which might not be read to a file unless you call close().
We are using Apache Airflow for scheduling. I hear cloudwatch can do that too.
Here is AWS article on scheduled lambdas.
Given your Kafka installation will be running in a VPC, best practise is to configure your Lambda to run within the VPC as well - this will simplify the security group configuration for the EC2 instances running Kafka.
Here is the AWS blog article on configuring Lambdas to run in a VPC.
Yes it is very much possible to have a Kafka consumer in AWS Lambda function.
However note that you would not be able to invoke the lambda using some sort of notification. You will rather have to poll the Kafka topic. And the easiest way can be to use a Scheduled Lambda
If you are using managed apache kafka in AWS (MSK):
Since august 2020 you can connect AWS Managed Streaming for Kafka (MSK) as event source. Not your own installed kafka cluster but if you already uses AWS managed kafka this could be useful.
More in the announcement https://aws.amazon.com/about-aws/whats-new/2020/08/aws-lambda-now-supports-amazon-managed-streaming-for-apache-kafka-as-an-event-source/
Screenshot from AWS Console:
AWS now supports "self-hosted Apache Kafka as an event source for AWS Lambda"
When you create a new Lambda, in the "Configuration" tab, click "Add trigger", you can now select and configure your self-hosted Apache Kafka.
Feel free to read more here:
https://aws.amazon.com/blogs/compute/using-self-hosted-apache-kafka-as-an-event-source-for-aws-lambda/
https://docs.aws.amazon.com/lambda/latest/dg/kafka-smaa.html
There is a community-provided Kafka Connector for AWS Lambda. This solution would require you to run the connector somewhere such as EC2 or ECS.

run scheduled task in AWS without cron

Currently I have a single server in amazon where I put all my cronjobs. I want to eliminate this single point of failure, and expose all my tasks as web services. I'd like to expose the services behind a VPC ELB to a few servers that will run the tasks when called.
Is there some service that Amazon (AWS) offers that can run a reoccurring job (really call a webservice) at scheduled intervals? I'd really like to be able to keep the cron functionality in terms of time/day specification, but farm out the HA of the driver (thing that calls endpoints at the right time) to AWS.
I like how SQS offers web endpoint(s), but from what I can tell you cant schedule them. SWF doesn't seem to be a good fit either.
AWS announced support for scheduled functions in Lambda at its 2015 re:Invent conference. With this feature users can execute Lambda functions on a scheduled basis using a cron-like syntax. The Lambda docs show an example of using Python to perform scheduled events.
Currently, the minimum resolution that a scheduled lambda can run at is 1 minute (the same as cron, but not as fine grained as systemd timers).
The Lambder project helps to simplify the use of scheduled functions on Lambda.
λ Gordon's cron example has perhaps the simplest interface for deploying scheduled lambda functions.
Original answer, saved for posterity.
As Eric Hammond and others have stated, there is no native AWS service for scheduled tasks. There are only workarounds and half solutions as mentioned in other answers.
To recap the current options:
The single-instance autoscale group that starts and stops on a schedule, as described by Eric Hammond.
Using a Simple Workflow Service timer, which is not at all intuitive. This case study mentions that JPL used SWF to build a distributed cron, but there are no implementation details. There is also a reference to a code example buried in the SWF code samples.
Run it yourself using something like cronlock.
Use something like the Unreliable Town Clock (UTC) to run Lambda functions on a schedule. Remember that Lambda cannot currently access resources within a VPC
Hopefully a better solution will come along soon.
Introducing Events in AWS Cloudwatch
You can schedule by minute, hourly, days or using CRON expression using console and without Lambda or any programming.
I just scheduled my ASP.net WEB API(HTTP Post) using SNS HTTP endpoint to execute every minute and it's working perfectly.
Is there some service that Amazon (AWS) offers that can run a reoccurring job at scheduled intervals?
This is one of a few single points of failure that people (including me) keep mentioning when designing architectures with AWS. Until Amazon solves it with a service, here's a hack I've published which is actively used by some companies.
AWS Auto Scaling can run and terminate instances using a recurring schedule specified in the cron format.
http://docs.amazonwebservices.com/AutoScaling/latest/APIReference/API_PutScheduledUpdateGroupAction.html
You can have the instance automatically run a process on startup.
If you don't know how long the job will last, you can set things up so that your job terminates the instance when it has completed.
Here's an article I wrote that walks through exact commands needed to set this up:
Running EC2 Instances on a Recurring Schedule with Auto Scaling
http://alestic.com/2011/11/ec2-schedule-instance
Starting a whole instance just to kick off a set of jobs seems a bit like overkill, but if it's a t1.micro, then it only costs a couple pennies.
That t1.micro doesn't have to do the actual work either. Your instance could inject messages into SQS or through SNS so that the other redundant servers pick up the tasks.
This a hosted third party site that can regularly call scheduled scripts on your domain.
This will not work if you need your script to run in the shell, and not as Apache.
Sounds like this might be useful to you:
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-using-task-runner.html
Task Runner is a task agent application that polls AWS Data Pipeline
for scheduled tasks and executes them on Amazon EC2 instances, Amazon
EMR clusters, or other computational resources, reporting status as it
does so. Depending on your application, you may choose to:
Allow AWS Data Pipeline to install and manage one or more Task Runner
applications for you on computational resources that it manages
automatically. In this case, you do not need to install or configure
Task Runner as described in this section. This is the recommended
configuration.
Manually install and configure Task Runner on a computational resource
such as a long-running EC2 instance or a physical server. To do so,
use the procedures in this section.
Develop and install a custom task agent instead of Task Runner. The
procedures for doing so will depend on the implementation of the
custom task agent.
Amazon has introducted Lambda last year for NodeJS, yesterday Amazon added the features Scheduled Functions, VPC Support, and Python Support.
By leveraging Scheduled Function - a proper replacement for CRON can be attained.
More Info - http://aws.amazon.com/lambda/details/
As of August 2020, Amazon has moved the Lambda/CloudWatch events to a service called EventBridge (https://aws.amazon.com/eventbridge/). It was launched in July 2019, after most of the answers to this question.
Looks like this is a relatively new option from AWS BeanStalk:
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features-managing-env-tiers.html#worker-periodictasks
Basically, they act like regular SQS receivers, but they're called on a cron schedule instead of in response to a SQS message.
SWF is a Web service from AWS that can be used to schedule tasks. Most of the work goes into specifying what a task and a schedule is.
http://milindparikh.blogspot.com/2015/07/introducing-diksha-aws-lambda-function.html is a scalable scheduler written against SWF.
CloudWatch Events are great, but there is a limit on their number. If you need a scale and willing to sacrifice the precision you could use DynamoDB's TTL as a timer.
The idea is to put items into a DynamoDB table with a TTL set to the time you need to run a task. DynamoDB will delete those items somewhere around the specified time (within 48 hours of expiration). Those deleted items will appear in the DynamoDB stream, associated with a table. A lambda function could listen the stream and take appropriate actions upon the deletions.
Read more in "DynamoDB TTL as an ad-hoc scheduling mechanism" by theburningmonk.com.
The AWS Elastic Load Balancers will ping your instances to check that they're healthy. You can add your cron-like tasks to the script that the ELB is pinging, and it will execute very regularly.
You'd want to add some logic so that each tasks is executed the right amount of times and at the right interval, but this could be accomplished with a database table that tracks executions. Each time the ELB pings your server, your server would check the database to see if any job is pending, and then execute that job.
The ELB will timeout if the script takes too long to execute, so it's important to not create a situation where your ELB health check will take many seconds to process the cron tasks. To overcome this, you can employ the AWS Simple Notification Service. Your ELB health check script can simply publish a message to an SNS topic, and then that topic can deliver the message via an HTTP request to your web server.
In other words:
ELB pings your EC2 instance...
EC2 instance checks for pending jobs and sends a message to SNS if any are found...
SNS notifies your app via HTTP...
The HTTP call from SNS is what actually processes the cron job