AWS: How often Lambda face Cold Starts in production? - amazon-web-services

My company is developing a game using aws and I'm only backend developer.
Since I'm alone, I thought that going serverless would be easiest and safest solution for me.
I'm using .net core Lambdas with dynamodb as database as backend stack.
However, whenever cold start occurs response time of my login function takes around 16s 20s since dynamodb client initialization takes long. I load only 2mb data from db.
For development purposes, I have scheduled a lambda to avoid cold starts and I also know that I can provision some ready instances. But I think that scheduled calls will provision only one container and in production need will be a lot more. My company is also an advertising company so we expect a lot of users.
How much percentage of calls might face cold starts in production? Is is more then %20?
Also, I'm using terraform to manage infrastructure and I'm using route 53 + regional apigateways + custom domains setup to have multiple region latency based routing.
Would you recomment me to go beanstalk in stead of lambda? Its first time for me to create such environment that should be highly scalable.
Thank you
Kind regards

Related

Conceptual question regarding scaling REST API

I have a general question regarding how APIs are scaled. I have a basic RESTful API powered by Django rest framework, the backend uses RDS for database management. Right now, I'm deploying my django application to a digitalocean droplet but thinking of switching over to EC2 or potentially EKS. Is my understanding correct that I can effectively point my application to the RDS endpoint and spin up several EC2 instances with the same Django application fronted by an ELB? Would this take care of incoming traffic and the scalability of the django application?
This isn't exactly a coding question so I'm not sure if this is the best stackexchange site to ask this.
My two cents here:
I`ve been using lambda to serve Django and Flask apis for quite some time now, and it works great. You don't need to worry about scalability at all, unless there is a chance that your API would receive more than 10,000 requests per second (very unlikely on most scenarios). It will be way cheaper than EKS, even cheaper than EC2. I have a app with 400k active users which is served by an API running on lambda, I never paid more than $25 on invokations.
You can use Zappa (which is exclusively for python, I recommend) or Serverless framework, they will take care of most of the heavy work and make the deployment very easy.
But have in mind that lambda is not very good for long running tasks, like cronjobs. If you have have crons that might take some time to be executed your invokations can get a little expensive if you invoke it ofteen (lambdas can run up to 15 minutes, but those 15 minutes will be much more expensive than EC2). Also, the apigateway in front of the lambda function have a 30 seconds timeout, so your requests must be processed before that. If you think your requests will take longer, you will need to leverage some async requests. I think it is a very small price to have a full service without having to worry about the infrastructure.
You are right, but you can think not only about ec2 and EKS. You can also look into ECS and Fargate options. ELB distribute traffic across compute resources inside Target Group and it can be Autoscaling Group for EC2. Also, with RDS you can scale read replicas for handling mor read traffic independent from master node

What is best way to performance and load test AWS cloud applications

Want to keep this question generic and expected answer in terms of best practice/approach/guidelines,
We need to know the best way to performance test and load test AWS cloud based applications.
What we have tried:
We used Gatling and Jmeter to execute our performance tests. These frameworks are pretty useful to test our functionality and to benchmark our applications latency and request rate.
Problem:
Performance benchmarks and limits of AWS managed services like Lambda and DDB are already specified by AWS e.g. Lambda concurrency behavior and DDB autoscaling under load etc. AWS also provides high availability and guaranteed performance of managed services.
Is it really worth executing expensive performance test and load test jobs for AWS managed services?
How to ensure that we are testing our application and not actually testing AWS limits which are already known.
What is the best practice and approach to performance test cloud based applications.
Any suggestions will help tremendously.
Thanks,
It depends on how you can use the AWS infrastructure
If you don't use Auto Scaling you can treat the AWS cloud-based application as a "normal" application just deployed not on your company premises, but somewhere at Amazon
If you use Auto Scaling you might want to come up with a some form of scalability testing. AWS instances can scale up in order to adapt to the increased load but your application must be able to scale as well. So you can test:
how fast are scale-up and scale-down processes, i.e. if you rapidly increase the load do AWS/your application react fast enough or there will be performance drop
scalability factor. For example with 100 virtual users you have 50 requests per second. Ideally with 200 virtual users you should have 100 requests per second, with 300 virtual users - 150 requests per second. Response time should remain the same. But normally the situation differs from the "ideal" so it would be good to know this scalability factor.
Also if your application is behind the AWS ELB you will need to add DNS Cache Manager to your JMeter test plan otherwise you will be hitting only one backend instance while others will be idle.

AWS Container (ECS) vs AMI & Spot instances

The core of my question is whether or not there are downsides to using an Amazon Machine Image + Micro Spot instances to run a task, vs using the Elastic Container Service (ECS).
Here's my situation: I have the need to run a task on demand that is triggered by a remote web hook.
There is the possibility this task can get triggered 10 times in a row, or go weeks w/o ever executing, so I definitely want a service that only runs (and bills) on demand.
My plan is to point the webhook to a Lambda function, but then the question is what to have the Lambda function do.
Tho it doesn't take very long, this task requires several different runtimes (Powershell Core, Python, PHP, Git) to get its job done, so Lambda isn't really a possibility as I'd hit the deployment package size limit. But I can use Lambda to kick off the job.
What I started doing was creating an AMI that has all the necessary runtimes and code, then using a Spot request to launch an instance, have it execute the operation via a startup script passed in via userdata, then shut itself down when it's done. I'd have to put in some rate control logic to prevent two from running at once, but that's a solvable problem.
I hesitated half way through developing this solution when I realized I could probably do this with a docker container on ECS using Fargate.
I just don't know if there is any benefit of putting in the additional development time of switching to a docker container, when I am not a docker pro and already have the AMI configured. Plus ECS/Fargate is actually more expensive than just running a micro instance.
Are these any concerns about spinning up short-lived (<5min) spot requests (t3a-micro) where there could be a dozen fired off in a single day? Are there rate limits about this? Will I get an angry email from AWS telling me to knock it off? Are there other reasons ECS is the only right answer? Something else entirely?
Your solution using spot instance and AMI is a valid one, though I've experienced slow times to get a spot instance in the past. You also incur the AMI startup time.
As mentioned in the comments, you will incur a minimum of 1 hour charge for the instance, so you should leave your instance up for the hour before terminating, in case more requests can come in the same hour.
IMHO you should build it all with lambda. By splitting the workload for each runtime into its own lambda you can make it work.
AWS supports python, powershell runtimes, and you can create a custom PHP one. Chain them together with your glue of choice, SNS, SQS, direct invocation, or Step Functions, and you have the most cost effective solution. You also get the benefits of better and independent maintenance for each function/runtime.
Put the initial lambda behind API gateway and you will get rate limiting capabiltiy too.

EC2 Architecture design for Website

I have a site that I will be launching soon. Not entirely sure how heavy the traffic will get.
I am using Django+Nginx+Gunicorn+Mysql. There will be support for SSL/HTTPS.
As a starting point, I am thinking of having two micro instances balanced by Elastic Load Balancing.
The MySql database will be on one of the instances. If traffic gets heavy, I might move static files to a CDN. The micro instances serve as front-end servers responsible for only churning out HTML/JSON and serving static files. Static files are mainly CSS/js and several images (not many). I foresee database will be read-heavy and less writes.
Questions:
Assuming the traffic rises to 100k page views per day, will the 2 micro instances suffice?
Do I have to move the database to a separate instance? And what instance type would be good?
What if the traffic is only 1k page views per day?
How many gunicorn processes to run on a micro instance?
In general, what type of metrics will help me determine what kind and how many instances I would need? What is the methodology to decide what kind of architecture I would need?
Thanks a lot!
Completely dependant on how dynamic the site is planning to be. Do users generate content towards the service or is it mostly static? If the former you're going to get a lot from putting stuff like avatars, images etc. into S3 and putting that on Cloudfront. Same with your static files... keeping your servers stateless will allow you scale with ease.
At 100k page views a day you will definitely struggle with just micros... you really should only use those in a development environment and aren't meant to handle stuff like serving users. I'd use at a minimum a single small instance in-front of a Load Balancer, may sound strange but you will be able to throw in another instance when things get busy without having to mess with Route 53 or potentially having your site fail. The stateless stuff is quite important now as user-generated assets may only be reference able from one instance and not the other.
At 1k page views I'd still use a small for web serving and another small for MySQL. You can look into RDS which is great if you're doing this solo, forget about needing to upgrade versions and stuff like maintenance, backups etc.
You will also be able to one-click spin up read replicas for peak. Look into the Amazon CLI as well to help automate those tasks. Cronjobs will make it a cinch if you're time stressed otherwise Opsworks, Cloudformation and Auto-Scaling will all help with the above.
Oh and just as a comparison, an Application server of mine running Apache, PHP with APC to serve our users starts to struggle with about 80 concurrent users. Runs on a small EC2 Instance with a Small RDS (which sits at about 15% at the same time as the Application Server is going downhill)
Probably not. Micro instances are not designed for heavy production loads. They use a burstable CPU profile. They can run at 2 ECU for a couple of minutes, and then they get locked at 0.1-0.2 ECU. I tend to like c1.medium, but small may be enough for you.
Maybe, as long as they are spread out during the day and not all in a short window.
1-2 per core. Micro only has 1 core.
Every application is different. The best thing to do is run your own benchmarks using tools like ab (Apache Bench)
Following the AWS best practices architecture diagram is always a good start.
http://media.amazonwebservices.com/architecturecenter/AWS_ac_ra_web_01.pdf
I strongly advise you to store all your files on Amazon S3, and use a Route 53 DNS (or any other DNS if you want) in front of it to distribute the files, because later on if you decide to use CloudFront CDN it will be very easy to change. And, just to mention using CloudFront as CDN will increase your cost only a little bit, not a huge thing.
Doesn't matter the scenario, if we're talking a about production, you should definitely go for separate instances, at least 1 EC2 for web and 1 EC2/RDS for database.
If you are geek and like to get into the nitty gritty details, create your own infrastructure and feel free to use any automation tool (puppet, chef) or not. Or if you just want to collect the profit, or have scarce resources to take care of everything, you should try Elastic Beanstalk (http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Python_django.html)
Anyway, going to create your own infrastructure or choose elastic beanstalk, always execute stress tests to have a better overview of your capacity planning needs. After you choose your initial environment, stress it using apache bench, siege or whatever other tool you may like.
Hope this helps.
I would suggest to use small instances instead of micro as micro instances often stop responding on heavy load and then it requires a stop-start. Use s3 for static files which helps in faster loading and have a look over cloud front.
The region for instance also helps in serving requests and if you target any specific region, create the instance selecting that region.
Create the database in new instance and attach ebs volume to that instance. Automate backup script to copy database files and store in ebs to avoid any issues. The instance selected here can be iops for faster processing over standard. Aws services provide lot of flexibility but you need to have scripts running to scale up and down the servers as per the timings.
Spot instance can help in future as they come cheap in case you are scaling up.

need some guidance on usage of Amazon AWS

every once in a while i read/hear about AWS and now i tried reading the docs.
But such docs seem to be written for people who already know which AWS they need to use and only search for how it can be used.
So, for myself, to understand AWS better i try to sketch a hypothetical Webapplication with a few questions.
The apps purpose is to modify content like videos or images. So a user has some kind of webinterface where he can upload his files, do some settings and a server grabs the file and modifies it (e.g. reencoding). The Service also extracts the audio track of a video and trys to index the spoken words so the customer can search within his videos. (well its just hypothetical)
So my questions:
given my own domain 'oneofmydomains.com' is it possible to host the complete webinterface on AWS? i thought about using GWT to create the interface and just deliver the JS/images via AWS, but which one, simple storage? what about some kind of index.html, is there an EC2 instance needed to host a webserver which has to run 24/7 causing costs?
now the user has the interface with a login form, is it possible to manage logins with an AWS? here i also think about an EC2 instance hosting a database, but it would also cause costs and im not sure if there is a better way?
the user has logged in and uploads a file. which storage solution could be used to save the customers original and modified content?
now the user wants to browse the status of his uploads, this means i need some kind of ACL, so that the customer only sees his own files. do i need to use a database (e.g. EC2) for this, or does amazon provide some kind of ACL, so the GWT webinterface will be secure without any EC2?
the customers files are reencoded and the audio track is indexed. so he wants to search for a video. Which service could be used to create and maintain the index for each customer?
hope someone can give a few answers so i understand AWS better on how one could use it
thx!
Amazon AWS offers a whole ecosystem of services which should cover all aspects of a given architecture, from hosting to data storage, or messaging, etc. Whether they're the best fit for purpose will have to be decided on a case by case basis. Seeing as your question is quite broad I'll just cover some of the basics of what AWS has to offer and what the different types of services are for:
EC2 (Elastic Cloud Computing)
Amazon's cloud solution, which is basically the same as older virtual machine technology but the 'cloud' offers additional knots and bots such as automated provisioning, scaling, billing etc.
you pay for what your use (by hour), for the basic (single CPU, 1.7GB ram) would prob cost you just under $3 a day if you run it 24/7 (on a windows instance that is)
there's a number of different OS to choose from including linux and windows, linux instances are cheaper to run without the license cost associated with windows
once you're set up the server to be the way you want, including any server updates/patches, you can create your own AMI (Amazon machine image) which you can then use to bring up another identical instance
however, if all your html are baked into the image it'll make updates difficult, so normal approach is to include a service (windows service for instance) which will pull the latest deployment package from a storage (see S3 later) service and update the site at start up and at intervals
there's the Elastic Load Balancer (which has its own cost but only one is needed in most cases) which you can put in front of all your web servers
there's also the Cloud Watch (again, extra cost) service which you can enable on a per instance basis to help you monitor the CPU, network in/out, etc. of your running instance
you can set up AutoScalers which can automatically bring up or terminate instances based on some metric, e.g. terminate 1 instance at a time if average CPU utilization is less than 50% for 5 mins, bring up 1 instance at a time if average CPU goes beyond 70% for 5 mins
you can use the instances as web servers, use them to run a DB, or a Memcache cluster, etc. choice is yours
typically, I wouldn't recommend having Amazon instances talk to a DB outside of Amazon because of the round trip is much longer, the usual approach is to use SimpleDB (see below) as the database
the AmazonSDK contains enough classes to help you write some custom monitor/scaling service if you ever need to, but the AWS console allows you to do most of your configuration anyway
SimpleDB
Amazon's non-relational, key-value data store, compared to a traditional database you tend to pay a penalty on per query performance but get high scalability without having to do any extra work.
you pay for usage, i.e. how much work it takes to execute your query
extremely scalable by default, Amazon scales up SimpleDB instances based on traffic without you having to do anything, AND any control for that matter
data are partitioned in to 'domains' (equivalent to a table in normal SQL DB)
data are non-relational, if you need a relational model then check out Amazon RDB, I don't have any experience with it so not the best person to comment on it..
you can execute SQL like query against the database still, usually through some plugin or tool, Amazon doesn't provide a front end for this at the moment
be aware of 'eventual consistency', data are duplicated on multiple instances after Amazon scales up your database, and synchronization is not guaranteed when you do an update so it's possible (though highly unlikely) to update some data then read it back straight away and get the old data back
there's 'Consistent Read' and 'Conditional Update' mechanisms available to guard against the eventual consistency problem, if you're developing in .Net, I suggest using SimpleSavant client to talk to SimpleDB
S3 (Simple Storage Service)
Amazon's storage service, again, extremely scalable, and safe too - when you save a file on S3 it's replicated across multiple nodes so you get some DR ability straight away.
you only pay for data transfer
files are stored against a key
you create 'buckets' to hold your files, and each bucket has a unique url (unique across all of Amazon, and therefore S3 accounts)
CloudBerry S3 Explorer is the best UI client I've used in Windows
using the AmazonSDK you can write your own repository layer which utilizes S3
Sorry if this is a bit long winded, but that's the 3 most popular web services that Amazon provides and should cover all the requirements you've mentioned. We've been using Amazon AWS for some time now and there's still some kinks and bugs there but it's generally moving forward and pretty stable.
One downside to using something like aws is being vendor locked-in, whilst you could run your services outside of amazon and in your own datacenter or moving files out of S3 (at a cost though), getting out of SimpleDB will likely to represent the bulk of the work during migration.