How to decode using lame (mp3->wav) in c++ - c++

Thank you so much for answering this question.
I use lame and I want to decode mp3 file to wav.
I succeeded in decoding mp3 files into wav files through several searches.
However, the size of the wav file is created too large and an error message appears.
Media player error message :
This file cannot be played. The file format may not be supported, the file extension may be incorrect, or the file may be corrupted.
If you know my problem, please give me some advice.
Thank you
HEADER FILE
#pragma once
#ifndef _LAME_HELPER_H_
#define _LAME_HELPER_H_
#include <windows.h>
#include "lame.h"
#define LH_STARTED WM_USER+1
#define LH_COMPUTED WM_USER+2
#define LH_DONE WM_USER+3
#define LH_ERROR WM_USER+4
#define MAX_THREAD_COUNT 5
enum encode_mode_e
{
EM_ABR,
EM_CBR,
EM_VBR
};
enum encode_channel_e
{
EC_MONO,
EC_STEREO
};
enum bitrate_e
{
BR_8kbps = 8,
BR_16kbps = 16,
BR_24kbps = 24,
BR_32kbps = 32,
BR_40kbps = 40,
BR_48kbps = 48,
BR_56kbps = 56,
BR_64kbps = 64,
BR_80kbps = 80,
BR_96kbps = 96,
BR_112kbps = 112,
BR_128kbps = 128,
BR_144kbps = 144,
BR_160kbps = 160,
BR_192kbps = 192,
BR_224kbps = 224,
BR_256kbps = 256,
BR_320kbps = 320
};
enum samplerate_e
{
SR_8khz = 8000,
SR_11khz = 11025,
SR_12khz = 12000,
SR_16khz = 16000,
SR_22khz = 22050,
SR_24khz = 24000,
SR_32khz = 32000,
SR_44khz = 44100,
SR_48khz = 48000
};
struct settings_t
{
char* title;
char* artist;
char* album;
char* comment;
char* year;
char* track;
char* genre;
char* albumart;
encode_channel_e channels;
bitrate_e abr_bitrate;
bitrate_e cbr_bitrate;
int quality;
encode_mode_e enc_mode;
samplerate_e resample_frequency;
samplerate_e in_samplerate;
//The constructor; used to set default values
settings_t();
};
class CLameHelper; //lameHelper prototype, needed because of struct StaticParam_t
//Use to hold parameters for the thread function
struct StaticParam_t
{
char* pcm;
char* mp3;
settings_t settings;
WNDPROC callback_proc;
CLameHelper* lhObj;
};
class CLameHelper
{
public :
static const int PCM_SIZE = 4096;
static const int MP3_SIZE = 4096;
HANDLE m_hThread[MAX_THREAD_COUNT];
StaticParam_t* m_phSParam[MAX_THREAD_COUNT];
static int Decode_s(void* pParam);
void WriteWaveHeader(FILE* const, int, int, int, int);
void Write32BitLowHigh(FILE*, int);
void Write16BitLowHigh(FILE*, int);
int SetID3AlbumArt(lame_t gfp, char const* szFileName);
void errorHandler(char*);
char errMsg[1000];
public:
CLameHelper();
~CLameHelper();
int Decode(char* szMp3_in, char* szPcm_out);
int Decode(char* szMp3_in, char* szPcm_out, WNDPROC callback_proc);
};
#endif
CPP FILE
#include "stdafx.h"
#include "LameHelper.h"
settings_t::settings_t()
{
//Setting the default values
title = "";
artist = "";
album = "";
comment = "";
year = "";
track = "";
genre = "";
albumart = NULL;
channels = EC_STEREO;
abr_bitrate = BR_128kbps;
cbr_bitrate = BR_128kbps;
quality = 5;
enc_mode = EM_CBR;
resample_frequency = SR_44khz;
in_samplerate = SR_44khz;
}
CLameHelper::CLameHelper()
{
//Initialize to NULL, aids deletion/closing later
for(int i = 0; i < MAX_THREAD_COUNT; i++)
{
m_hThread[i] = NULL;
m_phSParam[i] = NULL;
}
}
CLameHelper::~CLameHelper()
{
//Destroy all declared objects
for(int i = 0; i < MAX_THREAD_COUNT; i++)
{
if(m_hThread[i] != NULL)
CloseHandle(m_hThread[i]);
if(m_phSParam[i] != NULL)
delete m_phSParam[i];
}
}
int CLameHelper::SetID3AlbumArt(lame_t gfp, char const* szFileName)
{
int iResult = -1;
FILE *pFileName = 0;
char *szAlbumart = 0;
if(szFileName == NULL)
{
return 0;
}
pFileName = fopen(szFileName, "rb");
if(!pFileName)
{
iResult = 1;
}
else
{
size_t size;
fseek(pFileName, 0, SEEK_END);
size = ftell(pFileName);
fseek(pFileName, 0, SEEK_SET);
szAlbumart = (char*)malloc(size);
if(!szAlbumart)
{
iResult = 2;
}
else
{
if(fread(szAlbumart, 1, size, pFileName) != size)
{
iResult = 3;
}
else
{
iResult = (gfp, szAlbumart, size) ? 4 : 0;
}
free(szAlbumart);
}
fclose(pFileName);
}
switch(iResult)
{
case 1:
sprintf(errMsg, "WARNING: could not find file '%s' for szAlbumart.\n", szFileName);
errorHandler(errMsg);
break;
case 2:
errorHandler("WARNING: insufficient memory for reading the szAlbumart.\n");
break;
case 3:
sprintf(errMsg, "WARNING: read error in '%s' for szAlbumart.\n", szFileName);
errorHandler(errMsg);
break;
case 4:
sprintf(errMsg, "WARNING: unsupported image: '%s' for szAlbumart. Specify JPEG/PNG/GIF image\n", szFileName);
errorHandler(errMsg);
break;
default:
break;
}
return iResult;
}
void CLameHelper::Write16BitLowHigh(FILE * fp, int val)
{
unsigned char bytes[2];
bytes[0] = (val & 0xff);
bytes[1] = ((val >> 8) & 0xff);
fwrite(bytes, 1, 2, fp);
}
void CLameHelper::Write32BitLowHigh(FILE * fp, int val)
{
unsigned char bytes[4];
bytes[0] = (val & 0xff);
bytes[1] = ((val >> 8) & 0xff);
bytes[2] = ((val >> 16) & 0xff);
bytes[3] = ((val >> 24) & 0xff);
fwrite(bytes, 1, 4, fp);
}
void CLameHelper::WriteWaveHeader(FILE * const fp, int pcmbytes, int freq, int channels, int bits)
{
int bytes = (bits + 7) / 8;
/* quick and dirty, but documented */
fwrite("RIFF", 1, 4, fp); /* label */
Write32BitLowHigh(fp, pcmbytes + 44 - 8); /* length in bytes without header */
fwrite("WAVEfmt ", 2, 4, fp); /* 2 labels */
Write32BitLowHigh(fp, 2 + 2 + 4 + 4 + 2 + 2); /* length of PCM format declaration area */
Write16BitLowHigh(fp, 1); /* is PCM? */
Write16BitLowHigh(fp, channels); /* number of channels */
Write32BitLowHigh(fp, freq); /* sample frequency in [Hz] */
Write32BitLowHigh(fp, freq * channels * bytes); /* bytes per second */
Write16BitLowHigh(fp, channels * bytes); /* bytes per sample time */
Write16BitLowHigh(fp, bits); /* bits per sample */
fwrite("data", 1, 4, fp); /* label */
Write32BitLowHigh(fp, pcmbytes); /* length in bytes of raw PCM data */
}
int CLameHelper::Decode(char* szMp3_in, char* szPcm_out)
{
return Decode(szMp3_in, szPcm_out, NULL);
}
//the static function used for the thread
int CLameHelper::Decode_s(void* param)
{
StaticParam_t* sp = (StaticParam_t*)param;
char* szPcm_out = sp->pcm;
char* szMp3_in = sp->mp3;
WNDPROC callback_proc = sp->callback_proc;
CLameHelper* lh = (CLameHelper*)sp->lhObj;
return lh->Decode(szMp3_in, szPcm_out, callback_proc);
}
int CLameHelper::Decode(char* szMp3_in, char* szPcm_out, WNDPROC callback_proc)
{
int read, i, samples;
long wavsize = 0; // use to count the number of mp3 byte read, this is used to write the length of the wave file
long cumulative_read = 0;
short int pcm_l[PCM_SIZE], pcm_r[PCM_SIZE];
unsigned char mp3_buffer[MP3_SIZE];
FILE* mp3 = fopen(szMp3_in, "rb");
if(mp3 == NULL)
{
if(callback_proc != NULL)
{
callback_proc((HWND)GetModuleHandle(NULL), LH_ERROR, -1, NULL);
}
sprintf(errMsg, "FATAL ERROR: file '%s' can't be open for read. Aborting!\n", szMp3_in);
errorHandler(errMsg);
return -1;
}
fseek(mp3, 0, SEEK_END);
long MP3_total_size = ftell(mp3);
fseek(mp3, 0, SEEK_SET);
FILE* pcm = fopen(szPcm_out, "wb");
if(pcm == NULL)
{
if(callback_proc != NULL)
{
callback_proc((HWND)GetModuleHandle(NULL), LH_ERROR, -1, NULL);
}
sprintf(errMsg, "FATAL ERROR: file '%s' can't be open for write. Aborting!\n", szPcm_out);
errorHandler(errMsg);
return -1;
}
lame_t lame = lame_init();
lame_set_decode_only(lame, 1);
if(lame_init_params(lame) == -1)
{
if(callback_proc != NULL)
{
callback_proc((HWND)GetModuleHandle(NULL), LH_ERROR, -2, NULL);
}
sprintf(errMsg, "FATAL ERROR: parameters failed to initialize properly in lame. Aborting!\n", szPcm_out);
errorHandler(errMsg);
return -2;
}
hip_t hip = hip_decode_init();
mp3data_struct mp3data;
memset(&mp3data, 0, sizeof(mp3data));
int nChannels = -1;
int nSampleRate = -1;
int mp3_len;
if(callback_proc != NULL)
{
callback_proc((HWND)GetModuleHandle(NULL), LH_STARTED, NULL, NULL);
}
while((read = fread(mp3_buffer, sizeof(char), MP3_SIZE, mp3)) > 0)
{
mp3_len = read;
cumulative_read += read * sizeof(char);
do
{
samples = hip_decode1_headers(hip, mp3_buffer, mp3_len, pcm_l, pcm_r, &mp3data);
wavsize += samples;
if(mp3data.header_parsed == 1)//header is gotten
{
if(nChannels < 0)//reading for the first time
{
//Write the header
WriteWaveHeader(pcm, 0x7FFFFFFF, mp3data.samplerate, mp3data.stereo, 16); //unknown size, so write maximum 32 bit signed value
}
nChannels = mp3data.stereo;
nSampleRate = mp3data.samplerate;
}
if(samples > 0 && mp3data.header_parsed != 1)
{
errorHandler("WARNING: lame decode error occured!");
break;
}
if(samples > 0)
{
for(i = 0 ; i < samples; i++)
{
fwrite((char*)&pcm_l[i], sizeof(char), sizeof(pcm_l[i]), pcm);
if(nChannels == 2)
{
fwrite((char*)&pcm_r[i], sizeof(char), sizeof(pcm_r[i]), pcm);
}
}
}
mp3_len = 0;
if(callback_proc != NULL)
{
int percentage = ((float)cumulative_read/MP3_total_size)*100;
callback_proc((HWND)GetModuleHandle(NULL), LH_COMPUTED, percentage, NULL);
}
}while(samples>0);
}
i = (16 / 8) * mp3data.stereo;
if (wavsize <= 0)
{
wavsize = 0;
}
else if (wavsize > 0xFFFFFFD0 / i)
{
wavsize = 0xFFFFFFD0;
}
else
{
wavsize *= i;
}
if(!fseek(pcm, 0l, SEEK_SET))//seek back and adjust length
WriteWaveHeader(pcm, (int) wavsize, mp3data.samplerate, mp3data.stereo, 16);
else
errorHandler("WARNING: can't seek back to adjust length in wave header!");
hip_decode_exit(hip);
lame_close(lame);
fclose(mp3);
fclose(pcm);
if(callback_proc != NULL)
{
callback_proc((HWND)GetModuleHandle(NULL), LH_DONE, NULL, NULL);
}
return 0;
}
void CLameHelper::errorHandler(char* msg)
{
printf("%s\n", msg);
}

Related

How to read sei unregistered user data from ffmpeg in H264?

First, I set the user_data to video by bsf. For example,
ffmpeg -i dump.flv -c:v copy -bsf:v h264_metadata=sei_user_data='086f3693-b7b3-4f2c-9653-21492feee5b8+hello' dump_sei.flv
Ant then I use the api to read sei unregistered_user_data by ffmpeg after h264 encode, but I didn't get it.
// avcodec_send_packet
// avcodec_receive_frame
// ...
H264Context *h = m_pVidDecodeCtx->priv_data;
H264SEIContext sei = h->sei;
H264SEIUnregistered unregistered = sei.unregistered;
if (unregistered.buf_ref != NULL)
{
AVBufferRef *buf = *(unregistered.buf_ref);
if (buf != NULL && buf->buffer != NULL)
{
printf("sei data: %s\n", buf->buffer);
}
}
The version of ffmpeg is v4.4.
A great treasure where you can find your answers to all your questions about SEI is h264_sei.c file . (that exist in libavcodec folder)
static int decode_registered_user_data_afd(H264SEIAFD *h, GetBitContext *gb, int size)
{
int flag;
if (size-- < 1)
return AVERROR_INVALIDDATA;
skip_bits(gb, 1); // 0
flag = get_bits(gb, 1); // active_format_flag
skip_bits(gb, 6); // reserved
if (flag) {
if (size-- < 1)
return AVERROR_INVALIDDATA;
skip_bits(gb, 4); // reserved
h->active_format_description = get_bits(gb, 4);
h->present = 1;
}
return 0;
}
static int decode_registered_user_data_closed_caption(H264SEIA53Caption *h,
GetBitContext *gb, void *logctx,
int size)
{
if (size < 3)
return AVERROR(EINVAL);
return ff_parse_a53_cc(&h->buf_ref, gb->buffer + get_bits_count(gb) / 8, size);
}
static int decode_registered_user_data(H264SEIContext *h, GetBitContext *gb,
void *logctx, int size)
{
int country_code, provider_code;
if (size < 3)
return AVERROR_INVALIDDATA;
size -= 3;
country_code = get_bits(gb, 8); // itu_t_t35_country_code
if (country_code == 0xFF) {
if (size < 1)
return AVERROR_INVALIDDATA;
skip_bits(gb, 8); // itu_t_t35_country_code_extension_byte
size--;
}
if (country_code != 0xB5) { // usa_country_code
av_log(logctx, AV_LOG_VERBOSE,
"Unsupported User Data Registered ITU-T T35 SEI message (country_code = %d)\n",
country_code);
return 0;
}
/* itu_t_t35_payload_byte follows */
provider_code = get_bits(gb, 16);
switch (provider_code) {
case 0x31: { // atsc_provider_code
uint32_t user_identifier;
if (size < 4)
return AVERROR_INVALIDDATA;
size -= 4;
user_identifier = get_bits_long(gb, 32);
switch (user_identifier) {
case MKBETAG('D', 'T', 'G', '1'): // afd_data
return decode_registered_user_data_afd(&h->afd, gb, size);
case MKBETAG('G', 'A', '9', '4'): // closed captions
return decode_registered_user_data_closed_caption(&h->a53_caption, gb,
logctx, size);
default:
av_log(logctx, AV_LOG_VERBOSE,
"Unsupported User Data Registered ITU-T T35 SEI message (atsc user_identifier = 0x%04x)\n",
user_identifier);
break;
}
break;
}
default:
av_log(logctx, AV_LOG_VERBOSE,
"Unsupported User Data Registered ITU-T T35 SEI message (provider_code = %d)\n",
provider_code);
break;
}
return 0;
}
static int decode_unregistered_user_data(H264SEIUnregistered *h, GetBitContext *gb,
void *logctx, int size)
{
uint8_t *user_data;
int e, build, i;
AVBufferRef *buf_ref, **tmp;
if (size < 16 || size >= INT_MAX - 1)
return AVERROR_INVALIDDATA;
tmp = av_realloc_array(h->buf_ref, h->nb_buf_ref + 1, sizeof(*h->buf_ref));
if (!tmp)
return AVERROR(ENOMEM);
h->buf_ref = tmp;
buf_ref = av_buffer_alloc(size + 1);
if (!buf_ref)
return AVERROR(ENOMEM);
user_data = buf_ref->data;
for (i = 0; i < size; i++)
user_data[i] = get_bits(gb, 8);
user_data[i] = 0;
buf_ref->size = size;
h->buf_ref[h->nb_buf_ref++] = buf_ref;
e = sscanf(user_data + 16, "x264 - core %d", &build);
if (e == 1 && build > 0)
h->x264_build = build;
if (e == 1 && build == 1 && !strncmp(user_data+16, "x264 - core 0000", 16))
h->x264_build = 67;
return 0;
}

Debug Error - abort() has been called (gcz2tga)

Complete C++/C newbie here. I recompiled gcz2tga (I did not make this code, just found it on the webs) into a debug .exe file using Visual Studio 2019. Everything works well until it gets to "split_images" and then the program spits out this error:
Debug Error!
Program: C:\Users\Harrison\source\repos\gcz2tga\Debug\gcz2tga.exe
abort() has been called
(Press Retry to debug the application)
When I hit Retry, the program closes. The code is set up like this:
/* gcz2tga.c: Slice up a directory full of GCZ (texture) files into TGA files.
*
* Credit goes to afwefwe for reverse-engineering the texture format
* and LZSS compression */
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
/* Assuming x86, usual endian crap is not accounted for */
typedef unsigned char u8_t;
typedef unsigned short u16_t;
typedef unsigned int u32_t;
struct image
{
unsigned int width, height;
u8_t *planes;
};
struct clip
{
short x, y, w, h;
};
static u16_t swab16(u16_t in)
{
/* GC headers are big-endian */
return ((in & 0xFF) << 8) | (in >> 8);
}
static void unpack_gc(struct image *out, u8_t *in, size_t out_sz)
{
unsigned int npixels;
unsigned int i;
unsigned int j;
u16_t *pixels;
u16_t *pheight;
u16_t *pwidth;
u16_t *pmagic;
u16_t pixel;
pmagic = (u16_t *) in;
pheight = (u16_t *) (in + 14);
pwidth = (u16_t *) (in + 12);
if (*pmagic != 0x4347) {
fprintf(stderr, "(FAIL: Invalid header)\n");
exit(EXIT_FAILURE);
}
/* Set up output image struct */
in += 24;
out->width = swab16(*pwidth);
out->height = swab16(*pheight);
out->planes = malloc(out->width * out->height * 4);
/* Clamp W/H (don't know why this is necessary but it is) */
out->width = out->width > 1024 ? 1024 : out->width;
out->height = out->height > 1024 ? 1024 : out->height;
fprintf(stderr, "(%dx%d)", out->width, out->height);
/* Unpack pixels */
pixels = (u16_t *) in;
npixels = out->width * out->height;
if (out_sz > npixels * 4) {
/* Deep image (i.e. 32-bit) */
memcpy(out->planes, pixels, npixels * 4);
} else {
/* Shallow image (i.e. 16-bit) */
for (i = 0, j = 0 ; i < npixels ; i++) {
pixel = pixels[i];
out->planes[j++] = ((pixel ) & 0x1F) << 3; /* B */
out->planes[j++] = ((pixel >> 5) & 0x1F) << 3; /* G */
out->planes[j++] = ((pixel >> 10) ) << 3; /* R */
out->planes[j++] = pixel & 0x8000 ? 0xFF : 0x00; /* A */
}
}
}
static u8_t *expand_lzss(u8_t *lzss, size_t *pout_sz)
{
static u8_t ring[0x1000];
unsigned int ring_pos = 0x0FEE;
unsigned int chunk_offset;
unsigned int chunk_length;
u32_t control_word = 1;
size_t length;
u8_t cmd1;
u8_t cmd2;
u8_t *out;
u8_t *pos;
u8_t *in;
/* Header = 32 bit unpacked file length */
length = *((u32_t *) lzss);
*pout_sz = length;
if (length > 8000000) {
fprintf(stderr, "(FAIL: Unreasonably large expanded size %d)\n",
length);
exit(EXIT_FAILURE);
}
out = malloc(length * 2); /* Seems to overrun */
pos = out;
in = lzss + 4;
while (length > 0) {
if (control_word == 1) {
/* Read a control byte */
control_word = 0x100 | *in++;
}
/* Decode a byte according to the current control byte bit */
if (control_word & 1) {
/* Straight copy */
*pos++ = *in;
ring[ring_pos] = *in++;
ring_pos = (ring_pos + 1) % 0x1000;
length--;
} else {
/* Reference to data in ring buffer */
cmd1 = *in++;
cmd2 = *in++;
chunk_length = (cmd2 & 0x0F) + 3;
chunk_offset = ((cmd2 & 0xF0) << 4) | cmd1;
for ( ; chunk_length > 0 ; chunk_length--) {
/* Copy historical data to output AND current ring pos */
*pos++ = ring[chunk_offset];
ring[ring_pos] = ring[chunk_offset];
/* Update counters */
chunk_offset = (chunk_offset + 1) % 0x1000;
ring_pos = (ring_pos + 1) % 0x1000;
length--;
}
}
/* Get next control bit */
control_word >>= 1;
}
return out;
}
static void readfile(const char *filename, u8_t **data, long *nbytes)
{
FILE *f;
f = fopen(filename, "rb");
if (f == NULL) abort();
fseek(f, 0, SEEK_END);
*nbytes = ftell(f);
fseek(f, 0, SEEK_SET);
*data = malloc(*nbytes);
fread(*data, *nbytes, 1, f);
fclose(f);
}
void put8(FILE *f, unsigned char val)
{
fwrite(&val, 1, 1, f);
}
void put16(FILE *f, unsigned short val)
{
fwrite(&val, 2, 1, f);
}
void split_images(const char *in_dir, const char *out_dir,
struct image *images, int nimages)
{
struct clip *clips;
char filename[512];
long nbytes;
u8_t *data;
char *name;
FILE *f;
int i;
int j;
int k;
/* Read file and get TOC */
sprintf(filename, "%s/system.idx", in_dir);
readfile(filename, &data, &nbytes);
clips = (struct clip *) (data + 0x01BC);
name = (char *) (data + 8 + *((long *) data));
/* Guess how many clips there are with a heuristic */
for (i = 0 ; clips[i].w != 0 && clips[i].h != 0 ; i++) {
sprintf(filename, "%s/%s.tga", out_dir, name);
name += strlen(name) + 3;
f = fopen(filename, "wb");
if (f == NULL) abort();
/* Locate the correct source image */
j = 0;
while (clips[i].y > images[j].height) {
clips[i].y -= images[j].height;
j++;
}
/* Write header */
put8(f, 0); put8(f, 0); put8(f, 2);
put16(f, 0); put16(f, 0); put8(f, 0);
put16(f, 0); put16(f, 0); put16(f, clips[i].w); put16(f, clips[i].h);
put8(f, 32); put8(f, 32);
/* Write scanlines */
for (k = 0 ; k < clips[i].h ; k++) {
if (clips[i].y == images[j].height) {
clips[i].y = 0;
j++;
}
fwrite(images[j].planes + ((images[j].width * clips[i].y) +
clips[i].x) * 4, clips[i].w, 4, f);
clips[i].y++;
}
/* Close output file */
fclose(f);
}
/* Cleanup */
free(data);
}
int main(int argc, char **argv)
{
char *in_dir;
char *out_dir;
struct image images[32];
char filename[256];
unsigned int i;
long filesize;
u8_t *lzss, *gc;
size_t out_sz;
FILE *f;
/* Usage */
if (argc != 3) {
fprintf(stderr, "Usage: %s [indir] [outdir]\n", argv[0]);
return EXIT_FAILURE;
}
/* Setup */
memset(images, 0, sizeof(images));
in_dir = argv[1];
out_dir = argv[2];
for (i = 0 ; i < 32 ; i++) {
/* Open 0.gcz, 1.gcz etc ... */
sprintf(filename, "%s/%d.gcz", in_dir, i);
f = fopen(filename, "rb");
if (f == NULL) break;
/* Read entire file */
fseek(f, 0, SEEK_END);
filesize = ftell(f);
fseek(f, 0, SEEK_SET);
fprintf(stderr, "%s: fread", filename);
lzss = malloc(filesize);
fread(lzss, filesize, 1, f);
fclose(f);
/* Decompress */
fprintf(stderr, "(OK) expand_lzss");
gc = expand_lzss(lzss, &out_sz);
free(lzss);
/* Unpack GC to 32-bit RGBA */
fprintf(stderr, "(OK) unpack_gc");
unpack_gc(&images[i], gc, out_sz);
free(gc);
fprintf(stderr, "(OK)\n");
}
/* Sanity check */
if (i == 0) {
fprintf(stderr, "No GCZ files found\n");
exit(EXIT_FAILURE);
}
/* Emit pile of TGAs */
fprintf(stderr, "split_images");
split_images(in_dir, out_dir, images, i);
fprintf(stderr, "(OK)\n\n");
return 0;
}
What is wrong with the code that could be causing this? The code is unaltered save for #define _CRT_SECURE_NO_WARNINGS being added to the code before the #include headers and having the program compiled as C.

how to fill the "data field" of wavfile

Hi i am trying to record from a board and i have successfully record 4 seconds. Problem is when i try to record for more time, i got an error telling me that there not enough memory. my target is to record a 5 minutes file. Until now i have create a buffer named snIn[256] where are the samples. i send it to a big buffer of [16K * 4sec] and when it is full, i create the wav file.
#include "SAI_InOut.hpp"
#include "F746_GUI.hpp"
#include "Delay.hpp"
#include "WaveformDisplay.hpp"
#include "SDFileSystem.h"
#include "wavfile.h"
using namespace Mikami;
#define RES_STR_SIZE 0x20
#define WAVFILE_SAMPLES_PER_SECOND 16000
#define REC_TIME 4
//Create an SDFileSystem object
SDFileSystem sd("sd");
bool flag = 1;
int count = 0;
char *res_buf;
int rp = 0;
const int NUM_SAMPLES = WAVFILE_SAMPLES_PER_SECOND * REC_TIME;
Array<int16_t> my_buffer(NUM_SAMPLES);
int j = 0;
static const char *target_filename = "/sd/rectest.wav";
const int SEG_SIZE = 256;
int sent_array = 0;
int rec(const char *filename, Array<int16_t> my_buffer)
{
j = 0;
flag = 0;
sent_array = 0;
WavFileResult result;
wavfile_info_t info;
wavfile_data_t data;
WAVFILE_INFO_AUDIO_FORMAT(&info) = 1;
WAVFILE_INFO_NUM_CHANNELS(&info) = 1;
WAVFILE_INFO_SAMPLE_RATE(&info) = WAVFILE_SAMPLES_PER_SECOND;
WAVFILE_INFO_BITS_PER_SAMPLE(&info) = 16;
WAVFILE_INFO_BYTE_RATE(&info) = WAVFILE_INFO_NUM_CHANNELS(&info) * WAVFILE_INFO_SAMPLE_RATE(&info) * (WAVFILE_INFO_BITS_PER_SAMPLE(&info) / 8);
WAVFILE_INFO_BLOCK_ALIGN(&info) = 2;
WAVFILE *wf = wavfile_open(filename, WavFileModeWrite, &result);
if (result != WavFileResultOK) {
wavfile_result_string(result, res_buf, RES_STR_SIZE);
printf("%s", res_buf);
return result;
} else printf ("Open file success \r\n");
rp = 0;
WAVFILE_DATA_NUM_CHANNELS(&data) = 1;
result = wavfile_write_info(wf, &info);
if (result != WavFileResultOK) {
wavfile_result_string(result, res_buf, RES_STR_SIZE);
printf("%s", res_buf);
return result; } else printf ("Write info success \r\n");
while ( rp < NUM_SAMPLES ) {
WAVFILE_DATA_CHANNEL_DATA(&data, 0) = my_buffer[rp];
result = wavfile_write_data(wf, &data);
rp += 1;
}
if (result != WavFileResultOK) {
wavfile_result_string(result, res_buf, RES_STR_SIZE);
printf("%s", res_buf);
return result; } else printf ("Write Data file success \r\n");
result = wavfile_close(wf);
if (result != WavFileResultOK) {
wavfile_result_string(result, res_buf , RES_STR_SIZE);
printf("%s", res_buf);
return result; } else printf ("Close file success \r\n");
//UnMount the filesystem
sd.unmount();
printf("Success rec !\r\n");
return 0;
}
int main()
{
//Mount the filesystem
sd.mount();
const float MAX_DELAY = 0.5f; // 最大遅延,単位:秒
const int FS = I2S_AUDIOFREQ_16K; // 標本化周波数: 16 kHz
const uint32_t MAX_ARRAY_SIZE = (uint32_t)(MAX_DELAY*FS);
SaiIO mySai(SaiIO::BOTH, 256, FS, INPUT_DEVICE_DIGITAL_MICROPHONE_2);
Label myLabel(185, 10, "Delay System", Label::CENTER, Font16);
// ButtonGroup: "ON", "OFF"
const uint16_t BG_LEFT = 370;
const uint16_t BG_WIDTH = 100;
const uint16_t BG_HEIGHT = 45;
ButtonGroup onOff(BG_LEFT, 40, BG_WIDTH/2, BG_HEIGHT,
2, (string[]){"ON", "OFF"}, 0, 0, 2, 1);
const uint16_t SB_LEFT = BG_LEFT - 320;
const uint16_t SB_WIDTH = 270;
const uint16_t SB_Y0 = 240;
char str[20];
sprintf(str, " %3.1f [s]", MAX_DELAY);
SeekBar barDelay(SB_LEFT, SB_Y0, SB_WIDTH,
0, MAX_ARRAY_SIZE, 0, "0", "", str);
NumericLabel<float> labelDelay(SB_LEFT+SB_WIDTH/2, SB_Y0-40, "DELEY: %4.2f", 0, Label::CENTER);
DelaySystem delaySystem(MAX_ARRAY_SIZE);
WaveformDisplay displayIn(*GuiBase::GetLcdPtr(), SB_LEFT+7, 70, 256, 9,LCD_COLOR_WHITE, LCD_COLOR_CYAN,GuiBase::ENUM_BACK);
Label inLabel(SB_LEFT-30, 65, "IN");
WaveformDisplay displayOut(*GuiBase::GetLcdPtr(), SB_LEFT+7, 130, 256, 9,LCD_COLOR_WHITE, LCD_COLOR_CYAN,GuiBase::ENUM_BACK);
Label outLabel(SB_LEFT-30, 125, "OUT");
int runStop = 1;
Array<int16_t> snIn(mySai.GetLength());
Array<int16_t> snOut(mySai.GetLength());
mySai.RecordIn();
mySai.PlayOut();
mySai.PauseOut();
while (true)
{
// On/OFF
int num;
if (onOff.GetTouchedNumber(num))
if (runStop != num)
{
if (num == 0) mySai.ResumeOut();
else mySai.PauseOut();
runStop = num;
}
if (mySai.IsCompleted())
{
for (int n=0; n<mySai.GetLength() ; n++)
{
int16_t xL, xR;
mySai.Input(xL,xR);
int16_t xn = xL + xR;
snIn[n] = xn;
my_buffer[j] = xn;
j++;
if (j == NUM_SAMPLES && flag == 1) {
rec (target_filename , my_buffer); }
int16_t yn = delaySystem.Execute(xn);
mySai.Output(yn, yn);
snOut[n] = yn;
}
mySai.Reset();
displayIn.Execute(snIn);
}
}
}
I thought about a possible solution, to fill directly the "data field" of the wavefile with the snIn[256] buffer (instead of using my_buffer) again and again and at the end close the wavfile. Please let me know what you think about that and other solutions
things to note: 1) while a write operation is being performed, more data is still coming in.
At the very least I would double buffer that data, so can be writing one buffer while the other one fills.
Usually this means using an interrupt to collect the samples (into which ever buffer is currently being filed.)
the foreground program waits for the current buffer to be 'full', then initiates write operation.,
then waits again for a buffer to be 'full'
The interrupt function tracks which buffer is being filled and the current index into that buffer. When a buffer is full, set a 'global' status to let the foreground program know which buffer is ready to be written.
The foreground program writes the buffer, then resets the status for that buffer.

How to use LZMA SDK in C++?

i have difficulties in using LZMA SDK in my application.
I would like to create a kind of single file compression tool. I dont need any directory support, just need only the LZMA2 stream. But i have no idea on how LZMA SDK is to be used for this.
Please can anyone give me a little example on how the LZMA SDK can be used under C++?
I think that it's a properly little example to use LZMA SDK.
/* LzmaUtil.c -- Test application for LZMA compression
2008-08-05
Igor Pavlov
public domain */
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../LzmaDec.h"
#include "../LzmaEnc.h"
#include "../Alloc.h"
const char *kCantReadMessage = "Can not read input file";
const char *kCantWriteMessage = "Can not write output file";
const char *kCantAllocateMessage = "Can not allocate memory";
const char *kDataErrorMessage = "Data error";
static void *SzAlloc(void *p, size_t size) { p = p; return MyAlloc(size); }
static void SzFree(void *p, void *address) { p = p; MyFree(address); }
static ISzAlloc g_Alloc = { SzAlloc, SzFree };
#define kInBufferSize (1 << 15)
#define kOutBufferSize (1 << 15)
unsigned char g_InBuffer[kInBufferSize];
unsigned char g_OutBuffer[kOutBufferSize];
size_t MyReadFile(FILE *file, void *data, size_t size)
{ return fread(data, 1, size, file); }
int MyReadFileAndCheck(FILE *file, void *data, size_t size)
{ return (MyReadFile(file, data, size) == size); }
size_t MyWriteFile(FILE *file, const void *data, size_t size)
{
if (size == 0)
return 0;
return fwrite(data, 1, size, file);
}
int MyWriteFileAndCheck(FILE *file, const void *data, size_t size)
{ return (MyWriteFile(file, data, size) == size); }
long MyGetFileLength(FILE *file)
{
long length;
fseek(file, 0, SEEK_END);
length = ftell(file);
fseek(file, 0, SEEK_SET);
return length;
}
void PrintHelp(char *buffer)
{
strcat(buffer, "\nLZMA Utility 4.58 Copyright (c) 1999-2008 Igor Pavlov 2008-04-11\n"
"\nUsage: lzma <e|d> inputFile outputFile\n"
" e: encode file\n"
" d: decode file\n");
}
int PrintError(char *buffer, const char *message)
{
strcat(buffer, "\nError: ");
strcat(buffer, message);
strcat(buffer, "\n");
return 1;
}
int PrintErrorNumber(char *buffer, SRes val)
{
sprintf(buffer + strlen(buffer), "\nError code: %x\n", (unsigned)val);
return 1;
}
int PrintUserError(char *buffer)
{
return PrintError(buffer, "Incorrect command");
}
#define IN_BUF_SIZE (1 << 16)
#define OUT_BUF_SIZE (1 << 16)
static int Decode(FILE *inFile, FILE *outFile, char *rs)
{
UInt64 unpackSize;
int thereIsSize; /* = 1, if there is uncompressed size in headers */
int i;
int res = 0;
CLzmaDec state;
/* header: 5 bytes of LZMA properties and 8 bytes of uncompressed size */
unsigned char header[LZMA_PROPS_SIZE + 8];
/* Read and parse header */
if (!MyReadFileAndCheck(inFile, header, sizeof(header)))
return PrintError(rs, kCantReadMessage);
unpackSize = 0;
thereIsSize = 0;
for (i = 0; i < 8; i++)
{
unsigned char b = header[LZMA_PROPS_SIZE + i];
if (b != 0xFF)
thereIsSize = 1;
unpackSize += (UInt64)b << (i * 8);
}
LzmaDec_Construct(&state);
res = LzmaDec_Allocate(&state, header, LZMA_PROPS_SIZE, &g_Alloc);
if (res != SZ_OK)
return res;
{
Byte inBuf[IN_BUF_SIZE];
Byte outBuf[OUT_BUF_SIZE];
size_t inPos = 0, inSize = 0, outPos = 0;
LzmaDec_Init(&state);
for (;;)
{
if (inPos == inSize)
{
inSize = MyReadFile(inFile, inBuf, IN_BUF_SIZE);
inPos = 0;
}
{
SizeT inProcessed = inSize - inPos;
SizeT outProcessed = OUT_BUF_SIZE - outPos;
ELzmaFinishMode finishMode = LZMA_FINISH_ANY;
ELzmaStatus status;
if (thereIsSize && outProcessed > unpackSize)
{
outProcessed = (SizeT)unpackSize;
finishMode = LZMA_FINISH_END;
}
res = LzmaDec_DecodeToBuf(&state, outBuf + outPos, &outProcessed,
inBuf + inPos, &inProcessed, finishMode, &status);
inPos += (UInt32)inProcessed;
outPos += outProcessed;
unpackSize -= outProcessed;
if (outFile != 0)
MyWriteFile(outFile, outBuf, outPos);
outPos = 0;
if (res != SZ_OK || thereIsSize && unpackSize == 0)
break;
if (inProcessed == 0 && outProcessed == 0)
{
if (thereIsSize || status != LZMA_STATUS_FINISHED_WITH_MARK)
res = SZ_ERROR_DATA;
break;
}
}
}
}
LzmaDec_Free(&state, &g_Alloc);
return res;
}
typedef struct _CFileSeqInStream
{
ISeqInStream funcTable;
FILE *file;
} CFileSeqInStream;
static SRes MyRead(void *p, void *buf, size_t *size)
{
if (*size == 0)
return SZ_OK;
*size = MyReadFile(((CFileSeqInStream*)p)->file, buf, *size);
/*
if (*size == 0)
return SZE_FAIL;
*/
return SZ_OK;
}
typedef struct _CFileSeqOutStream
{
ISeqOutStream funcTable;
FILE *file;
} CFileSeqOutStream;
static size_t MyWrite(void *pp, const void *buf, size_t size)
{
return MyWriteFile(((CFileSeqOutStream *)pp)->file, buf, size);
}
static SRes Encode(FILE *inFile, FILE *outFile, char *rs)
{
CLzmaEncHandle enc;
SRes res;
CFileSeqInStream inStream;
CFileSeqOutStream outStream;
CLzmaEncProps props;
enc = LzmaEnc_Create(&g_Alloc);
if (enc == 0)
return SZ_ERROR_MEM;
inStream.funcTable.Read = MyRead;
inStream.file = inFile;
outStream.funcTable.Write = MyWrite;
outStream.file = outFile;
LzmaEncProps_Init(&props);
res = LzmaEnc_SetProps(enc, &props);
if (res == SZ_OK)
{
Byte header[LZMA_PROPS_SIZE + 8];
size_t headerSize = LZMA_PROPS_SIZE;
UInt64 fileSize;
int i;
res = LzmaEnc_WriteProperties(enc, header, &headerSize);
fileSize = MyGetFileLength(inFile);
for (i = 0; i < 8; i++)
header[headerSize++] = (Byte)(fileSize >> (8 * i));
if (!MyWriteFileAndCheck(outFile, header, headerSize))
return PrintError(rs, "writing error");
if (res == SZ_OK)
res = LzmaEnc_Encode(enc, &outStream.funcTable, &inStream.funcTable,
NULL, &g_Alloc, &g_Alloc);
}
LzmaEnc_Destroy(enc, &g_Alloc, &g_Alloc);
return res;
}
int main2(int numArgs, const char *args[], char *rs)
{
FILE *inFile = 0;
FILE *outFile = 0;
char c;
int res;
int encodeMode;
if (numArgs == 1)
{
PrintHelp(rs);
return 0;
}
if (numArgs < 3 || numArgs > 4 || strlen(args[1]) != 1)
return PrintUserError(rs);
c = args[1][0];
encodeMode = (c == 'e' || c == 'E');
if (!encodeMode && c != 'd' && c != 'D')
return PrintUserError(rs);
{
size_t t4 = sizeof(UInt32);
size_t t8 = sizeof(UInt64);
if (t4 != 4 || t8 != 8)
return PrintError(rs, "LZMA UTil needs correct UInt32 and UInt64");
}
inFile = fopen(args[2], "rb");
if (inFile == 0)
return PrintError(rs, "Can not open input file");
if (numArgs > 3)
{
outFile = fopen(args[3], "wb+");
if (outFile == 0)
return PrintError(rs, "Can not open output file");
}
else if (encodeMode)
PrintUserError(rs);
if (encodeMode)
{
res = Encode(inFile, outFile, rs);
}
else
{
res = Decode(inFile, outFile, rs);
}
if (outFile != 0)
fclose(outFile);
fclose(inFile);
if (res != SZ_OK)
{
if (res == SZ_ERROR_MEM)
return PrintError(rs, kCantAllocateMessage);
else if (res == SZ_ERROR_DATA)
return PrintError(rs, kDataErrorMessage);
else
return PrintErrorNumber(rs, res);
}
return 0;
}
int MY_CDECL main(int numArgs, const char *args[])
{
char rs[800] = { 0 };
int res = main2(numArgs, args, rs);
printf(rs);
return res;
}
Also you can see it at:
http://read.pudn.com/downloads151/sourcecode/zip/656407/7z460/C/LzmaUtil/LzmaUtil.c__.htm
http://read.pudn.com/downloads157/sourcecode/zip/698262/LZMA/LzmaUtil.c__.htm
I recently found a nice example, written in C++. Credit goes to GH user Treeki who published the original gist:
// note: -D_7ZIP_ST is required when compiling on non-Windows platforms
// g++ -o lzma_sample -std=c++14 -D_7ZIP_ST lzma_sample.cpp LzmaDec.c LzmaEnc.c LzFind.c
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <memory>
#include "LzmaEnc.h"
#include "LzmaDec.h"
static void *_lzmaAlloc(ISzAllocPtr, size_t size) {
return new uint8_t[size];
}
static void _lzmaFree(ISzAllocPtr, void *addr) {
if (!addr)
return;
delete[] reinterpret_cast<uint8_t *>(addr);
}
static ISzAlloc _allocFuncs = {
_lzmaAlloc, _lzmaFree
};
std::unique_ptr<uint8_t[]> lzmaCompress(const uint8_t *input, uint32_t inputSize, uint32_t *outputSize) {
std::unique_ptr<uint8_t[]> result;
// set up properties
CLzmaEncProps props;
LzmaEncProps_Init(&props);
if (inputSize >= (1 << 20))
props.dictSize = 1 << 20; // 1mb dictionary
else
props.dictSize = inputSize; // smaller dictionary = faster!
props.fb = 40;
// prepare space for the encoded properties
SizeT propsSize = 5;
uint8_t propsEncoded[5];
// allocate some space for the compression output
// this is way more than necessary in most cases...
// but better safe than sorry
// (a smarter implementation would use a growing buffer,
// but this requires a bunch of fuckery that is out of
/// scope for this simple example)
SizeT outputSize64 = inputSize * 1.5;
if (outputSize64 < 1024)
outputSize64 = 1024;
auto output = std::make_unique<uint8_t[]>(outputSize64);
int lzmaStatus = LzmaEncode(
output.get(), &outputSize64, input, inputSize,
&props, propsEncoded, &propsSize, 0,
NULL,
&_allocFuncs, &_allocFuncs);
*outputSize = outputSize64 + 13;
if (lzmaStatus == SZ_OK) {
// tricky: we have to generate the LZMA header
// 5 bytes properties + 8 byte uncompressed size
result = std::make_unique<uint8_t[]>(outputSize64 + 13);
uint8_t *resultData = result.get();
memcpy(resultData, propsEncoded, 5);
for (int i = 0; i < 8; i++)
resultData[5 + i] = (inputSize >> (i * 8)) & 0xFF;
memcpy(resultData + 13, output.get(), outputSize64);
}
return result;
}
std::unique_ptr<uint8_t[]> lzmaDecompress(const uint8_t *input, uint32_t inputSize, uint32_t *outputSize) {
if (inputSize < 13)
return NULL; // invalid header!
// extract the size from the header
UInt64 size = 0;
for (int i = 0; i < 8; i++)
size |= (input[5 + i] << (i * 8));
if (size <= (256 * 1024 * 1024)) {
auto blob = std::make_unique<uint8_t[]>(size);
ELzmaStatus lzmaStatus;
SizeT procOutSize = size, procInSize = inputSize - 13;
int status = LzmaDecode(blob.get(), &procOutSize, &input[13], &procInSize, input, 5, LZMA_FINISH_END, &lzmaStatus, &_allocFuncs);
if (status == SZ_OK && procOutSize == size) {
*outputSize = size;
return blob;
}
}
return NULL;
}
void hexdump(const uint8_t *buf, int size) {
int lines = (size + 15) / 16;
for (int i = 0; i < lines; i++) {
printf("%08x | ", i * 16);
int lineMin = i * 16;
int lineMax = lineMin + 16;
int lineCappedMax = (lineMax > size) ? size : lineMax;
for (int j = lineMin; j < lineCappedMax; j++)
printf("%02x ", buf[j]);
for (int j = lineCappedMax; j < lineMax; j++)
printf(" ");
printf("| ");
for (int j = lineMin; j < lineCappedMax; j++) {
if (buf[j] >= 32 && buf[j] <= 127)
printf("%c", buf[j]);
else
printf(".");
}
printf("\n");
}
}
void testIt(const uint8_t *input, int size) {
printf("Test Input:\n");
hexdump(input, size);
uint32_t compressedSize;
auto compressedBlob = lzmaCompress(input, size, &compressedSize);
if (compressedBlob) {
printf("Compressed:\n");
hexdump(compressedBlob.get(), compressedSize);
} else {
printf("Nope, we screwed it\n");
return;
}
// let's try decompressing it now
uint32_t decompressedSize;
auto decompressedBlob = lzmaDecompress(compressedBlob.get(), compressedSize, &decompressedSize);
if (decompressedBlob) {
printf("Decompressed:\n");
hexdump(decompressedBlob.get(), decompressedSize);
} else {
printf("Nope, we screwed it (part 2)\n");
return;
}
printf("----------\n");
}
void testIt(const char *string) {
testIt((const uint8_t *)string, strlen(string));
}
int main(int argc, char **argv) {
testIt("a");
testIt("here is a cool string");
testIt("here's something that should compress pretty well: abcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdef");
return 0;
}
You can refer to this file on how to use lzma2。
https://github.com/Tencent/libpag/blob/aab6391e455193c8ec5b8e2031b495b3fe77b034/test/framework/utils/LzmaUtil.cpp
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Tencent is pleased to support the open source community by making libpag available.
//
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
// except in compliance with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// unless required by applicable law or agreed to in writing, software distributed under the
// license is distributed on an "as is" basis, without warranties or conditions of any kind,
// either express or implied. see the license for the specific language governing permissions
// and limitations under the license.
//
/////////////////////////////////////////////////////////////////////////////////////////////////
#include "LzmaUtil.h"
#include "test/framework/lzma/Lzma2DecMt.h"
#include "test/framework/lzma/Lzma2Enc.h"
namespace pag {
static void* LzmaAlloc(ISzAllocPtr, size_t size) {
return new uint8_t[size];
}
static void LzmaFree(ISzAllocPtr, void* address) {
if (!address) {
return;
}
delete[] reinterpret_cast<uint8_t*>(address);
}
static ISzAlloc gAllocFuncs = {LzmaAlloc, LzmaFree};
class SequentialOutStream {
public:
virtual ~SequentialOutStream() = default;
virtual bool write(const void* data, size_t size) = 0;
};
class SequentialInStream {
public:
virtual ~SequentialInStream() = default;
virtual bool read(void* data, size_t size, size_t* processedSize) = 0;
};
struct CSeqInStreamWrap {
ISeqInStream vt;
std::unique_ptr<SequentialInStream> inStream;
};
struct CSeqOutStreamWrap {
ISeqOutStream vt;
std::unique_ptr<SequentialOutStream> outStream;
};
class BuffPtrInStream : public SequentialInStream {
public:
explicit BuffPtrInStream(const uint8_t* buffer, size_t bufferSize)
: buffer(buffer), bufferSize(bufferSize) {
}
bool read(void* data, size_t size, size_t* processedSize) override {
if (processedSize) {
*processedSize = 0;
}
if (size == 0 || position >= bufferSize) {
return true;
}
auto remain = bufferSize - position;
if (remain > size) {
remain = size;
}
memcpy(data, static_cast<const uint8_t*>(buffer) + position, remain);
position += remain;
if (processedSize) {
*processedSize = remain;
}
return true;
}
private:
const uint8_t* buffer = nullptr;
size_t bufferSize = 0;
size_t position = 0;
};
class VectorOutStream : public SequentialOutStream {
public:
explicit VectorOutStream(std::vector<uint8_t>* buffer) : buffer(buffer) {
}
bool write(const void* data, size_t size) override {
auto oldSize = buffer->size();
buffer->resize(oldSize + size);
memcpy(&(*buffer)[oldSize], data, size);
return true;
}
private:
std::vector<uint8_t>* buffer;
};
class BuffPtrSeqOutStream : public SequentialOutStream {
public:
BuffPtrSeqOutStream(uint8_t* buffer, size_t size) : buffer(buffer), bufferSize(size) {
}
bool write(const void* data, size_t size) override {
auto remain = bufferSize - position;
if (remain > size) {
remain = size;
}
if (remain != 0) {
memcpy(buffer + position, data, remain);
position += remain;
}
return remain != 0 || size == 0;
}
private:
uint8_t* buffer = nullptr;
size_t bufferSize = 0;
size_t position = 0;
};
static const size_t kStreamStepSize = 1 << 31;
static SRes MyRead(const ISeqInStream* p, void* data, size_t* size) {
CSeqInStreamWrap* wrap = CONTAINER_FROM_VTBL(p, CSeqInStreamWrap, vt);
auto curSize = (*size < kStreamStepSize) ? *size : kStreamStepSize;
if (!wrap->inStream->read(data, curSize, &curSize)) {
return SZ_ERROR_READ;
}
*size = curSize;
return SZ_OK;
}
static size_t MyWrite(const ISeqOutStream* p, const void* buf, size_t size) {
auto* wrap = CONTAINER_FROM_VTBL(p, CSeqOutStreamWrap, vt);
if (wrap->outStream->write(buf, size)) {
return size;
}
return 0;
}
class Lzma2Encoder {
public:
Lzma2Encoder() {
encoder = Lzma2Enc_Create(&gAllocFuncs, &gAllocFuncs);
}
~Lzma2Encoder() {
Lzma2Enc_Destroy(encoder);
}
std::shared_ptr<Data> code(const std::shared_ptr<Data>& inputData) {
if (encoder == nullptr || inputData == nullptr || inputData->size() == 0) {
return nullptr;
}
auto inputSize = inputData->size();
CLzma2EncProps lzma2Props;
Lzma2EncProps_Init(&lzma2Props);
lzma2Props.lzmaProps.dictSize = inputSize;
lzma2Props.lzmaProps.level = 9;
lzma2Props.numTotalThreads = 4;
Lzma2Enc_SetProps(encoder, &lzma2Props);
std::vector<uint8_t> outBuf;
outBuf.resize(1 + 8);
outBuf[0] = Lzma2Enc_WriteProperties(encoder);
for (int i = 0; i < 8; i++) {
outBuf[1 + i] = static_cast<uint8_t>(inputSize >> (8 * i));
}
CSeqInStreamWrap inWrap = {};
inWrap.vt.Read = MyRead;
inWrap.inStream = std::make_unique<BuffPtrInStream>(
static_cast<const uint8_t*>(inputData->data()), inputSize);
CSeqOutStreamWrap outStream = {};
outStream.vt.Write = MyWrite;
outStream.outStream = std::make_unique<VectorOutStream>(&outBuf);
auto status =
Lzma2Enc_Encode2(encoder, &outStream.vt, nullptr, nullptr, &inWrap.vt, nullptr, 0, nullptr);
if (status != SZ_OK) {
return nullptr;
}
return Data::MakeWithCopy(&outBuf[0], outBuf.size());
}
private:
CLzma2EncHandle encoder = nullptr;
};
std::shared_ptr<Data> LzmaUtil::Compress(const std::shared_ptr<Data>& pixelData) {
Lzma2Encoder encoder;
return encoder.code(pixelData);
}
class Lzma2Decoder {
public:
Lzma2Decoder() {
decoder = Lzma2DecMt_Create(&gAllocFuncs, &gAllocFuncs);
}
~Lzma2Decoder() {
if (decoder) {
Lzma2DecMt_Destroy(decoder);
}
}
std::shared_ptr<Data> code(const std::shared_ptr<Data>& inputData) {
if (decoder == nullptr || inputData == nullptr || inputData->size() == 0) {
return nullptr;
}
auto input = static_cast<const uint8_t*>(inputData->data());
auto inputSize = inputData->size() - 9;
Byte prop = static_cast<const Byte*>(input)[0];
CLzma2DecMtProps props;
Lzma2DecMtProps_Init(&props);
props.inBufSize_ST = inputSize;
props.numThreads = 1;
UInt64 outBufferSize = 0;
for (int i = 0; i < 8; i++) {
outBufferSize |= (input[1 + i] << (i * 8));
}
auto outBuffer = new uint8_t[outBufferSize];
CSeqInStreamWrap inWrap = {};
inWrap.vt.Read = MyRead;
inWrap.inStream = std::make_unique<BuffPtrInStream>(input + 9, inputSize);
CSeqOutStreamWrap outWrap = {};
outWrap.vt.Write = MyWrite;
outWrap.outStream = std::make_unique<BuffPtrSeqOutStream>(outBuffer, outBufferSize);
UInt64 inProcessed = 0;
int isMT = false;
auto res = Lzma2DecMt_Decode(decoder, prop, &props, &outWrap.vt, &outBufferSize, 1, &inWrap.vt,
&inProcessed, &isMT, nullptr);
if (res == SZ_OK && inputSize == inProcessed) {
return Data::MakeAdopted(outBuffer, outBufferSize, Data::DeleteProc);
}
delete[] outBuffer;
return nullptr;
}
private:
CLzma2DecMtHandle decoder = nullptr;
};
std::shared_ptr<Data> LzmaUtil::Decompress(const std::shared_ptr<Data>& data) {
Lzma2Decoder decoder;
return decoder.code(data);
}
} // namespace pag

C++ LZMA SDK: Uncompress function for LZMA2 compressed file

I am trying to create a function that uncompresses LZAM2 compressed data. I inspired myself from this tutorial which works great for LZMA and I tried to adapt it for LZMA2. I successfully created the compression function for LZMA2, but i have no success for the uncompression one.
Here is the compression function:
static void Compress2Inc(std::vector<unsigned char> &outBuf,
const std::vector<unsigned char> &inBuf)
{
CLzma2EncHandle enc = Lzma2Enc_Create(&SzAllocForLzma, &SzAllocForLzma2);
assert(enc);
CLzma2EncProps props;
Lzma2EncProps_Init(&props);
props.lzmaProps.writeEndMark = 1; // 0 or 1
SRes res = Lzma2Enc_SetProps(enc, &props);
assert(res == SZ_OK);
unsigned propsSize = LZMA_PROPS_SIZE;
outBuf.resize(propsSize);
res = Lzma2Enc_WriteProperties(enc);
//cout << res;
//assert(res == SZ_OK && propsSize == LZMA_PROPS_SIZE);
VectorInStream inStream = { &VectorInStream_Read, &inBuf, 0 };
VectorOutStream outStream = { &VectorOutStream_Write, &outBuf };
res = Lzma2Enc_Encode(enc,
(ISeqOutStream*)&outStream, (ISeqInStream*)&inStream,
0);
assert(res == SZ_OK);
Lzma2Enc_Destroy(enc);
}
Where:
static void *AllocForLzma2(void *, size_t size) { return BigAlloc(size); }
static void FreeForLzma2(void *, void *address) { BigFree(address); }
static ISzAlloc SzAllocForLzma2 = { AllocForLzma2, FreeForLzma2 };
static void *AllocForLzma(void *, size_t size) { return MyAlloc(size); }
static void FreeForLzma(void *, void *address) { MyFree(address); }
static ISzAlloc SzAllocForLzma = { AllocForLzma, FreeForLzma };
typedef struct
{
ISeqInStream SeqInStream;
const std::vector<unsigned char> *Buf;
unsigned BufPos;
} VectorInStream;
SRes VectorInStream_Read(void *p, void *buf, size_t *size)
{
VectorInStream *ctx = (VectorInStream*)p;
*size = min(*size, ctx->Buf->size() - ctx->BufPos);
if (*size)
memcpy(buf, &(*ctx->Buf)[ctx->BufPos], *size);
ctx->BufPos += *size;
return SZ_OK;
}
typedef struct
{
ISeqOutStream SeqOutStream;
std::vector<unsigned char> *Buf;
} VectorOutStream;
size_t VectorOutStream_Write(void *p, const void *buf, size_t size)
{
VectorOutStream *ctx = (VectorOutStream*)p;
if (size)
{
unsigned oldSize = ctx->Buf->size();
ctx->Buf->resize(oldSize + size);
memcpy(&(*ctx->Buf)[oldSize], buf, size);
}
return size;
}
Here is what I have so far with the uncompression function but Lzma2Dec_DecodeToBuf function returns error code 1(SZ_ERROR_DATA) and I just couldn't find anything on the web regarding this on the web.
static void Uncompress2Inc(std::vector<unsigned char> &outBuf,
const std::vector<unsigned char> &inBuf)
{
CLzma2Dec dec;
Lzma2Dec_Construct(&dec);
SRes res = Lzma2Dec_Allocate(&dec, outBuf.size(), &SzAllocForLzma);
assert(res == SZ_OK);
Lzma2Dec_Init(&dec);
outBuf.resize(UNCOMPRESSED_SIZE);
unsigned outPos = 0, inPos = LZMA_PROPS_SIZE;
ELzmaStatus status;
const unsigned BUF_SIZE = 10240;
while (outPos < outBuf.size())
{
unsigned destLen = min(BUF_SIZE, outBuf.size() - outPos);
unsigned srcLen = min(BUF_SIZE, inBuf.size() - inPos);
unsigned srcLenOld = srcLen, destLenOld = destLen;
res = Lzma2Dec_DecodeToBuf(&dec,
&outBuf[outPos], &destLen,
&inBuf[inPos], &srcLen,
(outPos + destLen == outBuf.size()) ? LZMA_FINISH_END : LZMA_FINISH_ANY,
&status);
assert(res == SZ_OK);
inPos += srcLen;
outPos += destLen;
if (status == LZMA_STATUS_FINISHED_WITH_MARK)
break;
}
Lzma2Dec_Free(&dec, &SzAllocForLzma);
outBuf.resize(outPos);
}
I am using Visual Studio 2008 and LZMA SDK downloaded from here. Someone here had the exact same problem, but i couldn't make use of his code...
Did anyone ever successfully uncompressed LZMA2 compressed files using LZMA SDK?
Please help!
A temporary workaround would be to replace SRes res = Lzma2Dec_Allocate(&dec, outBuf.size(), &SzAllocForLzma); with SRes res = Lzma2Dec_Allocate(&dec, 8, &SzAllocForLzma); in Uncompress2Inc function where 8 is a magic number...
However this is not the right way to solve the problem...
First mistake is that Lzma2Enc_WriteProperties doesn't return a result but a property byte which will have to be used as the second parameter of the Lzma2Dec_Allocate call in the Uncompress2Inc function. As a result we replace the magic number 8 with the property byte and everything works as expected.
In order to achieve this a 5 byte header must be added to the encoded data which will be extracted in the decoding function. Here is an example that works in VS2008(not the most perfect code but it works...I will get back later, when I have time, with a better example):
void Lzma2Benchmark::compressChunk(std::vector<unsigned char> &outBuf, const std::vector<unsigned char> &inBuf)
{
//! \todo This is a temporary workaround, size needs to be added to the
m_uncompressedSize = inBuf.size();
std::cout << "Uncompressed size is: " << inBuf.size() << std::endl;
DWORD tickCountBeforeCompression = GetTickCount();
CLzma2EncHandle enc = Lzma2Enc_Create(&m_szAllocForLzma, &m_szAllocForLzma2);
assert(enc);
CLzma2EncProps props;
Lzma2EncProps_Init(&props);
props.lzmaProps.writeEndMark = 1; // 0 or 1
props.lzmaProps.level = 9;
props.lzmaProps.numThreads = 3;
//props.numTotalThreads = 2;
SRes res = Lzma2Enc_SetProps(enc, &props);
assert(res == SZ_OK);
// LZMA_PROPS_SIZE == 5 bytes
unsigned propsSize = LZMA_PROPS_SIZE;
outBuf.resize(propsSize);
// I think Lzma2Enc_WriteProperties returns the encoding properties in 1 Byte
Byte properties = Lzma2Enc_WriteProperties(enc);
//! \todo This is a temporary workaround
m_propByte = properties;
//! \todo Here m_propByte and m_uncompressedSize need to be added to outBuf's 5 byte header so simply add those 2 values to outBuf and start the encoding from there.
BenchmarkUtils::VectorInStream inStream = { &BenchmarkUtils::VectorInStream_Read, &inBuf, 0 };
BenchmarkUtils::VectorOutStream outStream = { &BenchmarkUtils::VectorOutStream_Write, &outBuf };
res = Lzma2Enc_Encode(enc,
(ISeqOutStream*)&outStream,
(ISeqInStream*)&inStream,
0);
std::cout << "Compress time is: " << GetTickCount() - tickCountBeforeCompression << " milliseconds.\n";
assert(res == SZ_OK);
Lzma2Enc_Destroy(enc);
std::cout << "Compressed size is: " << outBuf.size() << std::endl;
}
void Lzma2Benchmark::unCompressChunk(std::vector<unsigned char> &outBuf, const std::vector<unsigned char> &inBuf)
{
DWORD tickCountBeforeUncompression = GetTickCount();
CLzma2Dec dec;
Lzma2Dec_Construct(&dec);
//! \todo Heere the property size and the uncompressed size need to be extracted from inBuf, which is the compressed data.
// The second parameter is a temporary workaround.
SRes res = Lzma2Dec_Allocate(&dec, m_propByte/*8*/, &m_szAllocForLzma);
assert(res == SZ_OK);
Lzma2Dec_Init(&dec);
outBuf.resize(m_uncompressedSize);
unsigned outPos = 0, inPos = LZMA_PROPS_SIZE;
ELzmaStatus status;
const unsigned BUF_SIZE = 10240;
while(outPos < outBuf.size())
{
SizeT destLen = std::min(BUF_SIZE, outBuf.size() - outPos);
SizeT srcLen = std::min(BUF_SIZE, inBuf.size() - inPos);
SizeT srcLenOld = srcLen, destLenOld = destLen;
res = Lzma2Dec_DecodeToBuf(&dec,
&outBuf[outPos],
&destLen,
&inBuf[inPos],
&srcLen,
(outPos + destLen == outBuf.size()) ? LZMA_FINISH_END : LZMA_FINISH_ANY,
&status);
assert(res == SZ_OK);
inPos += srcLen;
outPos += destLen;
if(status == LZMA_STATUS_FINISHED_WITH_MARK)
{
break;
}
}
Lzma2Dec_Free(&dec, &m_szAllocForLzma);
outBuf.resize(outPos);
std::cout << "Uncompress time is: " << GetTickCount() - tickCountBeforeUncompression << " milliseconds.\n";
}