Debug Error - abort() has been called (gcz2tga) - c++

Complete C++/C newbie here. I recompiled gcz2tga (I did not make this code, just found it on the webs) into a debug .exe file using Visual Studio 2019. Everything works well until it gets to "split_images" and then the program spits out this error:
Debug Error!
Program: C:\Users\Harrison\source\repos\gcz2tga\Debug\gcz2tga.exe
abort() has been called
(Press Retry to debug the application)
When I hit Retry, the program closes. The code is set up like this:
/* gcz2tga.c: Slice up a directory full of GCZ (texture) files into TGA files.
*
* Credit goes to afwefwe for reverse-engineering the texture format
* and LZSS compression */
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
/* Assuming x86, usual endian crap is not accounted for */
typedef unsigned char u8_t;
typedef unsigned short u16_t;
typedef unsigned int u32_t;
struct image
{
unsigned int width, height;
u8_t *planes;
};
struct clip
{
short x, y, w, h;
};
static u16_t swab16(u16_t in)
{
/* GC headers are big-endian */
return ((in & 0xFF) << 8) | (in >> 8);
}
static void unpack_gc(struct image *out, u8_t *in, size_t out_sz)
{
unsigned int npixels;
unsigned int i;
unsigned int j;
u16_t *pixels;
u16_t *pheight;
u16_t *pwidth;
u16_t *pmagic;
u16_t pixel;
pmagic = (u16_t *) in;
pheight = (u16_t *) (in + 14);
pwidth = (u16_t *) (in + 12);
if (*pmagic != 0x4347) {
fprintf(stderr, "(FAIL: Invalid header)\n");
exit(EXIT_FAILURE);
}
/* Set up output image struct */
in += 24;
out->width = swab16(*pwidth);
out->height = swab16(*pheight);
out->planes = malloc(out->width * out->height * 4);
/* Clamp W/H (don't know why this is necessary but it is) */
out->width = out->width > 1024 ? 1024 : out->width;
out->height = out->height > 1024 ? 1024 : out->height;
fprintf(stderr, "(%dx%d)", out->width, out->height);
/* Unpack pixels */
pixels = (u16_t *) in;
npixels = out->width * out->height;
if (out_sz > npixels * 4) {
/* Deep image (i.e. 32-bit) */
memcpy(out->planes, pixels, npixels * 4);
} else {
/* Shallow image (i.e. 16-bit) */
for (i = 0, j = 0 ; i < npixels ; i++) {
pixel = pixels[i];
out->planes[j++] = ((pixel ) & 0x1F) << 3; /* B */
out->planes[j++] = ((pixel >> 5) & 0x1F) << 3; /* G */
out->planes[j++] = ((pixel >> 10) ) << 3; /* R */
out->planes[j++] = pixel & 0x8000 ? 0xFF : 0x00; /* A */
}
}
}
static u8_t *expand_lzss(u8_t *lzss, size_t *pout_sz)
{
static u8_t ring[0x1000];
unsigned int ring_pos = 0x0FEE;
unsigned int chunk_offset;
unsigned int chunk_length;
u32_t control_word = 1;
size_t length;
u8_t cmd1;
u8_t cmd2;
u8_t *out;
u8_t *pos;
u8_t *in;
/* Header = 32 bit unpacked file length */
length = *((u32_t *) lzss);
*pout_sz = length;
if (length > 8000000) {
fprintf(stderr, "(FAIL: Unreasonably large expanded size %d)\n",
length);
exit(EXIT_FAILURE);
}
out = malloc(length * 2); /* Seems to overrun */
pos = out;
in = lzss + 4;
while (length > 0) {
if (control_word == 1) {
/* Read a control byte */
control_word = 0x100 | *in++;
}
/* Decode a byte according to the current control byte bit */
if (control_word & 1) {
/* Straight copy */
*pos++ = *in;
ring[ring_pos] = *in++;
ring_pos = (ring_pos + 1) % 0x1000;
length--;
} else {
/* Reference to data in ring buffer */
cmd1 = *in++;
cmd2 = *in++;
chunk_length = (cmd2 & 0x0F) + 3;
chunk_offset = ((cmd2 & 0xF0) << 4) | cmd1;
for ( ; chunk_length > 0 ; chunk_length--) {
/* Copy historical data to output AND current ring pos */
*pos++ = ring[chunk_offset];
ring[ring_pos] = ring[chunk_offset];
/* Update counters */
chunk_offset = (chunk_offset + 1) % 0x1000;
ring_pos = (ring_pos + 1) % 0x1000;
length--;
}
}
/* Get next control bit */
control_word >>= 1;
}
return out;
}
static void readfile(const char *filename, u8_t **data, long *nbytes)
{
FILE *f;
f = fopen(filename, "rb");
if (f == NULL) abort();
fseek(f, 0, SEEK_END);
*nbytes = ftell(f);
fseek(f, 0, SEEK_SET);
*data = malloc(*nbytes);
fread(*data, *nbytes, 1, f);
fclose(f);
}
void put8(FILE *f, unsigned char val)
{
fwrite(&val, 1, 1, f);
}
void put16(FILE *f, unsigned short val)
{
fwrite(&val, 2, 1, f);
}
void split_images(const char *in_dir, const char *out_dir,
struct image *images, int nimages)
{
struct clip *clips;
char filename[512];
long nbytes;
u8_t *data;
char *name;
FILE *f;
int i;
int j;
int k;
/* Read file and get TOC */
sprintf(filename, "%s/system.idx", in_dir);
readfile(filename, &data, &nbytes);
clips = (struct clip *) (data + 0x01BC);
name = (char *) (data + 8 + *((long *) data));
/* Guess how many clips there are with a heuristic */
for (i = 0 ; clips[i].w != 0 && clips[i].h != 0 ; i++) {
sprintf(filename, "%s/%s.tga", out_dir, name);
name += strlen(name) + 3;
f = fopen(filename, "wb");
if (f == NULL) abort();
/* Locate the correct source image */
j = 0;
while (clips[i].y > images[j].height) {
clips[i].y -= images[j].height;
j++;
}
/* Write header */
put8(f, 0); put8(f, 0); put8(f, 2);
put16(f, 0); put16(f, 0); put8(f, 0);
put16(f, 0); put16(f, 0); put16(f, clips[i].w); put16(f, clips[i].h);
put8(f, 32); put8(f, 32);
/* Write scanlines */
for (k = 0 ; k < clips[i].h ; k++) {
if (clips[i].y == images[j].height) {
clips[i].y = 0;
j++;
}
fwrite(images[j].planes + ((images[j].width * clips[i].y) +
clips[i].x) * 4, clips[i].w, 4, f);
clips[i].y++;
}
/* Close output file */
fclose(f);
}
/* Cleanup */
free(data);
}
int main(int argc, char **argv)
{
char *in_dir;
char *out_dir;
struct image images[32];
char filename[256];
unsigned int i;
long filesize;
u8_t *lzss, *gc;
size_t out_sz;
FILE *f;
/* Usage */
if (argc != 3) {
fprintf(stderr, "Usage: %s [indir] [outdir]\n", argv[0]);
return EXIT_FAILURE;
}
/* Setup */
memset(images, 0, sizeof(images));
in_dir = argv[1];
out_dir = argv[2];
for (i = 0 ; i < 32 ; i++) {
/* Open 0.gcz, 1.gcz etc ... */
sprintf(filename, "%s/%d.gcz", in_dir, i);
f = fopen(filename, "rb");
if (f == NULL) break;
/* Read entire file */
fseek(f, 0, SEEK_END);
filesize = ftell(f);
fseek(f, 0, SEEK_SET);
fprintf(stderr, "%s: fread", filename);
lzss = malloc(filesize);
fread(lzss, filesize, 1, f);
fclose(f);
/* Decompress */
fprintf(stderr, "(OK) expand_lzss");
gc = expand_lzss(lzss, &out_sz);
free(lzss);
/* Unpack GC to 32-bit RGBA */
fprintf(stderr, "(OK) unpack_gc");
unpack_gc(&images[i], gc, out_sz);
free(gc);
fprintf(stderr, "(OK)\n");
}
/* Sanity check */
if (i == 0) {
fprintf(stderr, "No GCZ files found\n");
exit(EXIT_FAILURE);
}
/* Emit pile of TGAs */
fprintf(stderr, "split_images");
split_images(in_dir, out_dir, images, i);
fprintf(stderr, "(OK)\n\n");
return 0;
}
What is wrong with the code that could be causing this? The code is unaltered save for #define _CRT_SECURE_NO_WARNINGS being added to the code before the #include headers and having the program compiled as C.

Related

How to decode using lame (mp3->wav) in c++

Thank you so much for answering this question.
I use lame and I want to decode mp3 file to wav.
I succeeded in decoding mp3 files into wav files through several searches.
However, the size of the wav file is created too large and an error message appears.
Media player error message :
This file cannot be played. The file format may not be supported, the file extension may be incorrect, or the file may be corrupted.
If you know my problem, please give me some advice.
Thank you
HEADER FILE
#pragma once
#ifndef _LAME_HELPER_H_
#define _LAME_HELPER_H_
#include <windows.h>
#include "lame.h"
#define LH_STARTED WM_USER+1
#define LH_COMPUTED WM_USER+2
#define LH_DONE WM_USER+3
#define LH_ERROR WM_USER+4
#define MAX_THREAD_COUNT 5
enum encode_mode_e
{
EM_ABR,
EM_CBR,
EM_VBR
};
enum encode_channel_e
{
EC_MONO,
EC_STEREO
};
enum bitrate_e
{
BR_8kbps = 8,
BR_16kbps = 16,
BR_24kbps = 24,
BR_32kbps = 32,
BR_40kbps = 40,
BR_48kbps = 48,
BR_56kbps = 56,
BR_64kbps = 64,
BR_80kbps = 80,
BR_96kbps = 96,
BR_112kbps = 112,
BR_128kbps = 128,
BR_144kbps = 144,
BR_160kbps = 160,
BR_192kbps = 192,
BR_224kbps = 224,
BR_256kbps = 256,
BR_320kbps = 320
};
enum samplerate_e
{
SR_8khz = 8000,
SR_11khz = 11025,
SR_12khz = 12000,
SR_16khz = 16000,
SR_22khz = 22050,
SR_24khz = 24000,
SR_32khz = 32000,
SR_44khz = 44100,
SR_48khz = 48000
};
struct settings_t
{
char* title;
char* artist;
char* album;
char* comment;
char* year;
char* track;
char* genre;
char* albumart;
encode_channel_e channels;
bitrate_e abr_bitrate;
bitrate_e cbr_bitrate;
int quality;
encode_mode_e enc_mode;
samplerate_e resample_frequency;
samplerate_e in_samplerate;
//The constructor; used to set default values
settings_t();
};
class CLameHelper; //lameHelper prototype, needed because of struct StaticParam_t
//Use to hold parameters for the thread function
struct StaticParam_t
{
char* pcm;
char* mp3;
settings_t settings;
WNDPROC callback_proc;
CLameHelper* lhObj;
};
class CLameHelper
{
public :
static const int PCM_SIZE = 4096;
static const int MP3_SIZE = 4096;
HANDLE m_hThread[MAX_THREAD_COUNT];
StaticParam_t* m_phSParam[MAX_THREAD_COUNT];
static int Decode_s(void* pParam);
void WriteWaveHeader(FILE* const, int, int, int, int);
void Write32BitLowHigh(FILE*, int);
void Write16BitLowHigh(FILE*, int);
int SetID3AlbumArt(lame_t gfp, char const* szFileName);
void errorHandler(char*);
char errMsg[1000];
public:
CLameHelper();
~CLameHelper();
int Decode(char* szMp3_in, char* szPcm_out);
int Decode(char* szMp3_in, char* szPcm_out, WNDPROC callback_proc);
};
#endif
CPP FILE
#include "stdafx.h"
#include "LameHelper.h"
settings_t::settings_t()
{
//Setting the default values
title = "";
artist = "";
album = "";
comment = "";
year = "";
track = "";
genre = "";
albumart = NULL;
channels = EC_STEREO;
abr_bitrate = BR_128kbps;
cbr_bitrate = BR_128kbps;
quality = 5;
enc_mode = EM_CBR;
resample_frequency = SR_44khz;
in_samplerate = SR_44khz;
}
CLameHelper::CLameHelper()
{
//Initialize to NULL, aids deletion/closing later
for(int i = 0; i < MAX_THREAD_COUNT; i++)
{
m_hThread[i] = NULL;
m_phSParam[i] = NULL;
}
}
CLameHelper::~CLameHelper()
{
//Destroy all declared objects
for(int i = 0; i < MAX_THREAD_COUNT; i++)
{
if(m_hThread[i] != NULL)
CloseHandle(m_hThread[i]);
if(m_phSParam[i] != NULL)
delete m_phSParam[i];
}
}
int CLameHelper::SetID3AlbumArt(lame_t gfp, char const* szFileName)
{
int iResult = -1;
FILE *pFileName = 0;
char *szAlbumart = 0;
if(szFileName == NULL)
{
return 0;
}
pFileName = fopen(szFileName, "rb");
if(!pFileName)
{
iResult = 1;
}
else
{
size_t size;
fseek(pFileName, 0, SEEK_END);
size = ftell(pFileName);
fseek(pFileName, 0, SEEK_SET);
szAlbumart = (char*)malloc(size);
if(!szAlbumart)
{
iResult = 2;
}
else
{
if(fread(szAlbumart, 1, size, pFileName) != size)
{
iResult = 3;
}
else
{
iResult = (gfp, szAlbumart, size) ? 4 : 0;
}
free(szAlbumart);
}
fclose(pFileName);
}
switch(iResult)
{
case 1:
sprintf(errMsg, "WARNING: could not find file '%s' for szAlbumart.\n", szFileName);
errorHandler(errMsg);
break;
case 2:
errorHandler("WARNING: insufficient memory for reading the szAlbumart.\n");
break;
case 3:
sprintf(errMsg, "WARNING: read error in '%s' for szAlbumart.\n", szFileName);
errorHandler(errMsg);
break;
case 4:
sprintf(errMsg, "WARNING: unsupported image: '%s' for szAlbumart. Specify JPEG/PNG/GIF image\n", szFileName);
errorHandler(errMsg);
break;
default:
break;
}
return iResult;
}
void CLameHelper::Write16BitLowHigh(FILE * fp, int val)
{
unsigned char bytes[2];
bytes[0] = (val & 0xff);
bytes[1] = ((val >> 8) & 0xff);
fwrite(bytes, 1, 2, fp);
}
void CLameHelper::Write32BitLowHigh(FILE * fp, int val)
{
unsigned char bytes[4];
bytes[0] = (val & 0xff);
bytes[1] = ((val >> 8) & 0xff);
bytes[2] = ((val >> 16) & 0xff);
bytes[3] = ((val >> 24) & 0xff);
fwrite(bytes, 1, 4, fp);
}
void CLameHelper::WriteWaveHeader(FILE * const fp, int pcmbytes, int freq, int channels, int bits)
{
int bytes = (bits + 7) / 8;
/* quick and dirty, but documented */
fwrite("RIFF", 1, 4, fp); /* label */
Write32BitLowHigh(fp, pcmbytes + 44 - 8); /* length in bytes without header */
fwrite("WAVEfmt ", 2, 4, fp); /* 2 labels */
Write32BitLowHigh(fp, 2 + 2 + 4 + 4 + 2 + 2); /* length of PCM format declaration area */
Write16BitLowHigh(fp, 1); /* is PCM? */
Write16BitLowHigh(fp, channels); /* number of channels */
Write32BitLowHigh(fp, freq); /* sample frequency in [Hz] */
Write32BitLowHigh(fp, freq * channels * bytes); /* bytes per second */
Write16BitLowHigh(fp, channels * bytes); /* bytes per sample time */
Write16BitLowHigh(fp, bits); /* bits per sample */
fwrite("data", 1, 4, fp); /* label */
Write32BitLowHigh(fp, pcmbytes); /* length in bytes of raw PCM data */
}
int CLameHelper::Decode(char* szMp3_in, char* szPcm_out)
{
return Decode(szMp3_in, szPcm_out, NULL);
}
//the static function used for the thread
int CLameHelper::Decode_s(void* param)
{
StaticParam_t* sp = (StaticParam_t*)param;
char* szPcm_out = sp->pcm;
char* szMp3_in = sp->mp3;
WNDPROC callback_proc = sp->callback_proc;
CLameHelper* lh = (CLameHelper*)sp->lhObj;
return lh->Decode(szMp3_in, szPcm_out, callback_proc);
}
int CLameHelper::Decode(char* szMp3_in, char* szPcm_out, WNDPROC callback_proc)
{
int read, i, samples;
long wavsize = 0; // use to count the number of mp3 byte read, this is used to write the length of the wave file
long cumulative_read = 0;
short int pcm_l[PCM_SIZE], pcm_r[PCM_SIZE];
unsigned char mp3_buffer[MP3_SIZE];
FILE* mp3 = fopen(szMp3_in, "rb");
if(mp3 == NULL)
{
if(callback_proc != NULL)
{
callback_proc((HWND)GetModuleHandle(NULL), LH_ERROR, -1, NULL);
}
sprintf(errMsg, "FATAL ERROR: file '%s' can't be open for read. Aborting!\n", szMp3_in);
errorHandler(errMsg);
return -1;
}
fseek(mp3, 0, SEEK_END);
long MP3_total_size = ftell(mp3);
fseek(mp3, 0, SEEK_SET);
FILE* pcm = fopen(szPcm_out, "wb");
if(pcm == NULL)
{
if(callback_proc != NULL)
{
callback_proc((HWND)GetModuleHandle(NULL), LH_ERROR, -1, NULL);
}
sprintf(errMsg, "FATAL ERROR: file '%s' can't be open for write. Aborting!\n", szPcm_out);
errorHandler(errMsg);
return -1;
}
lame_t lame = lame_init();
lame_set_decode_only(lame, 1);
if(lame_init_params(lame) == -1)
{
if(callback_proc != NULL)
{
callback_proc((HWND)GetModuleHandle(NULL), LH_ERROR, -2, NULL);
}
sprintf(errMsg, "FATAL ERROR: parameters failed to initialize properly in lame. Aborting!\n", szPcm_out);
errorHandler(errMsg);
return -2;
}
hip_t hip = hip_decode_init();
mp3data_struct mp3data;
memset(&mp3data, 0, sizeof(mp3data));
int nChannels = -1;
int nSampleRate = -1;
int mp3_len;
if(callback_proc != NULL)
{
callback_proc((HWND)GetModuleHandle(NULL), LH_STARTED, NULL, NULL);
}
while((read = fread(mp3_buffer, sizeof(char), MP3_SIZE, mp3)) > 0)
{
mp3_len = read;
cumulative_read += read * sizeof(char);
do
{
samples = hip_decode1_headers(hip, mp3_buffer, mp3_len, pcm_l, pcm_r, &mp3data);
wavsize += samples;
if(mp3data.header_parsed == 1)//header is gotten
{
if(nChannels < 0)//reading for the first time
{
//Write the header
WriteWaveHeader(pcm, 0x7FFFFFFF, mp3data.samplerate, mp3data.stereo, 16); //unknown size, so write maximum 32 bit signed value
}
nChannels = mp3data.stereo;
nSampleRate = mp3data.samplerate;
}
if(samples > 0 && mp3data.header_parsed != 1)
{
errorHandler("WARNING: lame decode error occured!");
break;
}
if(samples > 0)
{
for(i = 0 ; i < samples; i++)
{
fwrite((char*)&pcm_l[i], sizeof(char), sizeof(pcm_l[i]), pcm);
if(nChannels == 2)
{
fwrite((char*)&pcm_r[i], sizeof(char), sizeof(pcm_r[i]), pcm);
}
}
}
mp3_len = 0;
if(callback_proc != NULL)
{
int percentage = ((float)cumulative_read/MP3_total_size)*100;
callback_proc((HWND)GetModuleHandle(NULL), LH_COMPUTED, percentage, NULL);
}
}while(samples>0);
}
i = (16 / 8) * mp3data.stereo;
if (wavsize <= 0)
{
wavsize = 0;
}
else if (wavsize > 0xFFFFFFD0 / i)
{
wavsize = 0xFFFFFFD0;
}
else
{
wavsize *= i;
}
if(!fseek(pcm, 0l, SEEK_SET))//seek back and adjust length
WriteWaveHeader(pcm, (int) wavsize, mp3data.samplerate, mp3data.stereo, 16);
else
errorHandler("WARNING: can't seek back to adjust length in wave header!");
hip_decode_exit(hip);
lame_close(lame);
fclose(mp3);
fclose(pcm);
if(callback_proc != NULL)
{
callback_proc((HWND)GetModuleHandle(NULL), LH_DONE, NULL, NULL);
}
return 0;
}
void CLameHelper::errorHandler(char* msg)
{
printf("%s\n", msg);
}

GDB in a programming in C

I have a problem with a program in C. I need the absolute memory address of the local variables to the function main. I am debugging with the gdb.
How to know if there is an overflow in the variables.
Thank you
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <ctype.h>
typedef int16_t int16;
#include "mulaw.h"
void decodeFile(FILE * fIn, FILE * fOut, uint32_t samples) {
uint32_t i;
uint8_t * inSamples = malloc(samples * sizeof(uint8_t));
int16_t * outSamples = malloc(samples * sizeof(int16_t));
fread(inSamples, sizeof(uint8_t), samples, fIn);
for (i = 0; i < samples; i++) {
outSamples[i] = 4 * muLaw[inSamples[i]];
}
fwrite(outSamples, sizeof(int16_t), samples, fOut);
free(inSamples);
free(outSamples);
}
#define MAX_FILE_SIZE 256
int main(int argc, char **argv)
{
char inputFile[MAX_FILE_SIZE];
char outputFile[MAX_FILE_SIZE];
FILE * fIn = NULL, * fOut = NULL;
struct header_t {
char ChunkID[4];
int32_t ChunkSize;
char Format[4];
} header;
char SubchunkID[4];
uint32_t SubchunkSize;
struct subheader_t {
int16_t AudioFormat;
int16_t NumChannels;
int32_t SampleRate;
int32_t ByteRate;
int16_t BlockAlign;
int16_t BitsPerSample;
int16_t ExtraParamSize;
int16_t Padding;
} subheader;
/* Usage */
if (argc != 3) {
puts("Usage is: mulaw INFILE OUTFILE\n");
exit(EXIT_FAILURE);
}
/* Careful here!!!!! */
strncpy(inputFile, argv[1], MAX_FILE_SIZE);
strncpy(outputFile, argv[2], MAX_FILE_SIZE);
/* Open input file */
fIn = fopen (inputFile, "rb");
/* Read main header */
fread(&header, sizeof(struct header_t), 1, fIn);
if (memcmp(header.ChunkID, "RIFF", 4) != 0
|| memcmp(header.Format, "WAVE", 4) != 0) {
fprintf(stderr, "Unknown input format\n");
exit(EXIT_FAILURE);
}
/* Read sub header */
while (fread(SubchunkID, sizeof(SubchunkID), 1, fIn)) {
fread(&SubchunkSize, sizeof(SubchunkSize), 1, fIn);
printf("Reading chunk of type %c%c%c%c (%d bytes)\n",
isprint(SubchunkID[0]) ? SubchunkID[0] : '?',
isprint(SubchunkID[1]) ? SubchunkID[1] : '?',
isprint(SubchunkID[2]) ? SubchunkID[2] : '?',
isprint(SubchunkID[3]) ? SubchunkID[3] : '?',
(int) SubchunkSize);
if (memcmp(SubchunkID, "fmt ", 4) == 0) {
/* read a fmt_ header */
fread(&subheader, SubchunkSize, 1, fIn);
/* we are going to adjust this header now to change the audio format */
if (subheader.AudioFormat != 7) {
fprintf(stderr, "Only mu-law audio input is supported\n");
exit(EXIT_FAILURE);
}
/* adjust audio format and bit depth */
subheader.AudioFormat = 1;
subheader.BitsPerSample = 16;
/* fix derivative fields */
subheader.ByteRate = subheader.SampleRate * subheader.NumChannels * subheader.BitsPerSample / 8;
subheader.BlockAlign = subheader.NumChannels * subheader.BitsPerSample / 8;
/* we don't write ExtraParamSize, because for AudioFormat == 1 it is not needed */
SubchunkSize -= 2;
/* Open file and write the header for our updated fmt_ chunk */
fOut = fopen (outputFile, "wb");
fwrite(&header, sizeof(struct header_t), 1, fOut); /* Main header */
fwrite(SubchunkID, sizeof(SubchunkID), 1, fOut); /* Subheader */
fwrite(&SubchunkSize, sizeof(SubchunkSize), 1, fOut);
fwrite(&subheader, SubchunkSize, 1, fOut);
} else if (memcmp(SubchunkID, "data", 4) == 0) {
/* here is our mu-law data */
/* write the header for our new chunk (it is twice as large) */
int32_t tSubchunkSize = SubchunkSize * 2;
fwrite(SubchunkID, sizeof(SubchunkID), 1, fOut);
fwrite(&tSubchunkSize, sizeof(SubchunkSize), 1, fOut);
/* process the data */
(fIn, fOut, SubchunkSize);
} else {
/* unknown chunk, skipping */
fseek(fIn, SubchunkSize, SEEK_CUR);
}
}
/* Cleanup and exit */
fclose(fIn);
fclose(fOut);
exit(EXIT_SUCCESS);
}
}
Just run gdb yourexe
Then in gdb:
break main
run
p &inputFile
That will give you the address of inputFile: ex $2 = (char (*)[256]) 0x62fd60
To get the size of a variable you can use p sizeof(variable) or p sizeof(type_of_the_variable>)
That said, not sure if it will help you to track down your problem.

Adafruit SHT31-D and Raspberry Pi2 -- Unable to read data from sensor

hopefully one of you out there can help me!
I am trying to use the Adafruit SHT31-D (an i2c device) board with my Pi2. I am going off of this datasheet to guide my coding efforts. I am using Wiring Pi (wiringpi.com) to facilitate things.
I am able to successfully open a connection to the device, and sending commands seems to work fine, but I am unable to read data back! Here is the little mini library I have put together. I am hoping that one of you might have some experience with this sort of thing and be able to help me see where I've gone wrong.
To rule out any possible issues with the sensor hardware, I have tested it with my Arduino UNO and it works without issues.
Here is my C++ code:
SHT3x.h
#pragma once
/* Sensor Commands */
#define DEFAULT_SHT_ADDR 0x44
#define MEAS_HREP_STRETCH 0x2C06
#define MEAS_MREP_STRETCH 0x2C0D
#define MEAS_LREP_STRETCH 0x2C10
#define MEAS_HREP 0x2400
#define MEAS_MREP 0x240B
#define MEAS_LREP 0x2416
#include <cstdint>
class SHT3x {
public:
SHT3x(const uint8_t& i2cAddr);
float readHumidity(const uint16_t& command) const;
float readTempC(const uint16_t& command) const;
float readTempF(const uint16_t& command) const;
private:
int8_t _fd;
uint8_t _header;
uint32_t getMeasurement(const uint16_t& command) const;
void sendCommand(const uint16_t& command) const;
uint32_t receiveData(void) const;
};
SHT3x.cpp
#include <stdexcept>
#include <wiringPi.h>
#include <wiringPiI2C.h>
#include "SHT3x.h"
SHT3x::SHT3x(const uint8_t& i2cAddr) {
_fd = wiringPiI2CSetup(i2cAddr);
_header = i2cAddr << 1;
if (_fd < 0) {
throw std::runtime_error("Unable to connect");
}
}
float SHT3x::readHumidity(const uint16_t& command) const {
uint32_t raw_data = getMeasurement(command);
if (!raw_data) {
throw std::runtime_error("Bad Reading.");
}
uint16_t raw_humidity = raw_data & 0xFFFF;
float humidity = 100.0 * ((float) raw_humidity / (float) 0xFFFF);
return humidity;
}
float SHT3x::readTempC(const uint16_t& command) const {
uint32_t raw_data = getMeasurement(command);
if (!raw_data) {
throw std::runtime_error("Bad Reading.");
}
uint16_t raw_temp = raw_data >> 16;
float tempC = -45.0 + (175.0 * ((float) raw_temp / (float) 0xFFFF));
return tempC;
}
float SHT3x::readTempF(const uint16_t& command) const {
uint32_t raw_data = getMeasurement(command);
if (!raw_data) {
throw std::runtime_error("Bad Reading.");
}
uint16_t raw_temp = raw_data >> 16;
float tempF = -49.0 + (315.0 * ((float) raw_temp / (float) 0xFFFF));
return tempF;
}
uint32_t SHT3x::getMeasurement(const uint16_t& command) const {
try {
sendCommand(command);
} catch (std::runtime_error& e) {
throw;
}
return receiveData();
}
void SHT3x::sendCommand(const uint16_t& command) const {
// break command into bytes
uint8_t MSB = command >> 8;
uint8_t LSB = command & 0xFF;
// send header
int8_t ack = wiringPiI2CWrite(_fd, _header);
// send command
ack &= wiringPiI2CWrite(_fd, MSB);
ack &= wiringPiI2CWrite(_fd, LSB);
// handle errors
if (ack) {
throw std::runtime_error("Sending command failed.");
}
}
uint32_t SHT3x::receiveData(void) const {
uint32_t data;
// send header
uint8_t read_header = _header | 0x01;
int8_t ack = wiringPiI2CWrite(_fd, read_header);
// handle errors
if (ack) throw std::runtime_error("Unable to read data.");
// read data
data = wiringPiI2CRead(_fd);
for (size_t i = 0; i < 4; i++) {
printf("Data: %d\n", data);
data <<= 8;
if (i != 1) {
data |= wiringPiI2CRead(_fd);
} else {
wiringPiI2CRead(_fd); // skip checksum
}
}
wiringPiI2CRead(_fd); // second checksum
return data;
}
The SHT31 uses 16bit read and write, rather than using 2 8bit writes you might be better off using wiringpi's 16bit write. wiringPiI2CWriteReg16(). Same thing applies to the read.
Below is a very early copy of what I've done to read the sht31-d on a PI. It has no dependencies except i2c-dev. Heater enable/disable is not working, but softreset, clearstatus, getserial & get temp/humid are all fine.
/*
* Referances
* https://www.kernel.org/doc/Documentation/i2c/dev-interface
* https://github.com/adafruit/Adafruit_SHT31
* https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity_and_Temperature_Sensors/Sensirion_Humidity_and_Temperature_Sensors_SHT3x_Datasheet_digital.pdf
*
* This depends on i2c dev lib
* sudo apt-get install libi2c-dev
*
* Below is also a good one to have, but be careful i2cdump from the below cause the sht31 interface to become unstable for me
* and requires a hard-reset to recover correctly.
* sudo apt-get install i2c-tools
*
* on PI make sure below 2 commands are in /boot/config.txt
* dtparam=i2c_arm=on
* dtparam=i2c1_baudrate=10000
* I know we are slowing down the baurate from optimal, but it seems to be the most stable setting in my testing.
* add another 0 to the above baudrate for max setting, ie dtparam=i2c1_baudrate=100000
*/
#include <linux/i2c-dev.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <fcntl.h>
#include <elf.h>
#include <unistd.h>
#define SHT31_INTERFACE_ADDR 1
#define SHT31_DEFAULT_ADDR 0x44
#define SHT31_READ_SERIALNO 0x3780
#define SHT31_MEAS_HIGHREP_STRETCH 0x2C06 // Doesn't work on PI
#define SHT31_MEAS_MEDREP_STRETCH 0x2C0D // Seems to work on PI but shouldn't
#define SHT31_MEAS_LOWREP_STRETCH 0x2C10 // Seems to work on PI but shouldn't
#define SHT31_MEAS_HIGHREP 0x2400 // Doesn't work on PI
#define SHT31_MEAS_MEDREP 0x240B
#define SHT31_MEAS_LOWREP 0x2416
#define SHT31_READSTATUS 0xF32D
#define SHT31_CLEARSTATUS 0x3041
#define SHT31_SOFTRESET 0x30A2
#define SHT31_HEATER_ENABLE 0x306D
#define SHT31_HEATER_DISABLE 0x3066
#define CHECK_BIT(var,pos) (((var)>>(pos)) & 1)
/*
* delay:
* Wait for some number of milliseconds
*********************************************************************************
*/
void delay (unsigned int howLong)
{
struct timespec sleeper, dummy ;
sleeper.tv_sec = (time_t)(howLong / 1000) ;
sleeper.tv_nsec = (long)(howLong % 1000) * 1000000 ;
nanosleep (&sleeper, &dummy) ;
}
/*
*
* CRC-8 formula from page 14 of SHT spec pdf
*
* Test data 0xBE, 0xEF should yield 0x92
*
* Initialization data 0xFF
* Polynomial 0x31 (x8 + x5 +x4 +1)
* Final XOR 0x00
*/
uint8_t crc8(const uint8_t *data, int len)
{
const uint8_t POLYNOMIAL = 0x31;
uint8_t crc = 0xFF;
int j;
int i;
for (j = len; j; --j ) {
crc ^= *data++;
for ( i = 8; i; --i ) {
crc = ( crc & 0x80 )
? (crc << 1) ^ POLYNOMIAL
: (crc << 1);
}
}
return crc;
}
/*
*
* buffer should return with data read, size defined by readsize
*********************************************************************************
*/
int writeandread(int fd, uint16_t sndword, uint8_t *buffer, int readsize)
{
int rtn;
uint8_t snd[3];
// Split the 16bit word into two 8 bits that are flipped.
snd[0]=(sndword >> 8) & 0xff;
snd[1]=sndword & 0xff;
rtn = write(fd, snd, 2);
if ( rtn != 2 ) {
return 1;
}
if (readsize > 0) {
delay(10);
rtn = read(fd, buffer, readsize);
if ( rtn < readsize) {
return 2;
}
}
return 0;
}
void printserialnum(int file)
{
uint8_t buf[10];
int rtn;
rtn = writeandread(file, SHT31_READ_SERIALNO, buf, 6);
if (rtn != 0)
printf("ERROR:- Get serial i2c %s failed\n",(rtn==1?"write":"read"));
else {
if (buf[2] != crc8(buf, 2) || buf[5] != crc8(buf+3, 2))
printf("WARNING:- Get serial CRC check failed, don't trust result\n");
uint32_t serialNo = ((uint32_t)buf[0] << 24)
| ((uint32_t)buf[1] << 16)
| ((uint32_t)buf[3] << 8)
| (uint32_t)buf[4];
printf("Serial# = %d\n",serialNo);
}
}
void printtempandhumidity(int file)
{
uint8_t buf[10];
int rtn;
rtn = writeandread(file, SHT31_MEAS_MEDREP_STRETCH, buf, 6);
if (rtn != 0)
printf("ERROR:- Get temp/humidity i2c %s failed\n",(rtn==1?"write":"read"));
else {
if ( buf[2] != crc8(buf, 2) || buf[5] != crc8(buf+3, 2))
printf("WARNING:- Get temp/humidity CRC check failed, don't trust results\n");
uint16_t ST, SRH;
ST = buf[0];
ST <<= 8;
ST |= buf[1];
SRH = buf[3];
SRH <<= 8;
SRH |= buf[4];
double stemp = ST;
stemp *= 175;
stemp /= 0xffff;
stemp = -45 + stemp;
double stempf = ST;
stempf *= 315;
stempf /= 0xffff;
stempf = -49 + stempf;
printf("Temperature %.2fc - %.2ff\n",stemp,stempf);
double shum = SRH;
shum *= 100;
shum /= 0xFFFF;
printf("Humidity %.2f%%\n",shum);
}
}
void printBitStatus(uint16_t stat)
{
printf("Status\n");
printf(" Checksum status %d\n", CHECK_BIT(stat,0));
printf(" Last command status %d\n", CHECK_BIT(stat,1));
printf(" Reset detected status %d\n", CHECK_BIT(stat,4));
printf(" 'T' tracking alert %d\n", CHECK_BIT(stat,10));
printf(" 'RH' tracking alert %d\n", CHECK_BIT(stat,11));
printf(" Heater status %d\n", CHECK_BIT(stat,13));
printf(" Alert pending status %d\n", CHECK_BIT(stat,15));
}
void printstatus(int file)
{
uint8_t buf[10];
int rtn;
rtn = writeandread(file, SHT31_READSTATUS, buf, 3);
if (rtn != 0)
printf("ERROR:- readstatus %s failed\n",(rtn==1?"write":"read"));
else {
if ( buf[2] != crc8(buf, 2))
printf("WARNING:- Get status CRC check failed, don't trust results\n");
uint16_t stat = buf[0];
stat <<= 8;
stat |= buf[1];
printBitStatus(stat);
}
}
void clearstatus(int file)
{
if( writeandread(file, SHT31_CLEARSTATUS, NULL, 0) != 0)
printf("ERROR:- sht31 clear status failed\n");
else
printf("Clearing status - ok\n");
}
void softreset(int file)
{
if( writeandread(file, SHT31_SOFTRESET, NULL, 0) != 0)
printf("ERROR:- sht31 soft reset failed\n");
else
printf("Soft reset - ok\n");
}
void enableheater(int file)
{
if( writeandread(file, SHT31_HEATER_ENABLE, NULL, 0) != 0)
printf("ERROR:- sht31 heater enable failed\n");
else
printf("Enabiling heater - ok\n");
}
void disableheater(int file)
{
if( writeandread(file, SHT31_HEATER_DISABLE, NULL, 0) != 0)
printf("ERROR:- sht31 heater enable failed\n");
else
printf("Disableing heater - ok\n");
}
int main()
{
int file;
char filename[20];
snprintf(filename, 19, "/dev/i2c-%d", SHT31_INTERFACE_ADDR);
file = open(filename, O_RDWR);
if (file < 0) {
printf("ERROR:- Can't open %s\n",filename);
exit(1);
}
if (ioctl(file, I2C_SLAVE, SHT31_DEFAULT_ADDR) < 0) {
printf("ERROR:- Connecting to sht31 I2C address 0x%02hhx\n", SHT31_DEFAULT_ADDR);
exit(1);
}
softreset(file);
printtempandhumidity(file);
printstatus(file);
close(file);
return 0;
}

How to use LZMA SDK in C++?

i have difficulties in using LZMA SDK in my application.
I would like to create a kind of single file compression tool. I dont need any directory support, just need only the LZMA2 stream. But i have no idea on how LZMA SDK is to be used for this.
Please can anyone give me a little example on how the LZMA SDK can be used under C++?
I think that it's a properly little example to use LZMA SDK.
/* LzmaUtil.c -- Test application for LZMA compression
2008-08-05
Igor Pavlov
public domain */
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../LzmaDec.h"
#include "../LzmaEnc.h"
#include "../Alloc.h"
const char *kCantReadMessage = "Can not read input file";
const char *kCantWriteMessage = "Can not write output file";
const char *kCantAllocateMessage = "Can not allocate memory";
const char *kDataErrorMessage = "Data error";
static void *SzAlloc(void *p, size_t size) { p = p; return MyAlloc(size); }
static void SzFree(void *p, void *address) { p = p; MyFree(address); }
static ISzAlloc g_Alloc = { SzAlloc, SzFree };
#define kInBufferSize (1 << 15)
#define kOutBufferSize (1 << 15)
unsigned char g_InBuffer[kInBufferSize];
unsigned char g_OutBuffer[kOutBufferSize];
size_t MyReadFile(FILE *file, void *data, size_t size)
{ return fread(data, 1, size, file); }
int MyReadFileAndCheck(FILE *file, void *data, size_t size)
{ return (MyReadFile(file, data, size) == size); }
size_t MyWriteFile(FILE *file, const void *data, size_t size)
{
if (size == 0)
return 0;
return fwrite(data, 1, size, file);
}
int MyWriteFileAndCheck(FILE *file, const void *data, size_t size)
{ return (MyWriteFile(file, data, size) == size); }
long MyGetFileLength(FILE *file)
{
long length;
fseek(file, 0, SEEK_END);
length = ftell(file);
fseek(file, 0, SEEK_SET);
return length;
}
void PrintHelp(char *buffer)
{
strcat(buffer, "\nLZMA Utility 4.58 Copyright (c) 1999-2008 Igor Pavlov 2008-04-11\n"
"\nUsage: lzma <e|d> inputFile outputFile\n"
" e: encode file\n"
" d: decode file\n");
}
int PrintError(char *buffer, const char *message)
{
strcat(buffer, "\nError: ");
strcat(buffer, message);
strcat(buffer, "\n");
return 1;
}
int PrintErrorNumber(char *buffer, SRes val)
{
sprintf(buffer + strlen(buffer), "\nError code: %x\n", (unsigned)val);
return 1;
}
int PrintUserError(char *buffer)
{
return PrintError(buffer, "Incorrect command");
}
#define IN_BUF_SIZE (1 << 16)
#define OUT_BUF_SIZE (1 << 16)
static int Decode(FILE *inFile, FILE *outFile, char *rs)
{
UInt64 unpackSize;
int thereIsSize; /* = 1, if there is uncompressed size in headers */
int i;
int res = 0;
CLzmaDec state;
/* header: 5 bytes of LZMA properties and 8 bytes of uncompressed size */
unsigned char header[LZMA_PROPS_SIZE + 8];
/* Read and parse header */
if (!MyReadFileAndCheck(inFile, header, sizeof(header)))
return PrintError(rs, kCantReadMessage);
unpackSize = 0;
thereIsSize = 0;
for (i = 0; i < 8; i++)
{
unsigned char b = header[LZMA_PROPS_SIZE + i];
if (b != 0xFF)
thereIsSize = 1;
unpackSize += (UInt64)b << (i * 8);
}
LzmaDec_Construct(&state);
res = LzmaDec_Allocate(&state, header, LZMA_PROPS_SIZE, &g_Alloc);
if (res != SZ_OK)
return res;
{
Byte inBuf[IN_BUF_SIZE];
Byte outBuf[OUT_BUF_SIZE];
size_t inPos = 0, inSize = 0, outPos = 0;
LzmaDec_Init(&state);
for (;;)
{
if (inPos == inSize)
{
inSize = MyReadFile(inFile, inBuf, IN_BUF_SIZE);
inPos = 0;
}
{
SizeT inProcessed = inSize - inPos;
SizeT outProcessed = OUT_BUF_SIZE - outPos;
ELzmaFinishMode finishMode = LZMA_FINISH_ANY;
ELzmaStatus status;
if (thereIsSize && outProcessed > unpackSize)
{
outProcessed = (SizeT)unpackSize;
finishMode = LZMA_FINISH_END;
}
res = LzmaDec_DecodeToBuf(&state, outBuf + outPos, &outProcessed,
inBuf + inPos, &inProcessed, finishMode, &status);
inPos += (UInt32)inProcessed;
outPos += outProcessed;
unpackSize -= outProcessed;
if (outFile != 0)
MyWriteFile(outFile, outBuf, outPos);
outPos = 0;
if (res != SZ_OK || thereIsSize && unpackSize == 0)
break;
if (inProcessed == 0 && outProcessed == 0)
{
if (thereIsSize || status != LZMA_STATUS_FINISHED_WITH_MARK)
res = SZ_ERROR_DATA;
break;
}
}
}
}
LzmaDec_Free(&state, &g_Alloc);
return res;
}
typedef struct _CFileSeqInStream
{
ISeqInStream funcTable;
FILE *file;
} CFileSeqInStream;
static SRes MyRead(void *p, void *buf, size_t *size)
{
if (*size == 0)
return SZ_OK;
*size = MyReadFile(((CFileSeqInStream*)p)->file, buf, *size);
/*
if (*size == 0)
return SZE_FAIL;
*/
return SZ_OK;
}
typedef struct _CFileSeqOutStream
{
ISeqOutStream funcTable;
FILE *file;
} CFileSeqOutStream;
static size_t MyWrite(void *pp, const void *buf, size_t size)
{
return MyWriteFile(((CFileSeqOutStream *)pp)->file, buf, size);
}
static SRes Encode(FILE *inFile, FILE *outFile, char *rs)
{
CLzmaEncHandle enc;
SRes res;
CFileSeqInStream inStream;
CFileSeqOutStream outStream;
CLzmaEncProps props;
enc = LzmaEnc_Create(&g_Alloc);
if (enc == 0)
return SZ_ERROR_MEM;
inStream.funcTable.Read = MyRead;
inStream.file = inFile;
outStream.funcTable.Write = MyWrite;
outStream.file = outFile;
LzmaEncProps_Init(&props);
res = LzmaEnc_SetProps(enc, &props);
if (res == SZ_OK)
{
Byte header[LZMA_PROPS_SIZE + 8];
size_t headerSize = LZMA_PROPS_SIZE;
UInt64 fileSize;
int i;
res = LzmaEnc_WriteProperties(enc, header, &headerSize);
fileSize = MyGetFileLength(inFile);
for (i = 0; i < 8; i++)
header[headerSize++] = (Byte)(fileSize >> (8 * i));
if (!MyWriteFileAndCheck(outFile, header, headerSize))
return PrintError(rs, "writing error");
if (res == SZ_OK)
res = LzmaEnc_Encode(enc, &outStream.funcTable, &inStream.funcTable,
NULL, &g_Alloc, &g_Alloc);
}
LzmaEnc_Destroy(enc, &g_Alloc, &g_Alloc);
return res;
}
int main2(int numArgs, const char *args[], char *rs)
{
FILE *inFile = 0;
FILE *outFile = 0;
char c;
int res;
int encodeMode;
if (numArgs == 1)
{
PrintHelp(rs);
return 0;
}
if (numArgs < 3 || numArgs > 4 || strlen(args[1]) != 1)
return PrintUserError(rs);
c = args[1][0];
encodeMode = (c == 'e' || c == 'E');
if (!encodeMode && c != 'd' && c != 'D')
return PrintUserError(rs);
{
size_t t4 = sizeof(UInt32);
size_t t8 = sizeof(UInt64);
if (t4 != 4 || t8 != 8)
return PrintError(rs, "LZMA UTil needs correct UInt32 and UInt64");
}
inFile = fopen(args[2], "rb");
if (inFile == 0)
return PrintError(rs, "Can not open input file");
if (numArgs > 3)
{
outFile = fopen(args[3], "wb+");
if (outFile == 0)
return PrintError(rs, "Can not open output file");
}
else if (encodeMode)
PrintUserError(rs);
if (encodeMode)
{
res = Encode(inFile, outFile, rs);
}
else
{
res = Decode(inFile, outFile, rs);
}
if (outFile != 0)
fclose(outFile);
fclose(inFile);
if (res != SZ_OK)
{
if (res == SZ_ERROR_MEM)
return PrintError(rs, kCantAllocateMessage);
else if (res == SZ_ERROR_DATA)
return PrintError(rs, kDataErrorMessage);
else
return PrintErrorNumber(rs, res);
}
return 0;
}
int MY_CDECL main(int numArgs, const char *args[])
{
char rs[800] = { 0 };
int res = main2(numArgs, args, rs);
printf(rs);
return res;
}
Also you can see it at:
http://read.pudn.com/downloads151/sourcecode/zip/656407/7z460/C/LzmaUtil/LzmaUtil.c__.htm
http://read.pudn.com/downloads157/sourcecode/zip/698262/LZMA/LzmaUtil.c__.htm
I recently found a nice example, written in C++. Credit goes to GH user Treeki who published the original gist:
// note: -D_7ZIP_ST is required when compiling on non-Windows platforms
// g++ -o lzma_sample -std=c++14 -D_7ZIP_ST lzma_sample.cpp LzmaDec.c LzmaEnc.c LzFind.c
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <memory>
#include "LzmaEnc.h"
#include "LzmaDec.h"
static void *_lzmaAlloc(ISzAllocPtr, size_t size) {
return new uint8_t[size];
}
static void _lzmaFree(ISzAllocPtr, void *addr) {
if (!addr)
return;
delete[] reinterpret_cast<uint8_t *>(addr);
}
static ISzAlloc _allocFuncs = {
_lzmaAlloc, _lzmaFree
};
std::unique_ptr<uint8_t[]> lzmaCompress(const uint8_t *input, uint32_t inputSize, uint32_t *outputSize) {
std::unique_ptr<uint8_t[]> result;
// set up properties
CLzmaEncProps props;
LzmaEncProps_Init(&props);
if (inputSize >= (1 << 20))
props.dictSize = 1 << 20; // 1mb dictionary
else
props.dictSize = inputSize; // smaller dictionary = faster!
props.fb = 40;
// prepare space for the encoded properties
SizeT propsSize = 5;
uint8_t propsEncoded[5];
// allocate some space for the compression output
// this is way more than necessary in most cases...
// but better safe than sorry
// (a smarter implementation would use a growing buffer,
// but this requires a bunch of fuckery that is out of
/// scope for this simple example)
SizeT outputSize64 = inputSize * 1.5;
if (outputSize64 < 1024)
outputSize64 = 1024;
auto output = std::make_unique<uint8_t[]>(outputSize64);
int lzmaStatus = LzmaEncode(
output.get(), &outputSize64, input, inputSize,
&props, propsEncoded, &propsSize, 0,
NULL,
&_allocFuncs, &_allocFuncs);
*outputSize = outputSize64 + 13;
if (lzmaStatus == SZ_OK) {
// tricky: we have to generate the LZMA header
// 5 bytes properties + 8 byte uncompressed size
result = std::make_unique<uint8_t[]>(outputSize64 + 13);
uint8_t *resultData = result.get();
memcpy(resultData, propsEncoded, 5);
for (int i = 0; i < 8; i++)
resultData[5 + i] = (inputSize >> (i * 8)) & 0xFF;
memcpy(resultData + 13, output.get(), outputSize64);
}
return result;
}
std::unique_ptr<uint8_t[]> lzmaDecompress(const uint8_t *input, uint32_t inputSize, uint32_t *outputSize) {
if (inputSize < 13)
return NULL; // invalid header!
// extract the size from the header
UInt64 size = 0;
for (int i = 0; i < 8; i++)
size |= (input[5 + i] << (i * 8));
if (size <= (256 * 1024 * 1024)) {
auto blob = std::make_unique<uint8_t[]>(size);
ELzmaStatus lzmaStatus;
SizeT procOutSize = size, procInSize = inputSize - 13;
int status = LzmaDecode(blob.get(), &procOutSize, &input[13], &procInSize, input, 5, LZMA_FINISH_END, &lzmaStatus, &_allocFuncs);
if (status == SZ_OK && procOutSize == size) {
*outputSize = size;
return blob;
}
}
return NULL;
}
void hexdump(const uint8_t *buf, int size) {
int lines = (size + 15) / 16;
for (int i = 0; i < lines; i++) {
printf("%08x | ", i * 16);
int lineMin = i * 16;
int lineMax = lineMin + 16;
int lineCappedMax = (lineMax > size) ? size : lineMax;
for (int j = lineMin; j < lineCappedMax; j++)
printf("%02x ", buf[j]);
for (int j = lineCappedMax; j < lineMax; j++)
printf(" ");
printf("| ");
for (int j = lineMin; j < lineCappedMax; j++) {
if (buf[j] >= 32 && buf[j] <= 127)
printf("%c", buf[j]);
else
printf(".");
}
printf("\n");
}
}
void testIt(const uint8_t *input, int size) {
printf("Test Input:\n");
hexdump(input, size);
uint32_t compressedSize;
auto compressedBlob = lzmaCompress(input, size, &compressedSize);
if (compressedBlob) {
printf("Compressed:\n");
hexdump(compressedBlob.get(), compressedSize);
} else {
printf("Nope, we screwed it\n");
return;
}
// let's try decompressing it now
uint32_t decompressedSize;
auto decompressedBlob = lzmaDecompress(compressedBlob.get(), compressedSize, &decompressedSize);
if (decompressedBlob) {
printf("Decompressed:\n");
hexdump(decompressedBlob.get(), decompressedSize);
} else {
printf("Nope, we screwed it (part 2)\n");
return;
}
printf("----------\n");
}
void testIt(const char *string) {
testIt((const uint8_t *)string, strlen(string));
}
int main(int argc, char **argv) {
testIt("a");
testIt("here is a cool string");
testIt("here's something that should compress pretty well: abcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdef");
return 0;
}
You can refer to this file on how to use lzma2。
https://github.com/Tencent/libpag/blob/aab6391e455193c8ec5b8e2031b495b3fe77b034/test/framework/utils/LzmaUtil.cpp
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Tencent is pleased to support the open source community by making libpag available.
//
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
// except in compliance with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// unless required by applicable law or agreed to in writing, software distributed under the
// license is distributed on an "as is" basis, without warranties or conditions of any kind,
// either express or implied. see the license for the specific language governing permissions
// and limitations under the license.
//
/////////////////////////////////////////////////////////////////////////////////////////////////
#include "LzmaUtil.h"
#include "test/framework/lzma/Lzma2DecMt.h"
#include "test/framework/lzma/Lzma2Enc.h"
namespace pag {
static void* LzmaAlloc(ISzAllocPtr, size_t size) {
return new uint8_t[size];
}
static void LzmaFree(ISzAllocPtr, void* address) {
if (!address) {
return;
}
delete[] reinterpret_cast<uint8_t*>(address);
}
static ISzAlloc gAllocFuncs = {LzmaAlloc, LzmaFree};
class SequentialOutStream {
public:
virtual ~SequentialOutStream() = default;
virtual bool write(const void* data, size_t size) = 0;
};
class SequentialInStream {
public:
virtual ~SequentialInStream() = default;
virtual bool read(void* data, size_t size, size_t* processedSize) = 0;
};
struct CSeqInStreamWrap {
ISeqInStream vt;
std::unique_ptr<SequentialInStream> inStream;
};
struct CSeqOutStreamWrap {
ISeqOutStream vt;
std::unique_ptr<SequentialOutStream> outStream;
};
class BuffPtrInStream : public SequentialInStream {
public:
explicit BuffPtrInStream(const uint8_t* buffer, size_t bufferSize)
: buffer(buffer), bufferSize(bufferSize) {
}
bool read(void* data, size_t size, size_t* processedSize) override {
if (processedSize) {
*processedSize = 0;
}
if (size == 0 || position >= bufferSize) {
return true;
}
auto remain = bufferSize - position;
if (remain > size) {
remain = size;
}
memcpy(data, static_cast<const uint8_t*>(buffer) + position, remain);
position += remain;
if (processedSize) {
*processedSize = remain;
}
return true;
}
private:
const uint8_t* buffer = nullptr;
size_t bufferSize = 0;
size_t position = 0;
};
class VectorOutStream : public SequentialOutStream {
public:
explicit VectorOutStream(std::vector<uint8_t>* buffer) : buffer(buffer) {
}
bool write(const void* data, size_t size) override {
auto oldSize = buffer->size();
buffer->resize(oldSize + size);
memcpy(&(*buffer)[oldSize], data, size);
return true;
}
private:
std::vector<uint8_t>* buffer;
};
class BuffPtrSeqOutStream : public SequentialOutStream {
public:
BuffPtrSeqOutStream(uint8_t* buffer, size_t size) : buffer(buffer), bufferSize(size) {
}
bool write(const void* data, size_t size) override {
auto remain = bufferSize - position;
if (remain > size) {
remain = size;
}
if (remain != 0) {
memcpy(buffer + position, data, remain);
position += remain;
}
return remain != 0 || size == 0;
}
private:
uint8_t* buffer = nullptr;
size_t bufferSize = 0;
size_t position = 0;
};
static const size_t kStreamStepSize = 1 << 31;
static SRes MyRead(const ISeqInStream* p, void* data, size_t* size) {
CSeqInStreamWrap* wrap = CONTAINER_FROM_VTBL(p, CSeqInStreamWrap, vt);
auto curSize = (*size < kStreamStepSize) ? *size : kStreamStepSize;
if (!wrap->inStream->read(data, curSize, &curSize)) {
return SZ_ERROR_READ;
}
*size = curSize;
return SZ_OK;
}
static size_t MyWrite(const ISeqOutStream* p, const void* buf, size_t size) {
auto* wrap = CONTAINER_FROM_VTBL(p, CSeqOutStreamWrap, vt);
if (wrap->outStream->write(buf, size)) {
return size;
}
return 0;
}
class Lzma2Encoder {
public:
Lzma2Encoder() {
encoder = Lzma2Enc_Create(&gAllocFuncs, &gAllocFuncs);
}
~Lzma2Encoder() {
Lzma2Enc_Destroy(encoder);
}
std::shared_ptr<Data> code(const std::shared_ptr<Data>& inputData) {
if (encoder == nullptr || inputData == nullptr || inputData->size() == 0) {
return nullptr;
}
auto inputSize = inputData->size();
CLzma2EncProps lzma2Props;
Lzma2EncProps_Init(&lzma2Props);
lzma2Props.lzmaProps.dictSize = inputSize;
lzma2Props.lzmaProps.level = 9;
lzma2Props.numTotalThreads = 4;
Lzma2Enc_SetProps(encoder, &lzma2Props);
std::vector<uint8_t> outBuf;
outBuf.resize(1 + 8);
outBuf[0] = Lzma2Enc_WriteProperties(encoder);
for (int i = 0; i < 8; i++) {
outBuf[1 + i] = static_cast<uint8_t>(inputSize >> (8 * i));
}
CSeqInStreamWrap inWrap = {};
inWrap.vt.Read = MyRead;
inWrap.inStream = std::make_unique<BuffPtrInStream>(
static_cast<const uint8_t*>(inputData->data()), inputSize);
CSeqOutStreamWrap outStream = {};
outStream.vt.Write = MyWrite;
outStream.outStream = std::make_unique<VectorOutStream>(&outBuf);
auto status =
Lzma2Enc_Encode2(encoder, &outStream.vt, nullptr, nullptr, &inWrap.vt, nullptr, 0, nullptr);
if (status != SZ_OK) {
return nullptr;
}
return Data::MakeWithCopy(&outBuf[0], outBuf.size());
}
private:
CLzma2EncHandle encoder = nullptr;
};
std::shared_ptr<Data> LzmaUtil::Compress(const std::shared_ptr<Data>& pixelData) {
Lzma2Encoder encoder;
return encoder.code(pixelData);
}
class Lzma2Decoder {
public:
Lzma2Decoder() {
decoder = Lzma2DecMt_Create(&gAllocFuncs, &gAllocFuncs);
}
~Lzma2Decoder() {
if (decoder) {
Lzma2DecMt_Destroy(decoder);
}
}
std::shared_ptr<Data> code(const std::shared_ptr<Data>& inputData) {
if (decoder == nullptr || inputData == nullptr || inputData->size() == 0) {
return nullptr;
}
auto input = static_cast<const uint8_t*>(inputData->data());
auto inputSize = inputData->size() - 9;
Byte prop = static_cast<const Byte*>(input)[0];
CLzma2DecMtProps props;
Lzma2DecMtProps_Init(&props);
props.inBufSize_ST = inputSize;
props.numThreads = 1;
UInt64 outBufferSize = 0;
for (int i = 0; i < 8; i++) {
outBufferSize |= (input[1 + i] << (i * 8));
}
auto outBuffer = new uint8_t[outBufferSize];
CSeqInStreamWrap inWrap = {};
inWrap.vt.Read = MyRead;
inWrap.inStream = std::make_unique<BuffPtrInStream>(input + 9, inputSize);
CSeqOutStreamWrap outWrap = {};
outWrap.vt.Write = MyWrite;
outWrap.outStream = std::make_unique<BuffPtrSeqOutStream>(outBuffer, outBufferSize);
UInt64 inProcessed = 0;
int isMT = false;
auto res = Lzma2DecMt_Decode(decoder, prop, &props, &outWrap.vt, &outBufferSize, 1, &inWrap.vt,
&inProcessed, &isMT, nullptr);
if (res == SZ_OK && inputSize == inProcessed) {
return Data::MakeAdopted(outBuffer, outBufferSize, Data::DeleteProc);
}
delete[] outBuffer;
return nullptr;
}
private:
CLzma2DecMtHandle decoder = nullptr;
};
std::shared_ptr<Data> LzmaUtil::Decompress(const std::shared_ptr<Data>& data) {
Lzma2Decoder decoder;
return decoder.code(data);
}
} // namespace pag

PCM audio playback using alsa in RHEL6

I am trying to play a wave file in RHEL6 using alsa library calls in my C Code in Qt. I am reading the wave file ("t15.wav") in a buffer(wave_buffer). The wave header has been stripped off since the alsa library requires raw PCM samples to be played. Further I have set up the PCM hardware & Software params using 'snd_pcm_hw_params(PCM, params)' & 'snd_pcm_sw_params_current(PCM, swparams)' and many other calls. I am writing the PCM samples on the PCM handle using 'snd_pcm_writei' command. For this purpose i am reading a chunk(32 or 1024 or 2048 or 4096 or 8192 bytes) of data from the wave_buffer and sending it for playing using the snd_pcm_writei command. If I choose a small chunk the audio quality falters but playback is uninterrupted. If I use a bigger chunk(greater than 4096 i.e. 8192) I get perfect audio quality but it is interrupted( When next chunk of data is required for playing ). My constraint is that I can have access to data in chunks only and not as a file or entire buffer. Can anybody help me in removing the interruptions in playing the wave data so that I can get uninterrupted audio playback. Following is my code :
The two variables buffer_time & period_time return the period size which is the size of chunk.
If buffer_time = 5000 & period_time=1000 the period_size returned by alsa library is 32 bytes //audio quality falters but no interruptions
If buffer_time = 500000 & period_time=100000 the period_size returned by alsa library is 8192 bytes //good audio quality but interrupted
Tuning these parameters seems useless as I have wasted a lot of time doing this. Please help me get through this problem-----
Stucture of Wave File :
Sample Rate : 44100
Bits per Sample : 16
Channels : 2
mainwindow.h----
#ifndef MAINWINDOW_H
#define MAINWINDOW_H
#include <QMainWindow>
#include <alsa/asoundlib.h>
#define BLOCKSIZE 44100 * 2 * 2 // Sample Rate * Channels * Byte per Sample(Bits per sample / 8)
namespace Ui {
class MainWindow;
}
class MainWindow : public QMainWindow
{
Q_OBJECT
public:
explicit MainWindow(QWidget *parent = 0);
int init_alsa();
int play_snd();
~MainWindow();
snd_pcm_t *PCM;
snd_pcm_sframes_t delayp;
snd_pcm_sframes_t availp;
snd_pcm_sw_params_t *swparams;
snd_pcm_hw_params_t *params;
static snd_pcm_sframes_t period_size;
static snd_pcm_sframes_t buffer_size;
unsigned char wave_buffer[900000];
unsigned char play_buffer[BLOCKSIZE];
int filesize;
FILE *fp;
private:
Ui::MainWindow *ui;
};
#endif // MAINWINDOW_H
mainwindow.cpp---
#include "mainwindow.h"
#include "ui_mainwindow.h"
snd_pcm_sframes_t MainWindow::period_size;
snd_pcm_sframes_t MainWindow::buffer_size;
MainWindow::MainWindow(QWidget *parent) :
QMainWindow(parent),
ui(new Ui::MainWindow)
{
ui->setupUi(this);
if((fp = fopen("t15.wav","rb"))==NULL)
printf("Error Opening File");
fseek(fp,0L,SEEK_END);
filesize = ftell(fp)-44;
fseek(fp,0L,SEEK_SET);
fseek(fp,44,SEEK_SET);
fread(wave_buffer,filesize,1,fp);
fclose(fp);
delayp = 0;
init_alsa();
play_snd();
}
MainWindow::~MainWindow()
{
delete ui;
}
int MainWindow::init_alsa()
{
unsigned int rate = 44100;
int err,dir;
unsigned int rrate = 44100;
snd_pcm_uframes_t size;
static unsigned int buffer_time = 500000;
static unsigned int period_time = 100000;
static int period_event = 0;
if ((err=snd_pcm_open(&PCM,"plughw:0,0",SND_PCM_STREAM_PLAYBACK, 0)) < 0)
{
fprintf(stderr, "Can't use sound: %s\n", snd_strerror(err));
return err;
}
snd_pcm_hw_params_alloca(&params);
snd_pcm_sw_params_alloca(&swparams);
//snd_pcm_nonblock(PCM,0);
/* choose all parameters */
err = snd_pcm_hw_params_any(PCM, params);
if (err < 0) {
printf("Broken configuration for playback: no configurations available: %s\n", snd_strerror(err));
return err;
}
/* set hardware resampling */
err = snd_pcm_hw_params_set_rate_resample(PCM, params, 1);
if (err < 0) {
printf("Resampling setup failed for playback: %s\n", snd_strerror(err));
return err;
}
/* set the interleaved read/write format */
err = snd_pcm_hw_params_set_access(PCM, params, SND_PCM_ACCESS_RW_INTERLEAVED);
if (err < 0) {
printf("Access type not available for playback: %s\n", snd_strerror(err));
return err;
}
/* set the sample format */
err = snd_pcm_hw_params_set_format(PCM, params, SND_PCM_FORMAT_S16_LE);
if (err < 0) {
printf("Sample format not available for playback: %s\n", snd_strerror(err));
return err;
}
/* set the count of channels */
err = snd_pcm_hw_params_set_channels(PCM, params, 2);
if (err < 0) {
printf("Channels count (%i) not available for playbacks: %s\n", 2, snd_strerror(err));
return err;
}
/* set the stream rate */
rrate = rate;
err = snd_pcm_hw_params_set_rate_near(PCM, params, &rrate, 0);
if (err < 0) {
printf("Rate %iHz not available for playback: %s\n", 44100, snd_strerror(err));
return err;
}
if (rrate != 44100) {
printf("Rate doesn't match (requested %iHz, get %iHz)\n", rrate, err);
return -EINVAL;
}
/* set the buffer time */
err = snd_pcm_hw_params_set_buffer_time_near(PCM, params, &buffer_time, &dir);
if (err < 0) {
printf("Unable to set buffer time %i for playback: %s\n", buffer_time, snd_strerror(err));
return err;
}
err = snd_pcm_hw_params_get_buffer_size(params, &size);
if (err < 0) {
printf("Unable to get buffer size for playback: %s\n", snd_strerror(err));
return err;
}
buffer_size = size;
/* set the period time */
err = snd_pcm_hw_params_set_period_time_near(PCM, params, &period_time, &dir);
if (err < 0) {
printf("Unable to set period time %i for playback: %s\n", period_time, snd_strerror(err));
return err;
}
err = snd_pcm_hw_params_get_period_size(params, &size, &dir);
if (err < 0) {
printf("Unable to get period size for playback: %s\n", snd_strerror(err));
return err;
}
period_size = size;
/* write the parameters to device */
err = snd_pcm_hw_params(PCM, params);
if (err < 0) {
printf("Unable to set hw params for playback: %s\n", snd_strerror(err));
return err;
}
printf("Size = %ld",period_size);
snd_pcm_sw_params_current(PCM, swparams); /* get the current swparams */
/* start the transfer when the buffer is almost full: */
/* (buffer_size / avail_min) * avail_min */
snd_pcm_sw_params_set_start_threshold(PCM, swparams, (buffer_size / period_size) * period_size);
/* allow the transfer when at least period_size samples can be processed */
/* or disable this mechanism when period event is enabled (aka interrupt like style processing) */
snd_pcm_sw_params_set_avail_min(PCM, swparams, period_event ? buffer_size : period_size);
snd_pcm_sw_params(PCM, swparams);/* write the parameters to the playback device */
return 1;
}
int MainWindow::play_snd()
{
int curr_pos = 0;
int buff_size = 0;
long val = 0;
while(curr_pos < filesize)
{
if(filesize-curr_pos >= period_size)
{
memcpy(play_buffer,wave_buffer+curr_pos,period_size);
buff_size = period_size;
curr_pos += buff_size;
}
else
{
memcpy(play_buffer,wave_buffer+curr_pos,filesize-curr_pos);
buff_size = filesize - curr_pos;
curr_pos += buff_size;
}
int i=1;
unsigned char *ptr = play_buffer;
while(buff_size > 0)
{
val = snd_pcm_writei(PCM,&play_buffer,buff_size);
if (val == -EAGAIN)
continue;
ptr += val * 2;
buff_size -= val;
}
}
return 0;
}
I have a similar C Code of alsa library which generates sine wave samples at runtime and plays them using same snd_pcm_writei command and it plays perfectly without any interruptions....This is the alsa library code---
/*
* This small demo sends a simple sinusoidal wave to your speakers.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sched.h>
#include <errno.h>
#include <getopt.h>
#include "alsa/asoundlib.h"
#include <sys/time.h>
#include <math.h>
static char *device = "plughw:0,0"; /* playback device */
static snd_pcm_format_t format = SND_PCM_FORMAT_S16_LE; /* sample format */
static unsigned int rate = 44100; /* stream rate */
static unsigned int channels = 2; /* count of channels */
static unsigned int buffer_time = 5000; /* ring buffer length in us */
static unsigned int period_time = 1000; /* period time in us */
static double freq = 440; /* sinusoidal wave frequency in Hz */
static int resample = 1; /* enable alsa-lib resampling */
static int period_event = 0; /* produce poll event after each period */
static snd_pcm_sframes_t buffer_size;
static snd_pcm_sframes_t period_size;
static snd_output_t *output = NULL;
snd_pcm_sframes_t delayp;
snd_pcm_sframes_t availp;
static void generate_sine(const snd_pcm_channel_area_t *areas,
snd_pcm_uframes_t offset,
int count, double *_phase)
{
static double max_phase = 2. * M_PI;
double phase = *_phase;
double step = max_phase*freq/(double)rate;
unsigned char *samples[channels];
int steps[channels];
unsigned int chn;
int format_bits = snd_pcm_format_width(format);
unsigned int maxval = (1 << (format_bits - 1)) - 1;
int bps = format_bits / 8; /* bytes per sample */
int phys_bps = snd_pcm_format_physical_width(format) / 8;
int big_endian = snd_pcm_format_big_endian(format) == 1;
int to_unsigned = snd_pcm_format_unsigned(format) == 1;
int is_float = (format == SND_PCM_FORMAT_FLOAT_LE ||
format == SND_PCM_FORMAT_FLOAT_BE);
/* verify and prepare the contents of areas */
for (chn = 0; chn < channels; chn++) {
samples[chn] = /*(signed short *)*/(((unsigned char *)areas[chn].addr) + (areas[chn].first / 8));
steps[chn] = areas[chn].step / 8;
samples[chn] += offset * steps[chn];
}
/* fill the channel areas */
while (count-- > 0) {
union {
float f;
int i;
} fval;
int res, i;
if (is_float)
{
fval.f = sin(phase) * maxval;
res = fval.i;
}
else
res = sin(phase) * maxval;
if (to_unsigned)
res ^= 1U << (format_bits - 1);
for (chn = 0; chn < channels; chn++) {
/* Generate data in native endian format */
if (big_endian) {
for (i = 0; i < bps; i++)
*(samples[chn] + phys_bps - 1 - i) = (res >> i * 8) & 0xff;
} else {
for (i = 0; i < bps; i++)
*(samples[chn] + i) = (res >> i * 8) & 0xff;
}
samples[chn] += steps[chn];
}
phase += step;
if (phase >= max_phase)
phase -= max_phase;
}
*_phase = phase;
}
static int set_hwparams(snd_pcm_t *handle, snd_pcm_hw_params_t *params, snd_pcm_access_t access)
{
unsigned int rrate;
snd_pcm_uframes_t size;
int dir;
snd_pcm_hw_params_any(handle, params); /* choose all parameters */
snd_pcm_hw_params_set_rate_resample(handle, params, resample);/* set hardware resampling */
snd_pcm_hw_params_set_access(handle, params, access); /* set the interleaved read/write format */
snd_pcm_hw_params_set_format(handle, params, format); /* set the sample format */
snd_pcm_hw_params_set_channels(handle, params, channels); /* set the count of channels */
rrate = rate; /* set the stream rate */
snd_pcm_hw_params_set_rate_near(handle, params, &rrate, 0);
snd_pcm_hw_params_set_buffer_time_near(handle, params, &buffer_time, &dir);/* set the buffer time */
snd_pcm_hw_params_get_buffer_size(params, &size);
buffer_size = size;
snd_pcm_hw_params_set_period_time_near(handle, params, &period_time, &dir);/* set the period time */
snd_pcm_hw_params_get_period_size(params, &size, &dir);
period_size = size;
snd_pcm_hw_params(handle, params); /* write the parameters to device */
return 0;
}
static int set_swparams(snd_pcm_t *handle, snd_pcm_sw_params_t *swparams)
{
snd_pcm_sw_params_current(handle, swparams); /* get the current swparams */
/* start the transfer when the buffer is almost full: */
/* (buffer_size / avail_min) * avail_min */
snd_pcm_sw_params_set_start_threshold(handle, swparams, (buffer_size / period_size) * period_size);
/* allow the transfer when at least period_size samples can be processed */
/* or disable this mechanism when period event is enabled (aka interrupt like style processing) */
snd_pcm_sw_params_set_avail_min(handle, swparams, period_event ? buffer_size : period_size);
snd_pcm_sw_params(handle, swparams);/* write the parameters to the playback device */
return 0;
}
/*
* Transfer method - write only
*/
static int write_loop(snd_pcm_t *handle, signed short *samples, snd_pcm_channel_area_t *areas)
{
double phase = 0;
signed short *ptr;
int err, cptr;
int i=0;
printf("Period Size = %ld",period_size);
while (1) {
fflush(stdout);
generate_sine(areas, 0, period_size, &phase);
ptr = samples;
cptr = period_size;
i=1;
while (cptr > 0) {
err = snd_pcm_writei(handle, ptr, cptr);
snd_pcm_avail_delay(handle,&availp,&delayp);
printf("available frames =%ld delay = %ld i = %d\n",availp,delayp,i);
if (err == -EAGAIN)
continue;
ptr += err * channels;
cptr -= err;
i++;
}
}
}
/*
* Transfer method - asynchronous notification
*/
int main()
{
snd_pcm_t *handle;
snd_pcm_hw_params_t *hwparams;
snd_pcm_sw_params_t *swparams;
signed short *samples;
unsigned int chn;
snd_pcm_channel_area_t *areas;
snd_pcm_hw_params_alloca(&hwparams);
snd_pcm_sw_params_alloca(&swparams);
snd_output_stdio_attach(&output, stdout, 0);
printf("Playback device is %s\n", device);
printf("Stream parameters are %iHz, %s, %i channels\n", rate, snd_pcm_format_name(format), channels);
printf("Sine wave rate is %.4fHz\n", freq);
snd_pcm_open(&handle, device, SND_PCM_STREAM_PLAYBACK, 0);
set_hwparams(handle, hwparams, SND_PCM_ACCESS_RW_INTERLEAVED);
set_swparams(handle, swparams);
samples = malloc((period_size * channels * snd_pcm_format_physical_width(format)) / 8);
areas = calloc(channels, sizeof(snd_pcm_channel_area_t));
for (chn = 0; chn < channels; chn++) {
areas[chn].addr = samples;
areas[chn].first = chn * snd_pcm_format_physical_width(format);
areas[chn].step = channels * snd_pcm_format_physical_width(format);
}
write_loop(handle, samples, areas);
free(areas);
free(samples);
snd_pcm_close(handle);
return 0;
}
I solved the problem by altering the length argument of snd_pcm_writei...perviously i was giving it equal to the data contained in play_buffer...now i changed it to "buff_size/4" and the audio is playing perfectly without breaks. Actually it is the size after which the system should start buffering for new pcm samples as per my understanding. Previously it was buffering after playing the entire length buff_size and that resulted in breaks in audio output...