I want to calculate intersection points. This works well, but I want to store the points in a vector that the function should return.
Here is my code:
(defn intersections
[polygon line]
(let [[p1 p2] line
polypoints (conj polygon (first polygon))]
(doseq [x (range (- (count polypoints) 1))]
(println (intersect p1 p2 (nth polypoints x) (nth polypoints (+ x 1))))
)))
Instead of println I want to add the result to a new vector that should be returned. How can I change it?
You need to use a for loop. The doseq function is meant for side-effects only and always returns nil. An example:
(ns tst.demo.core
(:use demo.core tupelo.core tupelo.test))
(defn intersect-1
[numbers]
(let [data-vec (vec numbers)]
(vec
(for [i (range (dec (count numbers)))]
{:start (nth data-vec i)
:stop (nth data-vec (inc i))}))))
The above way works, as seen by the unit test:
(dotest
(is= (intersect-1 (range 5))
[{:start 0, :stop 1}
{:start 1, :stop 2}
{:start 2, :stop 3}
{:start 3, :stop 4}])
However, it is more natural to write it like so in Clojure:
(defn intersect-2
[numbers]
(let [pairs (partition 2 1 numbers)]
(vec
(for [[start stop] pairs]
{:start start :stop stop} ))))
With the same result
(is= (intersect-2 (range 5))
[{:start 0, :stop 1}
{:start 1, :stop 2}
{:start 2, :stop 3}
{:start 3, :stop 4}]))
You can get more details on my favorite template project (including a big documentation list!). See especially the Clojure CheatSheet!
Side note: The vec is optional in both versions. This just forces the answer into a Clojure vector (instead of a "lazy seq"), which is easier to cut and paste in examples and unit tests.
Instead of for-loop, a map would be more idiomatic.
(defn intersections
[polygon line]
(let [[p1 p2] line]
(vec (map (fn [pp1 pp2] (intersect p1 p2 pp1 pp2)) polygon (cdr polygon)))))
or:
(defn intersections
[polygon line]
(let [[p1 p2] line]
(vec (map #(intersect p1 p2 %1 %2) polygon (cdr polygon)))))
Related
I'm trying to write a function with recur that cut the sequence as soon as it encounters a repetition ([1 2 3 1 4] should return [1 2 3]), this is my function:
(defn cut-at-repetition [a-seq]
(loop[[head & tail] a-seq, coll '()]
(if (empty? head)
coll
(if (contains? coll head)
coll
(recur (rest tail) (conj coll head))))))
The first problem is with the contains? that throws an exception, I tried replacing it with some but with no success. The second problem is in the recur part which will also throw an exception
You've made several mistakes:
You've used contains? on a sequence. It only works on associative
collections. Use some instead.
You've tested the first element of the sequence (head) for empty?.
Test the whole sequence.
Use a vector to accumulate the answer. conj adds elements to the
front of a list, reversing the answer.
Correcting these, we get
(defn cut-at-repetition [a-seq]
(loop [[head & tail :as all] a-seq, coll []]
(if (empty? all)
coll
(if (some #(= head %) coll)
coll
(recur tail (conj coll head))))))
(cut-at-repetition [1 2 3 1 4])
=> [1 2 3]
The above works, but it's slow, since it scans the whole sequence for every absent element. So better use a set.
Let's call the function take-distinct, since it is similar to take-while. If we follow that precedent and make it lazy, we can do it thus:
(defn take-distinct [coll]
(letfn [(td [seen unseen]
(lazy-seq
(when-let [[x & xs] (seq unseen)]
(when-not (contains? seen x)
(cons x (td (conj seen x) xs))))))]
(td #{} coll)))
We get the expected results for finite sequences:
(map (juxt identity take-distinct) [[] (range 5) [2 3 2]]
=> ([[] nil] [(0 1 2 3 4) (0 1 2 3 4)] [[2 3 2] (2 3)])
And we can take as much as we need from an endless result:
(take 10 (take-distinct (range)))
=> (0 1 2 3 4 5 6 7 8 9)
I would call your eager version take-distinctv, on the map -> mapv precedent. And I'd do it this way:
(defn take-distinctv [coll]
(loop [seen-vec [], seen-set #{}, unseen coll]
(if-let [[x & xs] (seq unseen)]
(if (contains? seen-set x)
seen-vec
(recur (conj seen-vec x) (conj seen-set x) xs))
seen-vec)))
Notice that we carry the seen elements twice:
as a vector, to return as the solution; and
as a set, to test for membership of.
Two of the three mistakes were commented on by #cfrick.
There is a tradeoff between saving a line or two and making the logic as simple & explicit as possible. To make it as obvious as possible, I would do it something like this:
(defn cut-at-repetition
[values]
(loop [remaining-values values
result []]
(if (empty? remaining-values)
result
(let [found-values (into #{} result)
new-value (first remaining-values)]
(if (contains? found-values new-value)
result
(recur
(rest remaining-values)
(conj result new-value)))))))
(cut-at-repetition [1 2 3 1 4]) => [1 2 3]
Also, be sure to bookmark The Clojure Cheatsheet and always keep a browser tab open to it.
I'd like to hear feedback on this utility function which I wrote for myself (uses filter with stateful pred instead of a loop):
(defn my-distinct
"Returns distinct values from a seq, as defined by id-getter."
[id-getter coll]
(let [seen-ids (volatile! #{})
seen? (fn [id] (if-not (contains? #seen-ids id)
(vswap! seen-ids conj id)))]
(filter (comp seen? id-getter) coll)))
(my-distinct identity "abracadabra")
; (\a \b \r \c \d)
(->> (for [i (range 50)] {:id (mod (* i i) 21) :value i})
(my-distinct :id)
pprint)
; ({:id 0, :value 0}
; {:id 1, :value 1}
; {:id 4, :value 2}
; {:id 9, :value 3}
; {:id 16, :value 4}
; {:id 15, :value 6}
; {:id 7, :value 7}
; {:id 18, :value 9})
Docs of filter says "pred must be free of side-effects" but I'm not sure if it is ok in this case. Is filter guaranteed to iterate over the sequence in order and not for example take skips forward?
Is there a convenient way in ClojureScript to pretty print a nested hash-map in the way that the whole tree-structure becomes immediately visible.
For instance a map like this
(def my-map {:a {:b 1 :c 9} :b {:d 8 :e {:f 2 :g 3 :h 4}} :c 10})
should be printed like this:
{:a {:b 1
:c 9}
:b {:d 8
:e {:f 2
:g 3
:h 4}}
:c 10}
EDIT: There might also be vectors in the map. The usecase is just to inspect larger data structures during development.
There is no built-in way to do it. You might come close to what you want by using cljs.pprint and setting cljs.pprint/*print-right-margin* to a low value.
I would recommend to take a look at a small library shodan which provides a very useful inspect function:
(require '[shodan.inspection :refer [inspect]])
(inspect {:aaaaaa 1
:bbbbbb {:ccc 2
:dddddd [1 2 3 4 5]}})
It won't print anything in your CLJS REPL but will provide a handy view in your browser's console:
You can collapse and expand nested datastructures - it basically does what you asked for.
As a personal challenge I wrote the following code:
(enable-console-print!)
(def atomic? (complement coll?))
(def padding #(apply str (repeat % " ")))
(def tabulate #(apply str (repeat % "\t")))
(def strcat #(->> (apply concat %&) (apply str)))
(defn my-max-key [x] (if (empty? x) [""] (apply (partial max-key count) x)))
(defn longest-key [m] (->> m keys (filter atomic?) (map str) my-max-key))
(def length (comp count str))
(def not-map? (complement map?))
(def nested? #(some coll? %))
(def join #(apply str (interpose % %2)))
(def join-lines (partial join "\n"))
(defn has-atomic? [coll] (some atomic? coll))
(defn diff-key-lengths [key1 key2] (- (length key1) (length key2)))
(defn convert
([thing] (convert -1 thing))
([depth thing]
(defn convert-items []
(defn convert-seq []
(conj []
(map (partial convert (inc depth)) thing)
""))
(defn string-horizontally [[key value]]
(str (tabulate (inc depth))
key
(padding (diff-key-lengths (longest-key thing) key))
" → "
value))
(defn string-vertically [[key value]]
(str (convert (inc depth) key) "\n"
(convert (+ 2 depth) "↓") "\n"
(convert (inc depth) value) "\n"))
(defn convert-kv [[key value]]
(if (nested? [key value])
(string-vertically [key value])
(string-horizontally [key value])))
(cond (atomic? thing)
[(str (tabulate depth) thing)]
(not-map? thing)
(convert-seq)
(map? thing)
(map convert-kv thing)))
(->> (convert-items) flatten join-lines)))
(def sample-input [["the first thing in this nested vector"]
{{"this is a key in a nested map"
"that points to me!!!"}
{"and that entire map points to this map!!!"
"cool!!!"
"but it gets cooler cause..."
"the value's line up!!!"}}])
(->> sample-input convert println)
The terminal output is (psst... the values in a map do line up but I don't think that chrome uses a monospaced font!):
In Clojure, how can I find the value of a key that may be deep in a nested map structure? For example:
(def m {:a {:b "b"
:c "c"
:d {:e "e"
:f "f"}}})
(find-nested m :f)
=> "f"
Clojure offers tree-seq to do a depth-first traversal of any value. This will simplify the logic needed to find your nested key:
(defn find-nested
[m k]
(->> (tree-seq map? vals m)
(filter map?)
(some k)))
(find-nested {:a {:b {:c 1}, :d 2}} :c)
;; => 1
Also, finding all matches becomes a matter of replacing some with keep:
(defn find-all-nested
[m k]
(->> (tree-seq map? vals m)
(filter map?)
(keep k)))
(find-all-nested {:a {:b {:c 1}, :c 2}} :c)
;; => [2 1]
Note that maps with nil values might require some special treatment.
Update: If you look at the code above, you can see that k can actually be a function which offers a lot more possibilities:
to find a string key:
(find-nested m #(get % "k"))
to find multiple keys:
(find-nested m #(some % [:a :b]))
to find only positive values in maps of integers:
(find-nested m #(when (some-> % :k pos?) (:k %)))
If you know the nested path then use get-in.
=> (get-in m [:a :d :f])
=> "f"
See here for details: https://clojuredocs.org/clojure.core/get-in
If you don't know the path in your nested structure you could write a function that recurses through the nested map looking for the particular key in question and either returns its value when it finds the first one or returns all the values for :f in a seq.
If you know the "path", consider using get-in:
(get-in m [:a :d :f]) ; => "f"
If the "path" is unknown you can use something like next function:
(defn find-in [m k]
(if (map? m)
(let [v (m k)]
(->> m
vals
(map #(find-in % k)) ; Search in "child" maps
(cons v) ; Add result from current level
(filter (complement nil?))
first))))
(find-in m :f) ; "f"
(find-in m :d) ; {:e "e", :f "f"}
Note: given function will find only the first occurrence.
Here is a version that will find the key without knowing the path to it. If there are multiple matching keys, only one will be returned:
(defn find-key [m k]
(loop [m' m]
(when (seq m')
(if-let [v (get m' k)]
v
(recur (reduce merge
(map (fn [[_ v]]
(when (map? v) v))
m')))))))
If you require all values you can use:
(defn merge-map-vals [m]
(reduce (partial merge-with vector)
(map (fn [[_ v]]
(when (map? v) v))
m)))
(defn find-key [m k]
(flatten
(nfirst
(drop-while first
(iterate (fn [[m' acc]]
(if (seq m')
(if-let [v (get m' k)]
[(merge-map-vals m') (conj acc v)]
[(merge-map-vals m') acc])
[nil acc]))
[m []])))))
I wish to generate all subsets of a set except empty set
ie
(all-subsets #{1 2 3}) => #{#{1},#{2},#{3},#{1,2},#{2,3},#{3,1},#{1,2,3}}
How can this be done in clojure?
In your :dependencies in project.clj:
[org.clojure/math.combinatorics "0.0.7"]
At the REPL:
(require '[clojure.math.combinatorics :as combinatorics])
(->> #{1 2 3}
(combinatorics/subsets)
(remove empty?)
(map set)
(set))
;= #{#{1} #{2} #{3} #{1 2} #{1 3} #{2 3} #{1 2 3}}
clojure.math.combinatorics/subsets sensibly returns a seq of seqs, hence the extra transformations to match your desired output.
Here's a concise, tail-recursive version with dependencies only on clojure.core.
(defn power [s]
(loop [[f & r] (seq s) p '(())]
(if f (recur r (concat p (map (partial cons f) p)))
p)))
If you want the results in a set of sets, use the following.
(defn power-set [s] (set (map set (power s))))
#zcaudate: For completeness, here is a recursive implementation:
(defn subsets
[s]
(if (empty? s)
#{#{}}
(let [ts (subsets (rest s))]
(->> ts
(map #(conj % (first s)))
(clojure.set/union ts)))))
;; (subsets #{1 2 3})
;; => #{#{} #{1} #{2} #{3} #{1 2} #{1 3} #{2 3} #{1 2 3}} (which is correct).
This is a slight variation of #Brent M. Spell's solution in order to seek enlightenment on performance consideration in idiomatic Clojure.
I just wonder if having the construction of the subset in the loop instead of another iteration through (map set ...) would save some overhead, especially, when the set is very large?
(defn power [s]
(set (loop [[f & r] (seq s) p '(#{})]
(if f (recur r (concat p (map #(conj % f) p)))
p))))
(power [1 2 3])
;; => #{#{} #{3} #{2} #{1} #{1 3 2} #{1 3} #{1 2} #{3 2}}
It seems to me loop and recuris not lazy.
It would be nice to have a lazy evaluation version like Brent's, to keep the expression elegancy, while using laziness to achieve efficiency at the sametime.
This version as a framework has another advantage to easily support pruning of candidates for subsets, when there are too many subsets to compute. One can add the logic of pruning at position of conj. I used it to implement the prior algorithm for "Frequent Item Set".
refer to: Algorithm to return all combinations of k elements from n
(defn comb [k l]
(if (= 1 k) (map vector l)
(apply concat
(map-indexed
#(map (fn [x] (conj x %2))
(comb (dec k) (drop (inc %1) l)))
l))))
(defn all-subsets [s]
(apply concat
(for [x (range 1 (inc (count s)))]
(map #(into #{} %) (comb x s)))))
; (all-subsets #{1 2 3})
; (#{1} #{2} #{3} #{1 2} #{1 3} #{2 3} #{1 2 3})
This version is loosely modeled after the ES5 version on Rosetta Code. I know this question seems reasonably solved already... but here you go, anyways.
(fn [s]
(reduce
(fn [a b] (clojure.set/union a
(set (map (fn [y] (clojure.set/union #{b} y)) a))))
#{#{}} s))
What I want to do is like following.
(def mystream (stream (range 100)))
(take 3 mystream)
;=> (0 1 2)
(take 3 mystream)
;=> (3 4 5)
(first (drop 1 mystream))
;=> 7
The stream function make sequence side-effectfull like io stream.
I think this is almost impossible.
Here is my attempt.
(defprotocol Stream (first! [this]))
(defn stream [lst]
(let [alst (atom lst)]
(reify Stream
(first! [this]
(let [[fs] #alst]
(swap! alst rest)
fs)))))
(let [mystream (stream (iterate inc 1))]
(map #(if (string? %) (first! mystream) %)
[:a "e" "b" :c "i" :f]))
;=> (:a 1 2 :c 3 :f)
Unfotunately this approach need to implement all function I will use.
Judging by your followup comment to Maurits, you don't need mutation, but rather simply need to emit a new sequence with the elements in the right place.
For example:
(defn replace-when [pred coll replacements]
(lazy-seq
(when (seq coll)
(if (seq replacements)
(if (pred (first coll))
(cons (first replacements)
(replace-when pred (rest coll) (rest replacements)))
(cons (first coll)
(replace-when pred (rest coll) replacements)))
coll))))
user=> (def seq1 [:a :b :c])
#'user/seq1
user=> (def seq2 [:x "i" "u" :y :z "e"])
#'user/seq2
user=> (replace-when string? seq2 seq1)
(:x :a :b :y :z :c)
This won't work with the standard take and drop, but you could quite easily write your own to work on a mutable atom, e.g. you could do something like this:
(def mystream (atom (range 100)))
(defn my-take [n stream]
(let [data #stream
result (take n data)]
(reset! stream (drop n data))
result))
(my-take 3 mystream)
=> (0 1 2)
(my-take 3 mystream)
=> (3 4 5)