I am a "bit" lost trying to print a binary tree like below in c++:
8
/ \
/ \
/ \
5 10
/ \ / \
2 6 9 11
I know how to get the height of the tree and the number of nodes in each level, but I couldn't figure out how to set the right number of spaces between the root and the second level (there are 3 lines under the root for 3 levels but I believe it is not this everytime,I thought it could be 3 times the height for greater trees).
I would like to have some help to print these spaces in the rows and the number of lines between the rows.Thank you.
I am coding in c++
Get height
int tree::getHeight(No *node) {
if (node == NULL) return 0;
return 1 + max(getHeight(node->esq), getHeight(node->dir));
}
Get number of nodes per line
void tree::getLine(const No *root, int depth, vector<int>& vals){
int placeholder = 10;
if (depth <= 0 && root != nullptr) {
vals.push_back(root->chave);
return;
}
if (root->esq != nullptr)
getLine(root->esq, depth-1, vals);
else if (depth-1 <= 0)
vals.push_back(placeholder);
if (root->dir != nullptr)
getLine(root->dir, depth-1, vals);
else if (depth-1 <= 0)
vals.push_back(placeholder);
}
Even tough it is not exactly what you asked for, printing trees horizontally is way simpler. And especially in case of large trees, I think this is the better representation form.
└──8
├──5
│ ├──2
│ └──6
└──10
├──9
└──11
Following C++ code roots in this java implementation.
void printBT(const std::string& prefix, const BSTNode* node, bool isLeft)
{
if( node != nullptr )
{
std::cout << prefix;
std::cout << (isLeft ? "├──" : "└──" );
// print the value of the node
std::cout << node->m_val << std::endl;
// enter the next tree level - left and right branch
printBT( prefix + (isLeft ? "│ " : " "), node->m_left, true);
printBT( prefix + (isLeft ? "│ " : " "), node->m_right, false);
}
}
void printBT(const BSTNode* node)
{
printBT("", node, false);
}
// pass the root node of your binary tree
printBT(root);
Here is an example of code creating a text-based representation of a binary tree. This demonstration uses a minimally useful binary tree class (BinTree), with a small footprint, just to avoid bloating the example's size.
Its text-rendering member functions are more serious, using iteration rather than recursion, as found in other parts of the class.
This does its job in three steps, first a vector of rows of string values is put together.
Then this is used to format lines of text strings representing the tree.
Then the strings are cleaned up and dumped to cout.
As an added bonus, the demo includes a "random tree" feature, for hours of nonstop entertainment.
#include <iostream>
#include <vector>
#include <string>
#include <sstream>
#include <algorithm>
#include <random>
using std::vector;
using std::string;
using std::cout;
template <typename T>
class BinTree {
struct Node {
T value;
Node *left,*right;
Node() : left(nullptr),right(nullptr) {}
Node(const T& value) :value(value),left(nullptr),right(nullptr) {}
// stack-abusing recursion everywhere, for small code
~Node() { delete left; delete right; }
int max_depth() const {
const int left_depth = left ? left->max_depth() : 0;
const int right_depth = right ? right->max_depth() : 0;
return (left_depth > right_depth ? left_depth : right_depth) + 1;
}
};
Node *root;
public:
BinTree() : root(nullptr) {}
~BinTree() { delete root; }
int get_max_depth() const { return root ? root->max_depth() : 0; }
void clear() { delete root; root = nullptr; }
void insert() {}
template <typename ...Args>
void insert(const T& value, Args...more) {
if(!root) {
root = new Node(value);
} else {
Node* p = root;
for(;;) {
if(value == p->value) return;
Node* &pchild = value < p->value ? p->left : p->right;
if(!pchild) {
pchild = new Node(value);
break;
}
p = pchild;
}
}
insert(more...);
}
struct cell_display {
string valstr;
bool present;
cell_display() : present(false) {}
cell_display(std::string valstr) : valstr(valstr), present(true) {}
};
using display_rows = vector< vector< cell_display > >;
// The text tree generation code below is all iterative, to avoid stack faults.
// get_row_display builds a vector of vectors of cell_display structs
// each vector of cell_display structs represents one row, starting at the root
display_rows get_row_display() const {
// start off by traversing the tree to
// build a vector of vectors of Node pointers
vector<Node*> traversal_stack;
vector< std::vector<Node*> > rows;
if(!root) return display_rows();
Node *p = root;
const int max_depth = root->max_depth();
rows.resize(max_depth);
int depth = 0;
for(;;) {
// Max-depth Nodes are always a leaf or null
// This special case blocks deeper traversal
if(depth == max_depth-1) {
rows[depth].push_back(p);
if(depth == 0) break;
--depth;
continue;
}
// First visit to node? Go to left child.
if(traversal_stack.size() == depth) {
rows[depth].push_back(p);
traversal_stack.push_back(p);
if(p) p = p->left;
++depth;
continue;
}
// Odd child count? Go to right child.
if(rows[depth+1].size() % 2) {
p = traversal_stack.back();
if(p) p = p->right;
++depth;
continue;
}
// Time to leave if we get here
// Exit loop if this is the root
if(depth == 0) break;
traversal_stack.pop_back();
p = traversal_stack.back();
--depth;
}
// Use rows of Node pointers to populate rows of cell_display structs.
// All possible slots in the tree get a cell_display struct,
// so if there is no actual Node at a struct's location,
// its boolean "present" field is set to false.
// The struct also contains a string representation of
// its Node's value, created using a std::stringstream object.
display_rows rows_disp;
std::stringstream ss;
for(const auto& row : rows) {
rows_disp.emplace_back();
for(Node* pn : row) {
if(pn) {
ss << pn->value;
rows_disp.back().push_back(cell_display(ss.str()));
ss = std::stringstream();
} else {
rows_disp.back().push_back(cell_display());
} } }
return rows_disp;
}
// row_formatter takes the vector of rows of cell_display structs
// generated by get_row_display and formats it into a test representation
// as a vector of strings
vector<string> row_formatter(const display_rows& rows_disp) const {
using s_t = string::size_type;
// First find the maximum value string length and put it in cell_width
s_t cell_width = 0;
for(const auto& row_disp : rows_disp) {
for(const auto& cd : row_disp) {
if(cd.present && cd.valstr.length() > cell_width) {
cell_width = cd.valstr.length();
} } }
// make sure the cell_width is an odd number
if(cell_width % 2 == 0) ++cell_width;
// allows leaf nodes to be connected when they are
// all with size of a single character
if(cell_width < 3) cell_width = 3;
// formatted_rows will hold the results
vector<string> formatted_rows;
// some of these counting variables are related,
// so its should be possible to eliminate some of them.
s_t row_count = rows_disp.size();
// this row's element count, a power of two
s_t row_elem_count = 1 << (row_count-1);
// left_pad holds the number of space charactes at the beginning of the bottom row
s_t left_pad = 0;
// Work from the level of maximum depth, up to the root
// ("formatted_rows" will need to be reversed when done)
for(s_t r=0; r<row_count; ++r) {
const auto& cd_row = rows_disp[row_count-r-1]; // r reverse-indexes the row
// "space" will be the number of rows of slashes needed to get
// from this row to the next. It is also used to determine other
// text offsets.
s_t space = (s_t(1) << r) * (cell_width + 1) / 2 - 1;
// "row" holds the line of text currently being assembled
string row;
// iterate over each element in this row
for(s_t c=0; c<row_elem_count; ++c) {
// add padding, more when this is not the leftmost element
row += string(c ? left_pad*2+1 : left_pad, ' ');
if(cd_row[c].present) {
// This position corresponds to an existing Node
const string& valstr = cd_row[c].valstr;
// Try to pad the left and right sides of the value string
// with the same number of spaces. If padding requires an
// odd number of spaces, right-sided children get the longer
// padding on the right side, while left-sided children
// get it on the left side.
s_t long_padding = cell_width - valstr.length();
s_t short_padding = long_padding / 2;
long_padding -= short_padding;
row += string(c%2 ? short_padding : long_padding, ' ');
row += valstr;
row += string(c%2 ? long_padding : short_padding, ' ');
} else {
// This position is empty, Nodeless...
row += string(cell_width, ' ');
}
}
// A row of spaced-apart value strings is ready, add it to the result vector
formatted_rows.push_back(row);
// The root has been added, so this loop is finsished
if(row_elem_count == 1) break;
// Add rows of forward- and back- slash characters, spaced apart
// to "connect" two rows' Node value strings.
// The "space" variable counts the number of rows needed here.
s_t left_space = space + 1;
s_t right_space = space - 1;
for(s_t sr=0; sr<space; ++sr) {
string row;
for(s_t c=0; c<row_elem_count; ++c) {
if(c % 2 == 0) {
row += string(c ? left_space*2 + 1 : left_space, ' ');
row += cd_row[c].present ? '/' : ' ';
row += string(right_space + 1, ' ');
} else {
row += string(right_space, ' ');
row += cd_row[c].present ? '\\' : ' ';
}
}
formatted_rows.push_back(row);
++left_space;
--right_space;
}
left_pad += space + 1;
row_elem_count /= 2;
}
// Reverse the result, placing the root node at the beginning (top)
std::reverse(formatted_rows.begin(), formatted_rows.end());
return formatted_rows;
}
// Trims an equal number of space characters from
// the beginning of each string in the vector.
// At least one string in the vector will end up beginning
// with no space characters.
static void trim_rows_left(vector<string>& rows) {
if(!rows.size()) return;
auto min_space = rows.front().length();
for(const auto& row : rows) {
auto i = row.find_first_not_of(' ');
if(i==string::npos) i = row.length();
if(i == 0) return;
if(i < min_space) min_space = i;
}
for(auto& row : rows) {
row.erase(0, min_space);
} }
// Dumps a representation of the tree to cout
void Dump() const {
const int d = get_max_depth();
// If this tree is empty, tell someone
if(d == 0) {
cout << " <empty tree>\n";
return;
}
// This tree is not empty, so get a list of node values...
const auto rows_disp = get_row_display();
// then format these into a text representation...
auto formatted_rows = row_formatter(rows_disp);
// then trim excess space characters from the left sides of the text...
trim_rows_left(formatted_rows);
// then dump the text to cout.
for(const auto& row : formatted_rows) {
std::cout << ' ' << row << '\n';
}
}
};
int main() {
BinTree<int> bt;
// Build OP's tree
bt.insert(8,5,2,6,10,9,11);
cout << "Tree from OP:\n\n";
bt.Dump();
cout << "\n\n";
bt.clear();
// Build a random tree
// This toy tree can't balance, so random
// trees often look more like linked lists.
// Just keep trying until a nice one shows up.
std::random_device rd;
std::mt19937 rng(rd());
int MaxCount=20;
int MaxDepth=5;
const int Min=0, Max=1000;
std::uniform_int_distribution<int> dist(Min,Max);
while(MaxCount--) {
bt.insert(dist(rng));
if(bt.get_max_depth() >= MaxDepth) break;
}
cout << "Randomly generated tree:\n\n";
bt.Dump();
}
An example of the output:
Tree from OP:
8
/ \
/ \
/ \
5 10
/ \ / \
2 6 9 11
Randomly generated tree:
703
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
137 965
/ \ /
/ \ /
/ \ /
/ \ /
/ \ /
/ \ /
/ \ /
41 387 786
\ / \ / \
\ / \ / \
\ / \ / \
95 382 630 726 813
\
841
I wrote arbitrary tree pretty printer as a part of C++ algorithms self-education.
The approach is following.
From each tree node printable node with stringified original node value and absolute position in the line composed.
Sibling printable nodes grouped. Each sibling group contains list of nodes and pointer to parent printable node.
Sibling groups grouped to lines, each line represents original tree level.
Next, printable nodes position are calculated.
Lines iterated through skipping first one.
Siblings in the line iterated, each sibling group moved to its parent node center if the center is further then the middle of the group. It moves even further if intersected with previous siblings group. Parent node moved to the middle of the children nodes if the middle is further than parent center. Nodes following parent node are shifted if intersected with shifted parent node.
Previous step repeated for siblings group parent siblings group recursively.
For the last step lines iterated once again to be written to the provided output stream, filling with spaces offsets according to the calculated nodes positions.
Unix box-drawing symbols are used to draw lines. Not sure if they will be printed correctly in Windows cmd, maybe they should be replaced by their DOS counterparts for Windows.
1
┌────────────┬────────┴────────────────────┐
11 12 13
┌────┼────┐ ┌──┴─┐ ┌─────────┴────┬────┐
111 112 113 121 122 131 132 133
┌─────┼─────┐ ┌─────┼─────┐ ┌──┴──┐
1221 1222 1223 1311 1312 1313 1321 1322
Unit tests with usage samples
I updated the vertical output again, the tree view was mirrored and some characters were not accepted in VS, so i put them in UTF8:
void printBT(const std::string& prefix, const TreeNode* node, bool isLeft)
{
if (node != nullptr)
{
std::cout << prefix;
std::cout << (isLeft ? "|--" : "L--");
// print the value of the node
std::cout << node->val << std::endl;
// enter the next tree level - left and right branch
printBT(prefix + (isLeft ? "| " : " "), node->right, true);
printBT(prefix + (isLeft ? "| " : " "), node->left, false);
}
}
void printBT(const TreeNode* node)
{
printBT("", node, false);
}
Thanks a lot for that solution!!
Example of Nodes: { 3, 5, 1, 6, 2, 9, 8, NULL, NULL, 7, 4 };
L--3
|--1
| |--8
| L--9
L--5
|--2
| |--4
| L--7
L--6
Not soo pretty, but very handy!
Cheers Michael
1st function - prints level by level (root lv -> leaves lv)
2nd function - distance from the beginning of new line
3rd function - prints nodes and calculates distance between two prints;
void Tree::TREEPRINT()
{
int i = 0;
while (i <= treeHeight(getroot())){
printlv(i);
i++;
cout << endl;
}
}
void Tree::printlv(int n){
Node* temp = getroot();
int val = pow(2, treeHeight(root) -n+2);
cout << setw(val) << "";
prinlv(temp, n, val);
}
void Tree::dispLV(Node*p, int lv, int d)
{
int disp = 2 * d;
if (lv == 0){
if (p == NULL){
cout << " x ";
cout << setw(disp -3) << "";
return;
}
else{
int result = ((p->key <= 1) ? 1 : log10(p->key) + 1);
cout << " " << p->key << " ";
cout << setw(disp - result-2) << "";
}
}
else
{
if (p == NULL&& lv >= 1){
dispLV(NULL, lv - 1, d);
dispLV(NULL, lv - 1, d);
}
else{
dispLV(p->left, lv - 1, d);
dispLV(p->right, lv - 1, d);
}
}
}
Input:
50-28-19-30-29-17-42-200-160-170-180-240-44-26-27
Output:
I've edited the solution of Adrian Schneider and made the output more specific to understand better.
void print() {
print("", root, false, true);
}
void print(const string &prefix, Node *parent, bool isLeft, bool isRoot) {
if (parent == nullptr)
return;
if (isRoot) {
cout << "─────";
} else {
cout << prefix <<
(isLeft ? "L├────" : "R└───");
}
cout << parent -> value << endl;
print(prefix + (isLeft ? " │ " : " "),
parent -> left, true, false);
print(prefix + (isLeft ? " │ " : " "),
parent -> right, false, false);
}
The output looks like this for the input: {5, 6, 3, 2, 7}
─────5
L├────3
│ L├────2
R└───6
R└───7
I have to return the number of nodes and the weight of the most weight path from the root to some leaf. Note that the tree is not a Binary Search Tree, is unsorted.
i.e.:
6
/ \
9 6
/ / \
3 1 19
Then, I have to return the integer 6 + 6 + 19 = 31 and print the node 6 - 6 - 19
So, this is my code:
int heavierPath ( Node * tree ) {
if ( ! tree ) return 0;
int leftWeight = heavierPath( tree->left );
int rightWeight= heavierPath( tree->right );
if ( leftWeight >= rightWeight ) {
if ( tree->left )
cout << tree->left->value << endl;
return tree->value + leftWeight;
}
else {
cout << tree->right->value << endl;
return tree->value + rightWeight;
}
};
And the result is 31, but I see all the nodes values in the terminal.
How can I do to fix it and print only the elements that lies in the heavier path? (only recursive)
Thanks!
This appears to work after I edited it.
Take a look at: http://ideone.com/OGcyun as an example.
Your problem:
Consider the graph as:
6
/ \
9 6
/ / \
3 1 19
Number each node so:
0
/ \
1 2
/ / \
3 4 5
Consider the case where you are at node 1.
You ask for the better path which gives you leftWeight = 3 and rightweight = 0 and you print the "better" path, 3. which isn't part of the end result.
The solution
To solve this problem, I passed up additional data up in a retstruct which contain the path (the heaviest path up to this point), value (to make printing easier), sum (to determine the better path).
Then I changed the function to:
retstruct* heavierPath ( Node * tree ) {
if ( ! tree ) return new retstruct();
//Get both paths
retstruct* leftWeight = heavierPath( tree->left );
retstruct* rightWeight= heavierPath( tree->right );
//Find the "heavier" path
if ( leftWeight->sum >= rightWeight->sum ) {
//Delete lighter path
delete_retstruct(rightWeight);
//Pass up the better path with the correct data
return new retstruct(leftWeight, tree->value, tree->value + leftWeight->sum);
} else {
//Delete lighter path
delete_retstruct(leftWeight);
//Pass up the better path with the correct data
return new retstruct(rightWeight, tree->value, tree->value + rightWeight->sum);
}
};
Added the delete_retstruct function:
void delete_retstruct (retstruct* path) {
if (path->path == NULL) {
delete path;
} else {
delete_retstruct(path->path);
}
}
and the printPath function:
void printPath (retstruct* path) {
if (path->path != NULL) {
std::cout << " - " << path->value;
printPath(path->path);
}
}
This is used like so:
retstruct* path = heavierPath(tree);
//Print sum
std::cout << "Sum: " << path->sum << std::endl;
//Print path
std::cout << "Path: " << path->value;
printPath(path->path);
std::cout << std::endl;
Output:
Sum: 31
Path: 6 - 6 - 19
My suggestion is to make two functions,first function will find the leaf where path from root to it is maximum. So assuming you have pointer to such leaf here is the function to print the path.
bool print(struct node *r, struct node *leaf)
{
if (r == NULL)
return false;
//will print if it is leaf or on path to leaf
if (r == leaf || print(r->left, leaf) || print(r->right, leaf) )
{
printf("%d ", r->val); // this will print in reverse order
// if you want to print from root, store values in stack and then print the value after the function call
return true;
}
return false;
}
The problem is that you are mixing printing the node with finding the sum. The later has to visit all child-nodes while printing only has to visit the ones in the path.
Below is a possible solution:
#include <iostream>
#include <unordered_map>
struct Node
{
Node(int value = 0, Node* left = nullptr, Node* right = nullptr) :
value{value},
left{left},
right{right}
{}
int value;
Node* left;
Node* right;
};
std::unordered_map<Node*, int> map;
int pathSum(Node* node)
{
if (node == nullptr)
{
return 0;
}
else if (map.find(node) == map.end())
{
return (pathSum(node->left) > pathSum(node->right))
? (map[node] = node->value + pathSum(node->left))
: (map[node] = node->value + pathSum(node->right));
}
else
{
return map[node];
}
}
void printPath(Node* node)
{
if (node == nullptr)
{
return;
}
std::cout << node->value << std::endl;
if (pathSum(node->left) > pathSum(node->right))
{
printPath(node->left);
}
else
{
printPath(node->right);
}
}
int main() {
Node* tree = new Node(6,
new Node(9,
new Node(3)),
new Node(6,
new Node(1),
new Node(19)));
std::cout << "Biggest Sum: " << pathSum(tree) << std::endl;
std::cout << "Biggest Sum Path: " << std::endl;
printPath(tree);
return 0;
}
In recursive solutions such as this, it's a good idea to cache the results hence the std::unordered_map. The code has been tested at Ideone.
I've created a class that contains a vector of Linked Lists. Each Linked List represents a vertice in my graph. The Nodes connected to my linked lists are considered the edges between these vertices. I'm trying to create a DFS function for my graph, but am having trouble with setting the colors of my vertices. I realize there are a lot of problems with my code, but i'm trying to solve one in particular. My DFSit() function ends up in an infinite loop because the color attribute for my list isn't actually getting set to "gray". Any idea why this would be?
void Graph::DFS()
{
int i = 0;
while (i != myvector.size())
{
DFSit(myvector[i], myvector[i].val);
myvector[i].color = "black";
i++;
}
}
void Graph::DFSit(AdjList x, int root)
{
if (x.color == "white")
{
cout << "tree edge ( " << root << "," << x.val << ") " << endl;
}
if (x.color == "gray")
{
cout << "Back Edge ( " << root << "," << x.val << ") " << endl;
return;
}
x.color = "gray";
AdjNode *temp = new AdjNode();
temp = x.front;
int i = 0;
int value;
while (temp != NULL)
{
value = temp->getValue();
while (i != myvector.size())
{
if (value == myvector[i].val)
{
DFSit(myvector[i], root);
}
i++;
}
temp = temp->next;
}
}
Normaly, the proper implementation of the DFS rutine is made with a stack, but this could work also.
I think that you are coloring the node AdjList x and this coloring is not save because you are passing it by val and not by ref.
try changing void Graph::DFSit(AdjList x, int root) into void Graph::DFSit(AdjList& x, int root)
I am currently working on a function that has 1 helper function, the main function takes in 2 strings and searches for the first one (which becomes a reference as if it was m_root) and a second one to be searched in the tree. once they are searched, my helper function is supposed to search for the 2nd city and count the distance it had to travel as if a truck was going towards that city.
int Stree::distance(string origin_city, string destination_city)
{
int total_distance = 0;
Node *new_root = m_root;
new_root = find_node(m_root, origin_city);
total_distance = get_distance(new_root, total_distance, destination_city);
return total_distance;
}
int Stree::get_distance(Node* cur, int distance, string destination)
{
Node *tmp = cur;
if(cur == NULL)
return 0;
if(cur->m_city == destination || tmp->m_city == destination)
{
//cout << distance + cur->m_parent_distance << endl;
return distance += cur->m_parent_distance;
}
if(tmp->m_left != NULL)
{
//cout << "checking left" << endl;
tmp = cur->m_left;
return get_distance(cur->m_left, distance, destination) ;
}
else
{
//cout << "checking right" << endl;
return get_distance(cur->m_right, distance, destination);
}
}
In a cursory glance, I don't see anywhere that you modify or increment distance, whether it be the distance variable or something like:
return 1 + get_distance(cur->m_right, distance, destination);
So I would make sure that in an algorithmic sense, each step walked is counted, otherwise it will certainly return 0 every time.
I'm sorry that was my first time for asking question in stackoverflow. I just read the faq and knew I disobeyed the rules. I was not just coping and pasting the questions. I use an in-order traverse method to do the recursion and check whether the node is a multiple of five and I don't know what to do next. Should I use a flag to check something?
void findNodes(BSTNode<Key,E> *root) const
{
if(root==NULL) return;
else
{
if(root->key()%5==0)//I know it's wrong, but I don't know what to do
{
findNodes(root->left());
cout<<root->key()<<" ";
findNodes(root->right());
}
else
{
findNodes(root->left());
findNodes(root->right());
}
}
}
Printing nodes whose grandparent is a multiple of 5 is complicated as you have to look "up" the tree. It is easier if you look at the problem as find all the nodes who are a multiple of 5 and print their grandchildren, as you only have to go down the tree.
void printGrandChildren(BSTNode<Key,E> *root,int level) const{
if(!root) return;
if(level == 2){
cout<<root->key()<<" ";
return;
}else{
printGrandChildren(root->left(),level+1);
printGrandChildren(root->right(),level+1);
}
}
Then modify your findNodes to
void findNodes(BSTNode<Key,E> *root) const
{
if(root==NULL) return;
else
{
if(root->key()%5==0)
{
printGrandChildren(root,0);
}
else
{
findNodes(root->left());
findNodes(root->right());
}
}
}
Try this:
int arr[height_of_the_tree]; //arr[10000000] if needed;
void findNodes(BSTNode<Key,E> *root,int level) const {
if(root==NULL) return;
arr[level] = root -> key();
findNodes(root -> left(), level + 1);
if(2 <= level && arr[level - 2] % 5 == 0) cout << root->key() << " ";
findNodes(root -> right(), level + 1);
}
int main() {
...
findNodes(Binary_search_tree -> root,0);
...
}
Replace the following
cout<<root->key()<<" ";
with
if(root->left)
{
if(root->left->left)
cout<<root->left->left->key()<< " ";
if(root->left->right)
cout<<root->left->right->key()<< " ";
}
if(root->right)
{
if(root->right->left)
cout<<root->right->left->key()<< " ";
if(root->right->right)
cout<<root->right->right->key()<< " ";
}
If you're just trying to print our all child nodes which have an ancestor which has a key which is a multiple of 5, then one way would be to pass a bool to your findNodes function which stores this fact.
Something along the lines of:
void findNodes(BSTNode<Key,E>* node, bool ancesterIsMultOf5) const
{
if (node)
{
if (ancesterIsMultOf5)
std::cout << node->key() << std::endl;
ancesterIsMultOf5 |= (node->key() % 5 == 0);
findNodes(node->left(), ancesterIsMultOf5);
findNodes(node->right(), ancesterIsMultOf5);
}
}
Alternately, if you're trying to draw the tree, it has been answered before: C How to "draw" a Binary Tree to the console