Observer Pattern (C++): Cast Templated Class from Subclass to Baseclass of Tempalate - c++

I am working on developing an observer pattern infrastructure and was hoping to get some advice on a design issue I have run into. The idea behind this pattern is to allow users to create "Transactions" from any primitive type they would like. Users can then develop their own custom Observers to do things like logging / build statistics / etc... Everything is then hooked up at runtime using factory methods depending on what they would like based on a configuration. This all works really well, until a user would like to provide a baseclass pointer based observer and have it work for all derived types. When observers are added I check if the types match and throw an exception if it is the wrong type.
Below is a simple example of the pattern and the use case that is breaking it.
Thanks so much in advance!
#include <cassert>
#include <stdio.h>
#include <vector>
template<typename T>
class Observerable;
template<typename T>
struct ObserverInfo {
const T& data;
const Observerable<T>& observer;
};
class IObserver {
public:
virtual ~IObserver() {}
};
template<typename T>
class Observer : public IObserver {
public:
virtual void Annouce(const ObserverInfo<T>& info);
};
class DumperBase {
public:
virtual void Dump() const = 0;
};
class MyTransaction : public DumperBase {
public:
void Dump() const override { printf("Hello\n"); }
};
class IObserverable {
public:
virtual ~IObserverable() {}
virtual void AttachObserver(IObserver* observer) = 0;
};
template<typename T>
class Observerable : public IObserverable {
public:
void AttachObserver(IObserver* observer) override {
// ?? Is there a way I can make this work for base clases?
auto casted_observer = dynamic_cast<Observer<T>*>(observer);
assert(casted_observer);
m_observers.emplace_back(casted_observer);
}
void Push(T transaction) {
Annouce({transaction, *this});
// Do something real with T
}
void Annouce(const ObserverInfo<T>& info) {
for (auto& observer : m_observers) {
observer->Annouce(info);
}
}
private:
std::vector<Observer<T>*> m_observers;
};
class MyTransactionObserver : public Observer<DumperBase*> {
void Annouce(const ObserverInfo<DumperBase*>& info) override {
info.data->Dump();
}
};
int main() {
Observerable<MyTransaction*> observerable{};
Observer<DumperBase*> observer{};
observerable.AttachObserver(&observer);
MyTransaction transaction{};
observerable.Push(&transaction);
return 0;
}

Related

C++ workaroud virtual template method

i know there is nothing like virtual template method in C++, but as it seems it is exactly what i need. Is there any workaround i could use? I am thankful for any suggestion.
I would like to add Entities to a vector by a add method, which need to be virtual and also template, how to avoid this?
#include <iostream>
#include <vector>
class EntityBase {
public:
};
class EntityDerived1 : public EntityBase {
public:
};
class EntityDerived2 : public EntityBase {
public:
};
class ContainerBase {
public:
template<typename T>
virtual void add() = 0; // i know this is not allowed!!!
};
class ContainerConcrete : public ContainerBase {
public:
template<typename T>
void add() override { // i know this is not allowed!!!
data.push_back(std::make_shared<T>());
}
void doSecretStuffWithDataHere() {
// ...
}
private:
std::vector<std::shared_ptr<EntityBase>> data;
};
class Engine {
public:
Engine() :
container(std::make_shared<ContainerConcrete>())
{}
ContainerBase& getContainer() {
auto rawPointer = container.get();
return *container;
}
private:
std::shared_ptr<ContainerConcrete> container;
};
int main() {
Engine engine;
ContainerBase& container = engine.getContainer();
container.add<EntityDerived1>();
container.add<EntityDerived2>();
}
Just make add a regular virtual function that takes shared_ptr as a parameter
class ContainerBase {
public:
virtual void add(std::shared_ptr<EntityBase>) = 0;
};
class ContainerConcrete : public ContainerBase {
public:
void add(std::shared_ptr<EntityBase> p) override {
data.push_back(p);
}
// . . .
And then invoke it with make_shared for the desired type:
int main() {
Engine engine;
ContainerBase& container = engine.getContainer();
container.add(std::make_shared<EntityDerived1>());
container.add(std::make_shared<EntityDerived2>());
}
Alternatively you can add a templated overload that invokes make_shared:
virtual void add(std::shared_ptr<EntityBase>) = 0;
template<typename T>
void add() {
add(std::make_shared<T>());
}

Should i use dynamic_cast here?

Well, i have next code:
#include <type_traits>
#include <iostream>
#include <string>
#include <list>
#include <functional>
class base_main
{
public:
virtual ~base_main()
{
}
// some methods
};
class base_1 : virtual public base_main
{
// some methods
};
class base_2 : virtual public base_main
{
// some methods
};
class base_3 : virtual public base_main
{
// some methods
};
class object : public base_1, public base_2, public base_3
{
// some methods
};
// in other *hpp file
class object_controller_listener
{
public:
virtual void object_created( base_main* o )
{
// well, i want to work only with base_1 and base_2 interfaces, but not with base_3, and also i don't want to know something about object class in this *hpp
// is it good code design?
auto* xxx = dynamic_cast<base_1*>( o );
}
};
class objects_controller
{
void create()
{
std::unique_ptr<object> obj;
// ...
for( auto listener : m_listeners )
listener->object_created( obj.get() );
}
std::list<object_controller_listener*> m_listeners;
};
int main()
{
}
The question is - how can i work only with base_1 and base_2 interfaces? Should i create two separate listeners for them, and send two events in create() function, or should i use dynamic_cast for downcasting and send only one event in create() function? Is this good code design or is this feels like code smell?
UPD:
For example: base_1 - is render_base class, which contains render data, and have functions for set and get this data base_2 - collider base class which contains collider data, and have functions for set and get this data base_3 is physic base class and object is inheritance of all this classes. And when i want work only with render class i use create event which send only render_base class to the render_system, which works only with renders objects and truly use polymorphism. But if i want in some other place work with collider and physic objects, without knowledge about render - how can i use polymorphism here in base classes?
It is hard to tell what design you should choose as this heavily depends on the overall structure of the application.
Generally, I would avoid having a function with the signature virtual void object_created( base_main* o ) in which you dynamically cast to base_* and work on that directly in this function. Because the function signature is part of the documentation of the API.
So I would create distinct functions for base_1 and base_2 and call those.
How to do that depends again on the overall structure. You could create a helper function, that forwards the call to the other functions (this is just a fast implementation how that could look like:
template <typename DestT, typename SrcT, typename T>
void forward_if(SrcT obj, T *o, void (T::*f)(DestT)) noexcept {
if (auto tmp = dynamic_cast<DestT>(obj); tmp != nullptr) {
(o->*f)(tmp);
}
}
And then you could use it like this:
#include <iostream>
#include <vector>
class base_main {
public:
virtual ~base_main() {}
};
class base_1 : virtual public base_main {};
class base_2 : virtual public base_main {};
class base_3 : virtual public base_main {};
class object : public base_1, public base_2, public base_3 {};
template <typename DestT, typename SrcT, typename T>
void forward_if(SrcT obj, T *o, void (T::*f)(DestT)) noexcept {
if (auto tmp = dynamic_cast<DestT>(obj); tmp != nullptr) {
(o->*f)(tmp);
}
}
struct listener_base {
virtual void object_created(base_main *o) = 0;
};
struct specific_listener : public listener_base {
void object_created(base_main *o) override {
forward_if<base_1 *>(o, this, &specific_listener::object_created);
forward_if<base_2 *>(o, this, &specific_listener::object_created);
}
void object_created(base_1 *o) {
std::cout << "object created base_1" << std::endl;
}
void object_created(base_2 *o) {
std::cout << "object created base_2" << std::endl;
}
};
int main() {
std::vector<listener_base *> listeners;
listeners.push_back(new specific_listener());
object o;
for (auto listener : listeners) {
listener->object_created(&o);
}
return 0;
}

Creating List of abstract base class to fill with inherited objects

I want to create a List which is able to hold every Object I throw at it as long as they share the same ABSTRACT base class.
Here is an sample code of how I want to achieve this.
#include <iostream>
#include <memory>
#include <list>
class Observer
{
public:
virtual void update() = 0;
};
class RequestStateObserver
{
public:
void registerObserver(std::shared_ptr<Observer> o){
observerList.push_back(o);
}
private:
std::list<std::shared_ptr<Observer>> observerList;
};
class RestRequestCreator :Observer
{
void update() override;
};
void RestRequestCreator::update()
{
std::cout<<"RestRequestCreator::update()";
}
class dbHandler :Observer
{
void update() override;
};
void dbHandler::update() {
std::cout<<"dbHandler::update()";
}
int main()
{
RestRequestCreator rrc;
RequestStateObserver rso;
dbHandler dbhandler;
std::shared_ptr<RequestStateObserver> stateObserver;
std::shared_ptr<RestRequestCreator> rr_ptr = std::make_shared<RestRequestCreator>(rrc);
rso.registerObserver(rr_ptr);
rso.registerObserver(std::make_shared<Observer> (dbhandler));
}
o->registerObserver(std::make_shared<Observer> dbhandler)will tell me I can't create Observer since it's an abstract class which totally makes sense but
o->registerObserver(rr_ptr) will tell me it can't convert std::shared_ptr<Observer> to std::shared_ptr<RestRequestCreator>
I am at the moment not sure how to fix this problem or what exactly I should try next.
Would Templates help me? If I am correct they would just allow me to put as many objects of ONE child class into my List, if that's wrong please tell me and I will re-read about templates again.
The conversion fails because Observer is a private base of RestRequestCreator, and is inaccessible.
You'll need to use public inheritance for the compiler to implicitly convert from the derived class to the base:
class RestRequestCreator :public Observer
That fixes the immediate problem, but leaves the problems with make_shared<Observable> on the next line.
Also: should an observee co-own an observer? In general that would not be the case. Therefore, instead use regular pointers.
#include <list>
#include <iostream>
using std::cout;
class Observer
{
public:
virtual void update() = 0;
};
class ConcreteObserver : public Observer
{
public:
void update() override {
cout << "ConcreteObserver noticed update\n";}
};
class OtherKindConcreteObserver : public Observer
{
public:
void update() override {
cout << "OtherKindObserver noticed update\n";
}
};
class Subject
{
public:
void registerObserver( Observer* o) {
observerList.push_back( o);
}
void signalObservers() {
for ( auto observer : observerList)
observer->update();
}
private:
std::list<Observer*> observerList;
};
int main() {
ConcreteObserver observer1;
OtherKindConcreteObserver observer2;
Subject subject;
subject.registerObserver( &observer1);
subject.registerObserver( &observer2);
subject.signalObservers();
return 0;
}

How to automatize overriding methods?

I am wondering if there is any tricky way to override all class methods in the same manner. For instance, how to wisely implement composite pattern in large classes? When i get something like this for instance:
class Foo{
virtual void work() = 0;
...
};
class FooLeaf : public Foo{
virtual void work() override{}
...
};
class FooComposite : public Foo{
std::vector<Foo *> foos;
virtual void work() override{
for (auto foo : foos){
foo->work();
}
}
...
};
It is not a problem to reimplement one method. But when the number of methods grows the code get tremendously WET. I mean, I don't feel good copy-pasting the foreach loop for, let's say, 10 methods.
If all methods have the same signature, you can use method pointers:
class Foo{
public:
virtual void work() = 0;
virtual void rest() = 0;
};
class FooComposite : public Foo {
std::vector<Foo *> foos;
void do_all(void (Foo::*method)()) {
for (auto foo : foos) {
(foo->*method)();
}
}
void work() override {
do_all(&Foo::work);
}
void rest() override {
do_all(&Foo::rest);
}
};
If all you want to do is to get rid of the loop, but you don't mind repeating the method name, you could encapsulate the iteration (and potentially any error handling) in a Composite template, and then you can use a lambda to forward the call through to each element of the composite.
template <typename ElementType>
class Composite : public ElementType {
private:
std::vector<ElementType*> container;
protected:
template < typename Fn>
auto apply (Fn && fn) {
for (auto& e : container) {
fn(*e);
}
}
};
class Foo{
public:
virtual void work() = 0;
};
class FooLeaf : public Foo{
virtual void work() override { }
};
class FooComposite : public Composite<Foo> {
virtual void work() override {
return apply([](Foo& f){f.work();});
}
};
Even better, you can encapsulate the addition of elements to the composite via the Composite class template, which is arguably where it belongs. The implementation of apply relies on some C++14 type deduction features to make it a bit easier to write and to look at.

Right design pattern to deal with polymorphic collections of objects

Suppose I have the following classes:
class BaseObject {
public:
virtual int getSomeCommonProperty();
};
class Object1: public BaseObject {
public:
virtual int getSomeCommonProperty(); // optional
int getSomeSpecificProperty();
};
class BaseCollection {
public:
virtual void someCommonTask();
};
class Collection1: public BaseCollection {
public:
virtual void someCommonTask(); // optional
void someSpecificTask();
};
Each collection, derived from BaseCollection, deals with a specific object type (and only one type). But BaseCollection should be able to perform some tasks that are common to all objects, using only common object properties in BaseObject.
Currently, I have potentially three solutions in mind:
1) Store the objects list in BaseCollection, such as:
class BaseCollection {
vector<BaseObject*> objects;
};
The problem with this solution is that when I need to perform object-specific task in Collection1, I need a dynamic_cast<>, because I don't want to use virtual inherance for specific properties, applying to only one type of object. Considering that dynamic_cast<> could potentially get called millions of time per second, this seems an issue for a performance critical application.
2) Store the objects list in Collection1, such as:
class Collection1: public BaseCollection {
vector<Object1*> objects;
}
But then I need some way to access this object list in BaseCollection, to be able to perform some common tasks on them, ideally through an iterator. I would need to create a function that return a vector for the BaseCollection, but again, this does not seem very efficient, because the only way to do that is to create a new vector (potentially containing thousands of objects)...
3) Store the objects list in BaseCollection AND Collection1:
class BaseCollection {
public:
void someCommonTask(); // Use baseObjects
virtual void addObject() = 0;
protected:
vector<BaseObject*> baseObjects;
};
class Collection1: public BaseCollection {
vector<Object1*> objects;
public:
virtual void addObject() {
Object1* obj = new Object1;
objects.push_back(obj);
baseObjects.push_back(obj);
}
void someSpecificTask(); // Use objects, no need of dynamic_cast<>
}
Where the two lists actually contain the same objects. Is that as ugly as it sounds like?
I am looking for the right/correct/best design pattern for this type of problem and none of the 3 solutions exposed above really satisfies me...
Maybe it is possible to solve that problem with templates, but then I don't see a way to store a list of polymorphic collections like this:
vector<BaseCollection*> collections;
You can store all your objects of base and derived classes in one collection through the base class (smart) pointer. Using visitor design pattern and double dispatch mechanism you can call a function only on objects of a specific type without having to expose that function in the base class interface. For example:
#include <boost/intrusive_ptr.hpp>
#include <boost/bind.hpp>
#include <vector>
#include <algorithm>
#include <stdio.h>
struct Visitor { // Visitor design patter
virtual void visit(struct BaseObject&) {}
virtual void visit(struct Object1&) {}
};
struct BaseObject {
unsigned ref_count_; // intrusive_ptr support
BaseObject() : ref_count_() {}
virtual ~BaseObject() {}
virtual void accept(Visitor& v) { v.visit(*this); } // Visitor's double dispatch
virtual void getSomeCommonProperty() { printf("%s\n", __PRETTY_FUNCTION__); }
};
void intrusive_ptr_add_ref(BaseObject* p) { // intrusive_ptr support
++p->ref_count_;
}
void intrusive_ptr_release(BaseObject* p) { // intrusive_ptr support
if(!--p->ref_count_)
delete p;
}
struct Object1 : BaseObject {
virtual void accept(Visitor& v) { v.visit(*this); } // Visitor's double dispatch
virtual void getSomeCommonProperty() { printf("%s\n", __PRETTY_FUNCTION__); }
void getSomeSpecificProperty() { printf("%s\n", __PRETTY_FUNCTION__); }
};
template<class T, class Functor>
struct FunctorVisitor : Visitor {
Functor f_;
FunctorVisitor(Functor f) : f_(f) {}
void visit(T& t) { f_(t); } // apply to T objects only
template<class P> void operator()(P const& p) { p->accept(*this); }
};
template<class T, class Functor>
FunctorVisitor<T, Functor> apply_to(Functor f)
{
return FunctorVisitor<T, Functor>(f);
}
int main()
{
typedef boost::intrusive_ptr<BaseObject> BaseObjectPtr;
typedef std::vector<BaseObjectPtr> Objects;
Objects objects;
objects.push_back(BaseObjectPtr(new BaseObject));
objects.push_back(BaseObjectPtr(new Object1));
for_each(
objects.begin()
, objects.end()
, boost::bind(&BaseObject::getSomeCommonProperty, _1)
);
for_each(
objects.begin()
, objects.end()
, apply_to<BaseObject>(boost::bind(&BaseObject::getSomeCommonProperty, _1))
);
for_each(
objects.begin()
, objects.end()
, apply_to<Object1>(boost::bind(&Object1::getSomeSpecificProperty, _1))
);
}
Output:
$ ./test
virtual void BaseObject::getSomeCommonProperty()
virtual void Object1::getSomeCommonProperty()
virtual void BaseObject::getSomeCommonProperty()
void Object1::getSomeSpecificProperty()
I think you should go for option 1 but use a static cast instead. After all the derived collection knows the type of the member variable for sure.
This answer explains it very well.
Id use nested adapter as in below example. You have to specialize it for every class you want to do a fancy update
!The example has memory leak - allocated A, B, Q objects are not deleted!
#include <iostream>
#include <vector>
#include <algorithm>
class Q
{
public:
virtual void Foo()
{
std::cout << "Q::Foo()" << std::endl;
}
};
class A
{
public:
virtual void Foo()
{
std::cout << "A::Foo()" << std::endl;
}
};
class B : public A
{
public:
virtual void Foo()
{
std::cout << "B::Foo()" << std::endl;
}
virtual void BFoo()
{
std::cout << "B::BFoo()" << std::endl;
}
};
template <typename ElementType>
class C
{
public:
template <typename T>
void add(T* ptr){m_Collection.push_back(std::unique_ptr<Adapter>(new ConcreteAdapter<T>(ptr)));}
void updateAll()
{
std::for_each(m_Collection.begin(), m_Collection.end(), [&](std::unique_ptr<Adapter> &adapter)->void{adapter->update();});
}
private:
class Adapter
{
public:
virtual ElementType* get() = 0;
virtual void update(){get()->Foo();}
};
template <typename T>
class ConcreteAdapter : public Adapter
{
public:
ConcreteAdapter(T* ptr) : m_Ptr(ptr){}
virtual T* get(){return m_Ptr;}
protected:
T* m_Ptr;
};
template <>
class ConcreteAdapter<B> : public Adapter
{
public:
ConcreteAdapter(B* ptr) : m_Ptr(ptr){}
virtual B* get(){return m_Ptr;}
virtual void update()
{
get()->Foo();
get()->BFoo();
}
private:
B* m_Ptr;
};
std::vector<std::unique_ptr<Adapter>> m_Collection;
};
int main()
{
C<A> c;
c.add(new A());
c.add(new B());
//c.add(new Q()); //error - correct
c.updateAll();
return 0;
}
Maybe this will do the trick here ?
class CollectionManipulator {
public:
void someCommonTask(BaseCollection& coll) {
for(unsigned int i = 0; i < coll.size(); i++)
someCommonTask(coll.getObj(i));
}
private:
void someCommonTask(BaseObject*); // Use baseObjects
};
class BaseCollection {
friend class CollectionManipulator;
private:
virtual BaseObject* getObj(unsigned int) = 0;
virtual unsigned int size() const = 0;
};
class Collection1 : public BaseCollection {
vector<Object1*> objects;
public:
virtual void addObject() {
Object1* obj = new Object1;
objects.push_back(obj);
baseObjects.push_back(obj);
}
void someSpecificTask(); // Use objects, no need of dynamic_cast<>
private:
BaseObject* getObj(unsigned int value) {
return object[value];
}
unsigned int size() const {
return objects.size();
}
}
If you want abstract your container in Collection1 (like using list instead using vector), to use it in Manipulator, create an abstract iterator...
I think the solution should be a mix of factory method pattern and template method pattern. Take a look at those to refine your design.
Edit: Here is a sample code. GenericProduct is the BaseObject, it provides two methods, one that is general (though it could be overridden), and a specific method which does nothing, it is not a pure virtual so this class can be instantiated. SpecificProduct is a subclass, which implements the specific method in some way.
Now, Factory class is an abstract class that defines an interface for creating specific products by specific factories, it defines a pure virtual method createProduct which creates the product. Two concrete factories are created GenericFactory and SpecificFactory which create specific products.
Finally, the Consumer abstract class (which corresponds to BaseCollection in your code), it defines a pure virtual method for creating a factory createFactory in order to force subclasses to create their own concrete factories (and hence, the correct products). The class also define a method fillArray (prototype pattern) to fill the array with products created by the factory.
#include <iostream>
#include <vector>
using namespace std;
class GenericProduct{
public:
virtual void getSomeCommonProperty()
{
cout<<"Common Property\n";
}
virtual void getSomeSpecificProperty()
{
cout<<"Generic Has Nothing Specific\n";
}
};
class SpecificProduct : public GenericProduct{
public:
virtual void getSomeSpecificProperty()
{
cout<<"Specific Product Has a Specific Property\n";
}
};
class Factory
{
public:
virtual GenericProduct* createProduct() = 0;
};
class GenericFactory : public Factory
{
public:
virtual GenericProduct* createProduct()
{
return new GenericProduct();
}
};
class SpecificFactory : public Factory
{
public:
virtual GenericProduct* createProduct()
{
return new SpecificProduct();
}
};
class Consumer
{
protected:
vector<GenericProduct*> gp;
Factory* factory;
protected:
virtual void createFactory() = 0;
public:
void fillArray()
{
createFactory();
for(int i=0; i<10; i++)
{
gp.push_back(factory->createProduct());
}
}
virtual void someCommonTask()
{
cout<<"Performaing a Common Task ...\n";
for(int i=0; i<10; i++)
{
gp[i]->getSomeCommonProperty();
}
}
virtual void someSpecificTask()
{
cout<<"Performaing a Specific Task ...\n";
for(int i=0; i<10; i++)
{
gp[i]->getSomeSpecificProperty();
}
}
};
class GenericConsumer : public Consumer
{
virtual void createFactory()
{
factory = new GenericFactory();
}
};
class SpecificConsumer : public Consumer
{
virtual void createFactory()
{
factory = new SpecificFactory();
}
};
int main()
{
Consumer* c = new GenericConsumer();
c->fillArray();
c->someCommonTask();
return 0;
}