How to automatize overriding methods? - c++

I am wondering if there is any tricky way to override all class methods in the same manner. For instance, how to wisely implement composite pattern in large classes? When i get something like this for instance:
class Foo{
virtual void work() = 0;
...
};
class FooLeaf : public Foo{
virtual void work() override{}
...
};
class FooComposite : public Foo{
std::vector<Foo *> foos;
virtual void work() override{
for (auto foo : foos){
foo->work();
}
}
...
};
It is not a problem to reimplement one method. But when the number of methods grows the code get tremendously WET. I mean, I don't feel good copy-pasting the foreach loop for, let's say, 10 methods.

If all methods have the same signature, you can use method pointers:
class Foo{
public:
virtual void work() = 0;
virtual void rest() = 0;
};
class FooComposite : public Foo {
std::vector<Foo *> foos;
void do_all(void (Foo::*method)()) {
for (auto foo : foos) {
(foo->*method)();
}
}
void work() override {
do_all(&Foo::work);
}
void rest() override {
do_all(&Foo::rest);
}
};

If all you want to do is to get rid of the loop, but you don't mind repeating the method name, you could encapsulate the iteration (and potentially any error handling) in a Composite template, and then you can use a lambda to forward the call through to each element of the composite.
template <typename ElementType>
class Composite : public ElementType {
private:
std::vector<ElementType*> container;
protected:
template < typename Fn>
auto apply (Fn && fn) {
for (auto& e : container) {
fn(*e);
}
}
};
class Foo{
public:
virtual void work() = 0;
};
class FooLeaf : public Foo{
virtual void work() override { }
};
class FooComposite : public Composite<Foo> {
virtual void work() override {
return apply([](Foo& f){f.work();});
}
};
Even better, you can encapsulate the addition of elements to the composite via the Composite class template, which is arguably where it belongs. The implementation of apply relies on some C++14 type deduction features to make it a bit easier to write and to look at.

Related

Observer Pattern (C++): Cast Templated Class from Subclass to Baseclass of Tempalate

I am working on developing an observer pattern infrastructure and was hoping to get some advice on a design issue I have run into. The idea behind this pattern is to allow users to create "Transactions" from any primitive type they would like. Users can then develop their own custom Observers to do things like logging / build statistics / etc... Everything is then hooked up at runtime using factory methods depending on what they would like based on a configuration. This all works really well, until a user would like to provide a baseclass pointer based observer and have it work for all derived types. When observers are added I check if the types match and throw an exception if it is the wrong type.
Below is a simple example of the pattern and the use case that is breaking it.
Thanks so much in advance!
#include <cassert>
#include <stdio.h>
#include <vector>
template<typename T>
class Observerable;
template<typename T>
struct ObserverInfo {
const T& data;
const Observerable<T>& observer;
};
class IObserver {
public:
virtual ~IObserver() {}
};
template<typename T>
class Observer : public IObserver {
public:
virtual void Annouce(const ObserverInfo<T>& info);
};
class DumperBase {
public:
virtual void Dump() const = 0;
};
class MyTransaction : public DumperBase {
public:
void Dump() const override { printf("Hello\n"); }
};
class IObserverable {
public:
virtual ~IObserverable() {}
virtual void AttachObserver(IObserver* observer) = 0;
};
template<typename T>
class Observerable : public IObserverable {
public:
void AttachObserver(IObserver* observer) override {
// ?? Is there a way I can make this work for base clases?
auto casted_observer = dynamic_cast<Observer<T>*>(observer);
assert(casted_observer);
m_observers.emplace_back(casted_observer);
}
void Push(T transaction) {
Annouce({transaction, *this});
// Do something real with T
}
void Annouce(const ObserverInfo<T>& info) {
for (auto& observer : m_observers) {
observer->Annouce(info);
}
}
private:
std::vector<Observer<T>*> m_observers;
};
class MyTransactionObserver : public Observer<DumperBase*> {
void Annouce(const ObserverInfo<DumperBase*>& info) override {
info.data->Dump();
}
};
int main() {
Observerable<MyTransaction*> observerable{};
Observer<DumperBase*> observer{};
observerable.AttachObserver(&observer);
MyTransaction transaction{};
observerable.Push(&transaction);
return 0;
}

Defining a virtual method inherited more than once

I've been trying to find an answer to this question but I couldn't (I don't even know how to properly formulate this) so I decided to write my first post ever on StackOverflow =).
The context is the following:
I have this parent class:
class Parent
{
public:
Parent(){};
void foo(void)
{
//Do some common things
bar();
//Do some more common things
};
protected:
virtual void bar(void) = 0;
};
And I want to create an indefinite amount of derived Childs:
class Child1 : public Parent
{
public:
Child1() : Parent(), child1Variable(0) {};
protected:
virtual void bar(void) = 0;
private:
uint32_t child1Variable;
};
class Child2 : public Parent
{
public:
Child2() : Parent(), child2Variable(0) {};
protected:
virtual void bar(void) = 0;
private:
uint32_t child2Variable;
};
.
.
.
class ChildN : public Parent
{
public:
ChildN() : Parent(), childNVariable(0) {};
protected:
virtual void bar(void) = 0;
private:
uint32_t childNVariable;
};
The reason being mainly not repeating the code in Parent's foo()
Then I would like to create my final instantiable classes as, for instance:
class ExampleFinal : public Child1, public Child3, public Child27
{
//How to define Child1::bar(), Child3::bar() and Child27::bar() ??
private:
void bar(void); //????
};
So the questions are:
How can I define the method for (abusing notation) ExampleFinal::Child1::bar, ExampleFinal::Child3::bar, ...
Am I so stuck on this that I'm overlooking a much simpler solution?
The final goal is being able to do something like:
ExampleFinal test;
test.Child1::foo(); //should end up on "ExampleFinal::Child1::bar"
test.Child3::foo(); //should end up on "ExampleFinal::Child3::bar"
Thanks!
Implementing ExampleFinal::bar() (side-note: bar(void) is a C-ism which has no use in C++) will override all of the bars you have declared at once. If you want to have different versions, you'll need to interpose another layer of classes:
struct GrandChild1 : Child1 {
void bar() override { /*...*/ }
};
// And so on...
struct ExampleFinal : GrandChild1, GrandChild3, GrandChild27 {
// Nothing needed here.
};
Then the behaviour you described will work. Be aware, though, that your inheritance graph means that an ExampleFinal has one Parent subobject per Child. This is not an issue in itself but might not model what you want -- maybe you need virtual inheritance here, but beware of the rabbit hole.
If you want to keep the overrides for all ChildN::bars inside ExampleFinal, you can add tag-dispatching to discern them, at the cost of one more virtual call:
struct Parent {
void foo() {
bar();
};
protected:
template <class Child>
struct tag { };
virtual void bar() = 0;
};
struct Child1 : Parent {
protected:
virtual void bar(tag<Child1>) = 0;
void bar() final override {
return bar(tag<Child1>{});
}
int child1Var;
};
struct Child2 : Parent {
protected:
virtual void bar(tag<Child2>) = 0;
void bar() final override {
return bar(tag<Child2>{});
}
int child2Var;
};
struct ExampleFinal : Child1, Child2 {
protected:
using Parent::tag;
void bar(tag<Child1>) final override {
std::cout << "Child1::bar\n";
}
void bar(tag<Child2>) final override {
std::cout << "Child2::bar\n";
}
};
Note that the bar() to bar(tag<ChildN>) bridge can easily be hidden behind a macro. If you want to avoid the cost of the second virtual call, a CRTP can also be applied here.

Avoid new when storing base-typed member variable that could be initialized with different derived types

My code structure is like below where multiple classes implement Interface. In Example class I store a pointer to the Interface and new() it in the constructor appropriately (depending on constructor parameters not shown here). I'm looking for ways to avoid using new() in this scenario but haven't got a solution yet. What's the best practice for something like this?
class Interface
{
virtual void Foo() = 0;
};
class A : public Interface
{
void Foo() { ... }
};
class B : public Interface
{
void Foo() { ... }
};
class Example
{
private:
Interface* m_bar;
public:
Example()
{
m_bar = new A(); // deleted in destructor
}
};
There are two ways this is typically done, each with their own merits.
If A is truely defined at compile time, than a typical way to handle this is to simply use a template type:
template <typename T>
class TemplateExample
{
T m_bar;
public:
TemplateExample() : m_bar() {};
}
This has some downsides. TemplateExample<A> becomes unrelated to TemplateExample<B>, the error messages when T doesn't follow the correct interface are pretty obtuse, ect. The upside is this may use duck typing rather than interface typing, and m_bar is a concrete instance.
The other (arguable more common) way is to do the following
class UniquePtrExample
{
std::unique_ptr<Interface> m_bar;
public:
UniquePtrExample() : m_bar(new A()){}
};
This has the benefit of being able to be run time configuratble if you follow a cloable pattern:
class Interface
{
public:
virtual void Foo() = 0;
virtual Interface* clone() const = 0;
};
template <typename T>
class CloneHelper : public Interface
{
public:
virtual Interface* clone() const { return new T(static_cast<const T&>(*this));}
};
class A : public CloneHelper<A>
{
virtual void Foo() { std::cout << 'A' << std::endl; }
};
class B : public CloneHelper<B>
{
virtual void Foo() { std::cout << 'B' << std::endl; }
};
class UniquePtrExample
{
std::unique_ptr<Interface> m_bar;
public:
UniquePtrExample() : m_bar(new A()){}
UniquePtrExample(const Interface& i) : m_bar(i.clone());
};
Note you can further extend the above to have a move variant of the clone function.

c++ design: avoid iterating over types with an existing class hierarchy

Please consider the following (simplified) class hierarchy and processing functions:
struct msgBase
{
virtual int msgType() const=0;
};
struct msgType1:public msgBase
{
virtual int msgType() const{return 1;}
};
struct msgType2:public msgBase
{
virtual int msgType() const {return 2;}
};
void process(const msgType1& mt1)
{
// processing for message type 1
}
void process(const msgType2& mt2)
{
// processing for message type 2
}
void process(const msgBase& mbase)
{
switch(mbase.msgType())
{
case 1:
process(static_cast<const msgType1&>(mbase));
break;
case 2:
process(static_cast<const msgType2&>(mbase));
break;
}
}
In an integrated design, msgBase would be given a virtual "process" method, to avoid needing to iterate over the types.
If it's not possible or desirable to modify any of the classes, are there any alternatives to iterating over the types?
I've experimented with a decorator/factory pattern where a parallel hierarchy of classes encapsulates the given classes, and implements the necessary virtual functions, but this results in an awful lot of boilerplate, and the factory function still needs to iterate over the types!
I could replace the switch statement with a series of dyamic_casts, but that still leaves the same weaknesses.
As requested by Simon, here is what I mean by CRTP:
typedef <class Derived>
struct msgBase
{
virtual void process(){
// redirect the call to the derived class's process()
static_cast<Derived*>(this) -> process();
};
struct msgType1:public msgBase<msgType1>
{
void process(){
// process as per type-1
}
};
struct msgType2:public msgBase<msgType1>
{
void process(){
// process as per type-2
}
};
What's happening here? Consider this case:
msgBase* msg = new msgType1();
msg->process();
normally (without CRTP) this would only call msgBase::process(). But now, msgBase "knows" about msgType1 using the template, so it is redirected to msgType1::process at compile time.
Something like this could work:
These classes are used to do the casting automatically:
struct dispatcher_base {
virtual void process(const msgBase&) = 0;
};
template <class T>
struct dispatcher_impl : dispatcher_base {
void process(const msgBase& b) override {
::process(static_cast<const T&>(b));
}
};
We'll store them in a map:
auto g_table = std::map<int, std::unique_ptr<dispatcher_base>>{};
But now you have to initialize this table somewhere:
template <class T>
void register_msg() {
g_table[T{}.msgType()].reset(new dispatcher_impl<T>{});
}
...
register_msg<msgType1>();
register_msg<msgType2>();
You can add an assert to register_msg to make sure that msgTypes are unique.
Your process function will look like this:
void process(const msgBase& b) {
assert(g_table.find(b.msgType()) != g_table.end());
g_table[b.msgType()]->process(b);
}
You can replace assert with any other logic of course.
If you can't modify the classes then you can use decorators to get polymorphic type deduction.
struct DecorBase {
DecorBase(msgBase& b) : b_(b) {}
virtual ~DecorBase() {}
virtual void process() = 0;
msgBase& b_;
};
struct DecorType1 : public DecorBase {
DecorType1(msgType1& t1) : DecorBase(t1) {}
void process() override {
std::cout << "Processing Type 1" << std::endl;
}
};
struct DecorType2 : public DecorBase {
DecorType2(msgType2& t2) : DecorBase(t2) {}
void process() override {
std::cout << "Processing Type 2" << std::endl;
}
};
And use it like this:
msgType1 t1;
msgType2 t2;
DecorType1 dt1(t1); // Wrap objects in respective decorator.
DecorType2 dt2(t2);
DecorBase& base = dt2;
base.process(); // Uses polymorphism to call function in derived type.
This will require you to write a decorator for every derived type but at least you don't have to iterate over all types during the function call.

Right design pattern to deal with polymorphic collections of objects

Suppose I have the following classes:
class BaseObject {
public:
virtual int getSomeCommonProperty();
};
class Object1: public BaseObject {
public:
virtual int getSomeCommonProperty(); // optional
int getSomeSpecificProperty();
};
class BaseCollection {
public:
virtual void someCommonTask();
};
class Collection1: public BaseCollection {
public:
virtual void someCommonTask(); // optional
void someSpecificTask();
};
Each collection, derived from BaseCollection, deals with a specific object type (and only one type). But BaseCollection should be able to perform some tasks that are common to all objects, using only common object properties in BaseObject.
Currently, I have potentially three solutions in mind:
1) Store the objects list in BaseCollection, such as:
class BaseCollection {
vector<BaseObject*> objects;
};
The problem with this solution is that when I need to perform object-specific task in Collection1, I need a dynamic_cast<>, because I don't want to use virtual inherance for specific properties, applying to only one type of object. Considering that dynamic_cast<> could potentially get called millions of time per second, this seems an issue for a performance critical application.
2) Store the objects list in Collection1, such as:
class Collection1: public BaseCollection {
vector<Object1*> objects;
}
But then I need some way to access this object list in BaseCollection, to be able to perform some common tasks on them, ideally through an iterator. I would need to create a function that return a vector for the BaseCollection, but again, this does not seem very efficient, because the only way to do that is to create a new vector (potentially containing thousands of objects)...
3) Store the objects list in BaseCollection AND Collection1:
class BaseCollection {
public:
void someCommonTask(); // Use baseObjects
virtual void addObject() = 0;
protected:
vector<BaseObject*> baseObjects;
};
class Collection1: public BaseCollection {
vector<Object1*> objects;
public:
virtual void addObject() {
Object1* obj = new Object1;
objects.push_back(obj);
baseObjects.push_back(obj);
}
void someSpecificTask(); // Use objects, no need of dynamic_cast<>
}
Where the two lists actually contain the same objects. Is that as ugly as it sounds like?
I am looking for the right/correct/best design pattern for this type of problem and none of the 3 solutions exposed above really satisfies me...
Maybe it is possible to solve that problem with templates, but then I don't see a way to store a list of polymorphic collections like this:
vector<BaseCollection*> collections;
You can store all your objects of base and derived classes in one collection through the base class (smart) pointer. Using visitor design pattern and double dispatch mechanism you can call a function only on objects of a specific type without having to expose that function in the base class interface. For example:
#include <boost/intrusive_ptr.hpp>
#include <boost/bind.hpp>
#include <vector>
#include <algorithm>
#include <stdio.h>
struct Visitor { // Visitor design patter
virtual void visit(struct BaseObject&) {}
virtual void visit(struct Object1&) {}
};
struct BaseObject {
unsigned ref_count_; // intrusive_ptr support
BaseObject() : ref_count_() {}
virtual ~BaseObject() {}
virtual void accept(Visitor& v) { v.visit(*this); } // Visitor's double dispatch
virtual void getSomeCommonProperty() { printf("%s\n", __PRETTY_FUNCTION__); }
};
void intrusive_ptr_add_ref(BaseObject* p) { // intrusive_ptr support
++p->ref_count_;
}
void intrusive_ptr_release(BaseObject* p) { // intrusive_ptr support
if(!--p->ref_count_)
delete p;
}
struct Object1 : BaseObject {
virtual void accept(Visitor& v) { v.visit(*this); } // Visitor's double dispatch
virtual void getSomeCommonProperty() { printf("%s\n", __PRETTY_FUNCTION__); }
void getSomeSpecificProperty() { printf("%s\n", __PRETTY_FUNCTION__); }
};
template<class T, class Functor>
struct FunctorVisitor : Visitor {
Functor f_;
FunctorVisitor(Functor f) : f_(f) {}
void visit(T& t) { f_(t); } // apply to T objects only
template<class P> void operator()(P const& p) { p->accept(*this); }
};
template<class T, class Functor>
FunctorVisitor<T, Functor> apply_to(Functor f)
{
return FunctorVisitor<T, Functor>(f);
}
int main()
{
typedef boost::intrusive_ptr<BaseObject> BaseObjectPtr;
typedef std::vector<BaseObjectPtr> Objects;
Objects objects;
objects.push_back(BaseObjectPtr(new BaseObject));
objects.push_back(BaseObjectPtr(new Object1));
for_each(
objects.begin()
, objects.end()
, boost::bind(&BaseObject::getSomeCommonProperty, _1)
);
for_each(
objects.begin()
, objects.end()
, apply_to<BaseObject>(boost::bind(&BaseObject::getSomeCommonProperty, _1))
);
for_each(
objects.begin()
, objects.end()
, apply_to<Object1>(boost::bind(&Object1::getSomeSpecificProperty, _1))
);
}
Output:
$ ./test
virtual void BaseObject::getSomeCommonProperty()
virtual void Object1::getSomeCommonProperty()
virtual void BaseObject::getSomeCommonProperty()
void Object1::getSomeSpecificProperty()
I think you should go for option 1 but use a static cast instead. After all the derived collection knows the type of the member variable for sure.
This answer explains it very well.
Id use nested adapter as in below example. You have to specialize it for every class you want to do a fancy update
!The example has memory leak - allocated A, B, Q objects are not deleted!
#include <iostream>
#include <vector>
#include <algorithm>
class Q
{
public:
virtual void Foo()
{
std::cout << "Q::Foo()" << std::endl;
}
};
class A
{
public:
virtual void Foo()
{
std::cout << "A::Foo()" << std::endl;
}
};
class B : public A
{
public:
virtual void Foo()
{
std::cout << "B::Foo()" << std::endl;
}
virtual void BFoo()
{
std::cout << "B::BFoo()" << std::endl;
}
};
template <typename ElementType>
class C
{
public:
template <typename T>
void add(T* ptr){m_Collection.push_back(std::unique_ptr<Adapter>(new ConcreteAdapter<T>(ptr)));}
void updateAll()
{
std::for_each(m_Collection.begin(), m_Collection.end(), [&](std::unique_ptr<Adapter> &adapter)->void{adapter->update();});
}
private:
class Adapter
{
public:
virtual ElementType* get() = 0;
virtual void update(){get()->Foo();}
};
template <typename T>
class ConcreteAdapter : public Adapter
{
public:
ConcreteAdapter(T* ptr) : m_Ptr(ptr){}
virtual T* get(){return m_Ptr;}
protected:
T* m_Ptr;
};
template <>
class ConcreteAdapter<B> : public Adapter
{
public:
ConcreteAdapter(B* ptr) : m_Ptr(ptr){}
virtual B* get(){return m_Ptr;}
virtual void update()
{
get()->Foo();
get()->BFoo();
}
private:
B* m_Ptr;
};
std::vector<std::unique_ptr<Adapter>> m_Collection;
};
int main()
{
C<A> c;
c.add(new A());
c.add(new B());
//c.add(new Q()); //error - correct
c.updateAll();
return 0;
}
Maybe this will do the trick here ?
class CollectionManipulator {
public:
void someCommonTask(BaseCollection& coll) {
for(unsigned int i = 0; i < coll.size(); i++)
someCommonTask(coll.getObj(i));
}
private:
void someCommonTask(BaseObject*); // Use baseObjects
};
class BaseCollection {
friend class CollectionManipulator;
private:
virtual BaseObject* getObj(unsigned int) = 0;
virtual unsigned int size() const = 0;
};
class Collection1 : public BaseCollection {
vector<Object1*> objects;
public:
virtual void addObject() {
Object1* obj = new Object1;
objects.push_back(obj);
baseObjects.push_back(obj);
}
void someSpecificTask(); // Use objects, no need of dynamic_cast<>
private:
BaseObject* getObj(unsigned int value) {
return object[value];
}
unsigned int size() const {
return objects.size();
}
}
If you want abstract your container in Collection1 (like using list instead using vector), to use it in Manipulator, create an abstract iterator...
I think the solution should be a mix of factory method pattern and template method pattern. Take a look at those to refine your design.
Edit: Here is a sample code. GenericProduct is the BaseObject, it provides two methods, one that is general (though it could be overridden), and a specific method which does nothing, it is not a pure virtual so this class can be instantiated. SpecificProduct is a subclass, which implements the specific method in some way.
Now, Factory class is an abstract class that defines an interface for creating specific products by specific factories, it defines a pure virtual method createProduct which creates the product. Two concrete factories are created GenericFactory and SpecificFactory which create specific products.
Finally, the Consumer abstract class (which corresponds to BaseCollection in your code), it defines a pure virtual method for creating a factory createFactory in order to force subclasses to create their own concrete factories (and hence, the correct products). The class also define a method fillArray (prototype pattern) to fill the array with products created by the factory.
#include <iostream>
#include <vector>
using namespace std;
class GenericProduct{
public:
virtual void getSomeCommonProperty()
{
cout<<"Common Property\n";
}
virtual void getSomeSpecificProperty()
{
cout<<"Generic Has Nothing Specific\n";
}
};
class SpecificProduct : public GenericProduct{
public:
virtual void getSomeSpecificProperty()
{
cout<<"Specific Product Has a Specific Property\n";
}
};
class Factory
{
public:
virtual GenericProduct* createProduct() = 0;
};
class GenericFactory : public Factory
{
public:
virtual GenericProduct* createProduct()
{
return new GenericProduct();
}
};
class SpecificFactory : public Factory
{
public:
virtual GenericProduct* createProduct()
{
return new SpecificProduct();
}
};
class Consumer
{
protected:
vector<GenericProduct*> gp;
Factory* factory;
protected:
virtual void createFactory() = 0;
public:
void fillArray()
{
createFactory();
for(int i=0; i<10; i++)
{
gp.push_back(factory->createProduct());
}
}
virtual void someCommonTask()
{
cout<<"Performaing a Common Task ...\n";
for(int i=0; i<10; i++)
{
gp[i]->getSomeCommonProperty();
}
}
virtual void someSpecificTask()
{
cout<<"Performaing a Specific Task ...\n";
for(int i=0; i<10; i++)
{
gp[i]->getSomeSpecificProperty();
}
}
};
class GenericConsumer : public Consumer
{
virtual void createFactory()
{
factory = new GenericFactory();
}
};
class SpecificConsumer : public Consumer
{
virtual void createFactory()
{
factory = new SpecificFactory();
}
};
int main()
{
Consumer* c = new GenericConsumer();
c->fillArray();
c->someCommonTask();
return 0;
}