Allocating Memory to a Program Upon Initialization in C++? - c++

I would like to allocate a set amount of memory for the program upon initialization so that other programs cannot steal memory from it. Essentially, I would like to create a Heap for my program (without having to program a heap module all for myself).
If this is not possible, can you please refer me to a heap module that I can import into my project?
Using C++17.
Edit: More specifically, I am trying to for example specify that it is only allowed to malloc 4MB of data for example. If it tries to allocate anymore, it should throw an error.

What you ask is not possible with the features provided by ISO C++.
However, on most common platforms, reserving physical RAM is possible using platform-specific extensions. For example, Linux provides the function mlock and Microsoft Windows provides the function VirtualLock. But, in order to use these functions, you must either
know which memory pages the default allocator is using for memory allocation, which can get messy and complicated, or
use your own implementation of a memory allocator, so that it can itself call mlock/VirtualLock whenever it receives memory from the operating system.
Your own implementation of a memory allocator could be as simple as forwarding all memory allocation request to the operating system's kernel, for example using mmap on Linux or VirtualAlloc on Windows. However, this has the disadvantage that the granularity of all memory allocation requests is the size of a memory page, which on most systems is at least 4096 bytes. This means that even very small memory allocation requests of a few bytes will actually take 4096 bytes of memory. This would be a big waste of memory. Also, in your question, you stated that you wanted to preallocate a certain amount of memory when you start your application, so that you can use that memory later to satisfy smaller memory allocation requests. This cannot be done using the method described above.
Therefore, you may want to consider using a "proper" memory allocator implementation, which is able to satisfy several smaller allocation requests using a single memory page. See this list on Wikipedia for a list of common implementations.
That said, what you describe may be an XY problem, depending on what operating system you are using. For example, in contrast to Windows, Linux will typically overcommit memory. This means that the Linux kernel will allow applications to allocate more memory than is actually available, on the assumption that most applications will not use all the memory they request. Therefore, a call to std::malloc or new will seldom fail on Linux (but it is still possible, depending on the configuration). Instead, under low memory conditions, the Linux OOM killer (out of memory killer) will start killing processes that are taking up large amounts of memory, in order to free up memory and to keep the system running.
For this reason, the methods described above are likely to work on Microsoft Windows, but on Linux, they could be counterproductive, as they would make your process more likely to fall prey to the OOM killer.
However, even if you are able to accomplish what you want using the methods described above, I generally don't recommend that you use these methods, as this behavior is unfair towards the other processes in the system. Generally, you should leave the task of deciding which process gets (fast) physical memory and which process gets (slow) swap space to the operating system, as the operating system can do a better job of fairly distributing its resources among its processes.

If you want to force actual allocation of memory pages to your process, there's no way around managing your own memory.
In C++, the canonical way to do this would be to write an implementation for operator new() and operator delete() (the global ones!) which are responsible to perform the actual memory allocation. The function signatures are:
void* operator new (size_t size);
void operator delete (void *pointer);
and you'll need to include the #include <new> header.
Your implementation can do its work via one of three possible routes:
It allocates the memory using the C function malloc(), and immediately touches each memory page by writing a value to it. This forces the system kernel to actually back the memory region with real memory.
It allocates the memory using malloc(), and proceeds to call mlockall(). This is the nuclear option for when you absolutely must avoid all paging, including paging of code segments and shared libraries.
It asks the kernel directly for some chunks of memory using mmap() and proceeds to lock them into RAM via mlock(). The effect is similar to the previous option, but it is targeted only at the memory you allocated for your operator new() implementation.
The first method works independent of the OS kernel, the other two assume a Linux kernel.
With GCC, you can perform the memory allocation before main() is called by using the __attribute__((constructor)).
Writing such a memory allocator is not rocket science. It's not even a lot of code if done right. I once wrote an operator new()/operator delete() implementation that fits into 170 lines, including all my special features, comments, empty lines, and the license declaration. It's really not that hard.

I would like to allocate a set amount of memory for the program upon initialization so that other programs cannot steal memory from it.
Why would you want to do that?
it is not your business to decide if your program is more important than others !
Imagine your program running in parallel with some printing utility driving the printer. This is a common occurrence: I have downloaded some long PDF document (e.g. several hundred pages, like the C++ standard n3337), and I want to print it on paper to study it in a train, an airplane, at home and annotate it with a pencil and paper. The printing is likely to last more than an hour, and require computing resources (e.g. on Linux some CUPS printer driver converting PDF to PCL). During the printing, I could use your program.
If I am a user of your program, you have decided (at my place) that printing that document is less important for me than using your program (while the printer is slowly spitting pages).
Leave the allocation and management of memory to the operating system of your user.
There are of course important exceptions to that common sense rule. A typical medical robot used in neurosurgery has some embedded software with constraints different of a web server software. See also this draft report. For Linux, read Advanced Linux Programming then syscalls(2).
More specifically, I am trying to for example specify that it is only allowed to malloc 4MB of data for example.
This is really simple. Some OSes provide the ability to limit resources (on Linux, see setrlimit(2)...). Write your own malloc routine, above operating system specific primitives such as (on Linux) mmap(2). See also this, this and that answers (all focused on Linux; adapt them to your particular operating system). You probably can find open source implementations of malloc (on github or gitlab) for your particular operating system. For Linux, look here, then study the source code of glibc or musl-libc. In C++, study the source code of GCC or Clang (probably ::operator new is using malloc)

Related

What decides where on the heap memory is allocated?

Let me clear up: I understand how new and delete (and delete[]) work. I understand what the stack is, and I understand when to allocate memory on the stack and on the heap.
What I don't understand, however, is: where on the heap is memory allocated. I know we're supposed to look at the heap as this big pool of pretty much limitless RAM, but surely that's not the case.
What is in control of choosing where on the heap memory is stored and how does it choose that?
Also: the term "returning memory to the OS" is one I come across quite often. Does this mean that the heap is shared between all processes?
The reason I care about all this is because I want to learn more about memory fragmentation. I figured it'd be a good idea to know how the heap works before I learn how to deal with memory fragmentation, because I don't have enough experience with memory allocation, nor C++ to dive straight into that.
The memory is managed by the OS. So the answer depends on the OS/Plattform that is used. The C++ specification does not specify how memory on a lower level is allocated/freed, it specifies it in from of the lifetime.
While multi-user desktop/server/phone OS (like Windows, Linux, macOS, Android, …) have similar ways to how memory is managed, it could be completely different on embedded systems.
What is in control of choosing where on the heap memory is stored and how does it choose that?
Its the OS that is responsible for that. How exactly depends - as already said - on the OS. The OS could also be a thin layer in the form of a combination of the runtime library and minimal OS like includeos
Does this mean that the heap is shared between all processes?
Depends on the point of view. The address space is - for multiuser systems - in general not shared between processes. The OS ensures that one process cannot access memory of another process, which is ensured through virtual address spaces. But the OS can distribute the whole RAM among all processes.
For embedded systems, it could even be the case, that each process has a fixed amount a preallocated memory - that is not shared between processes - and with no way to allocated new memory or free memory. And then it is up to the developer to manage that preallocated memory by themselves by providing custom allocators to the objects of the stdlib, and to construct in allocated storage.
I want to learn more about memory fragmentation
There are two ways of fragmentation. The one is given by the memory addresses exposed by the OS to the C++ runtime. And the one on the hardware/OS side (which could be the same for embedded system) . How and in which form the memory might be fragmented organized by the OS can't be determined using the function provided by the stdlib. And how the fragmentation of the address spaces of the process behaves, depends again on the os and the also on the used stdlib.
None of these details are specified in the C++ specification standard. Each C++ implementation is free to implement these details in whichever way that works for it, as long as the end result is agreeable with the standard.
Each C++ compiler, and operating system implements these low level details in its own unique way. There is no specific answer to these questions that apply to every C++ compiler and every operating system. Over time, a lot of research has went into profiling and optimizing memory allocation and deallocation algorithms for a typical C++ application, and there are some tailored C++ implementation that offer alternative memory allocation algorithm that each application will choose, that it thinks will work best for it. Of course, none of this is covered by the C++ standard.
Of course, all memory in your computer must be shared between all processes that are running on it, and your operating system is responsible for divvying it up and parceling it out to all the processes, when they request more memory. All that "returning memory to the OS" means is that a process's memory allocator has determined that it no longer needs a sufficiently large continuous memory range, that was used before but not any more, and notifies the operating system that it no longer uses it and it can be reassigned to another process.
What decides where on the heap memory is allocated?
From the perspective of a C++ programmer: It is decided by the implementation (of the C++ language).
From the perspective of a C++ standard library implementer (as an example of what may hypothetically be true for some implementation): It is decided by malloc which is part of the C standard library.
From the perspective of malloc implementer (as an example of what may hypothetically be true for some implementation): The location of heap in general is decided by the operating system (for example, on Linux systems it might be whatever address is returned by sbrk). The location of any individual allocation is up to the implementer to decide as long as they stay within the limitations established by the operating system and the specification of the language.
Note that heap memory is called "free store" in C++. I think this is to avoid confusion with the heap data structure which is unrelated.
I understand what the stack is
Note that there is no such thing as "stack memory" in the C++ language. The fact that C++ implementations store automatic variables in such manner is an implementation detail.
The heap is indeed shared between processes, but in C++ the delete keyword does not return the memory to the operating system, but keeps it to reuse later on. The location of the allocated memory is dependent on how much memory you want to access, there has to be enough space and how the OS handles memory allocations, it can be one on first, best and worst hit (Read more on that topic on google). The name RAM basically tells you where to search for your memory :D
It is however possible to get the same memory location when you have a small program and restart it multiple times.

Is there a way to find out where my operating system is located in my RAM?

I wondered if C or C++ has a way to find where the operating system operates in RAM and free that place. I know that I can use free() to free up memory place. I wonder if I can shut down my computer by freeing my operating system's RAM space.
Before protected memory was a thing you could just access any bit of memory using its physical address and manipulate it. This was how DOS and DOS-based Windows (pre Windows 95, like 3.1) worked.
Protected memory, or virtualized memory, means you can do things like swap out parts of memory to disk, in effect pretending to have more memory than the computer physically has. Chunks of memory can be swapped around as necessary, paged in and paged out, with the running program being none the wiser. These addresses are all virtual, or "fake" as in they don't physically exist, but as far as the CPU is concerned, they are real and work exactly as you'd expect, something accomplished by integrated Memory Management Unit (MMU) in the CPU.
After protected memory your "user space" program no longer sees physical memory addresses, but instead virtual addresses that the operating system itself manages. On Intel-type systems the kernel, the core of the operating system, runs within a special protection ring that prevents user programs from directly accessing or manipulating memory.
Any multi-user system must implement this kind of memory and kernel protection or there would be no way to prevent one user from accessing the memory of another user's processes.
Within the kernel there is no "malloc" or "free" in the conventional sense, the kernel has its own special allocation mechanisms. These are completely separate from the traditional malloc() and free() functions in the C standard library and are not in any way inter-compatible. Each kernel, be it Linux or BSD or Windows or otherwise, does this in a different way even if they can all support user-space code that uses the exact same malloc() function.
There should be no way that you can, through simple memory allocation calls, crash the system. If you can, congratulations, you've found an exploit and should document it and forward it to the appropriate parties for further analysis. Keep in mind this kind of thing is heavily researched so the likelihood of you discovering one by chance is very low. Competitions like pwn2own show just how much work is involved in bypassing all this security.
It's also important to remember that the operating system does not necessarily live in a fixed location. Address Space Layout Randomization is a technique to scramble the addresses of various functions and data to ensure that an exploit can't use hard-coded values. Before this was common you could predict where various things would live in memory and do blind manipulation through a tiny bug, but that's made much harder now as you must not only find an exploit to manipulate, but another to discover the address in the first place.
All that being said, there's nothing special about C or C++ in terms of "power" that makes it able to do things no other language can do. Any program that is able to bind against the operating system functions has the same equivalent "power" in terms of control. This includes Python, Perl, Ruby, Node.js, C# and long, long, list of others that can bind to C libraries and make arbitrary function calls.
People prototype "exploits" in whatever language is the most convenient, and often that's Perl or Python as often as C. It really depends on what you're trying to accomplish. Some bugs, once discovered, are so easy to reproduce you could do it with something as mundane as browser JavaScript, as was the case with Row Hammer.
You mention free() as a means to free memory which is correct but too simplified. Its counterparts malloc() and calloc() merely translate to a system call which requests the operating system for a chunk of memory. When you call free(), you relinquish ownership of the memory you asked for and return it to the operating system.
Your C/C++ program runs in a virtual address space which the operating system's memory management subsystem maps to actual RAM addresses. No matter what address you access, it can never be out of this virtual address space which is entirely under the control of the operating system.
A user application can never access the operating system's memory in case of modern operating systems. All memory it uses is granted to it by the operating system. The OS acts a bridge/abstraction between your user applications and hardware, that's their whole purpose, to prevent direct interaction with the hardware, in your case, RAM.
RAM was once upon a time directly accessible before the advent of virtual memory. It was exactly due to this vulnerability, along with the need to run programs larger than the system memory, that virtual memory was introduced.
The only way you can mess with the operating system in user space is to make system calls with malignant arguments.

Why we use memory managers?

I have seen that lot of code bases specially server codes have basic (sometimes advanced) memory managers. Is the real purpose of memory manager is to reduce number of malloc calls or mainly for the purpose of memory analysis, corruption check or may be other application centric purposes.
Is the argument of saving malloc calls reasonable enough as malloc in itself is a memory manager. The only performance gain I can reason is when we know that system always ask for same size memory.
Or the reason for having memory manager is that free does not return memory to OS but saves in the list. So over the lifetime of the process, the heap usage of the process may increase if we keep on doing malloc/free because of fragmentation.
mallocis a general purpose allocator - "not slow" is more important than "always fast".
Consider a feature that would be a 10% improvement in many common cases, but might cause significant performance degradation in a few rare cases. An application specific allocator can avoid the rare case and reap the benefits. A general purpose allocator should not.
Besides number of calls to malloc, there are other relevant attributes:
locality of allocations
On current hardware, this easily the most important factor for performance. An application has more knowledge of the access patterns and can optimize the allocations accordingly.
multithreading
A general purpose allocator must allow calls to malloc and free from different threads. This usually requires a lock or similar concurrency handling. If the heap is very busy, this leads to massive contention.
An application that knows that some high-frequency alloc/frees come only from one thread can use its own thread-specific heap, which not only avoids contention for these allocations, but also increases their locality and takes load off the default allocator.
fragmentation
This is still a problem for long running applications on systems with limited physical memory or address space. Fragmentation may require more and more memory or address space from the OS, even without the actual working set increasing. This is a significant problem for applications that need to run uninterrupted.
Last time I looked deeper into allocators (which is probably half a decade past), the consensus was that naive attempts to reduce fragmentation often conflict with the never slow rule.
Again, an application that knows (some of its) allocation patterns can take a lot of load from the default allocator. One very common use case is building a syntax tree or something similar: there are gazillions of small allocations which are never freed individually, only as a whole. Such a pattern can be served efficiently with a very trivial allocator.
resilence and diagnostics
Last not least the diagnostic and self-protection capabilities of the default allocator may not be sufficient for many applications.
Why do we have custom memory managers rather than the built-in ones?
Number one reason is probably that the codebase was originaly written 20-30years ago when the provided one wasn't any good and nobody dares change it.
But otherwise, as you say because the application needs to manage fragmentation, grab memory at startup to ensure that memory will always be available, for security or a bunch of other reasons - most of which could be acheived by correct use of the built-in manager.
C and C++ are designed to be stripped down. They don't do much that is not explicitly asked for, so when a program asks for memory, it gets the minimum possible effort required to deliver that memory.
In other words, if you don't need it, you don't pay for it.
If finer-grained control of the memory is required, that's the domain of the programmer. If the programmer wishes to trade bare metal speed for a system that will provide higher performance on the target hardware in conjunction with the program's often unique goals, better debugging support, or simply likes the look and feel and warm fuzzies that come from using a manager, that is up to them. The programmer either writes something smarter or finds a third party library to do what they want.
You briefly touched on a lot of the different reasons why you would use a memory manager in your question.
Is the real purpose of a memory manager to reduce the number of malloc calls or mainly for the purpose of memory analysis, corruption check or other application centric purposes?
This is the big question. A memory manager in any application can be generic (like malloc) or it can be more specific. The more specialized the memory manager becomes it is likely to be more efficient at the specific task it is supposed to accomplish.
Take this overly-simplified example:
#define MAX_OBJECTS 1000
Foo globalObjects[MAX_OBJECTS];
int main(int argc, char ** argv)
{
void * mallocObjects[MAX_OBJECTS] = {0};
void * customObjects[MAX_OBJECTS] = {0};
for(int i = 0; i < 1000; ++i)
{
mallocObjects[i] = malloc(sizeof(Foo));
customObjects[i] = &globalObjects[i];
}
}
In the above I am pretending that this global object list is our "custom memory allocator." This is just to simplify what I am explaining.
When you allocate with malloc there is no guarantee it is right next to the previous allocation. Malloc is a general purpose allocator and does a good job at that but doesn't necessarily make the most efficient choice for every application.
With a custom allocator you might be able to up front allocate room for 1000 custom objects and since they are a fixed size return the exact amount of memory you need to prevent fragmentation and to efficiently allocate that block.
There is also the difference between memory abstraction and custom memory allocators. STL allocators are arguably an abstraction model and not a custom memory allocator.
Take a look at this link for some more information on custom allocators and why they are useful: gamedev.net link
There are many reasons why we would want to do this and it really depends on the application itself. In fact all the reasons you mentioned are valid.
I once built a very simple memory manager that kept track of shared_ptr allocations in order for me to see what was not being released properly on application end.
I would say stick to your runtime unless you need something that it does not provide.
Memory managers are used basically to manage efficiently your memory reservation. Normally processes have access to a limited amount of memory (4GB in 32bits systems), from this you have to subtract the virtual memory space reserved for the kernel (1GB or 2GB depending on your OS configuration). Thus, virtually the process has access let's say to 3GB of memory that will be used to hold all of its segments (code, data, bss, heap and stack).
Memory managers (malloc for example) try to fulfill the different memory reservation requests issued by the process by requesting new memory pages to the OS (using sbrk or mmap system calls). Every time this happens it implies an extra cost on the program execution since the OS has to look for a suitable memory page to be assigned to the process (Physical memory is limited and all the running processes want to use it), update the process tables (TMP, etc). These operations are time consuming and hit the process execution and performance. Thus, the memory manager normally try to request the needed pages to fulfill the process reservations cleverly. For example it could ask for some more pages to avoid calling more mmap calls in the near future. Additionally, it tries to deal with issues like fragmentation, memory alignment, etc. This basically unloads the process from this responsibility, otherwise everybody writing some program that needs dynamic memory allocation has to perform this manually!
Actually, there are cases where one could be interested in doing the memory management manually. This is the case for embedded or high availability systems which have to run for 24/365. In these cases even if the memory fragmentation is low it could become a problem after very long period of running (1 year for example). So, one of the solutions that are used in this case is to use a memory pool to allocate before hand the memory for the application objects. After-wards each time you need memory for some object you just use the already reserved memory.
For server based or any application that needs to run for long periods of time or indefinitely, the main issue is paged memory fragmentation. After a long series of mallocs / new and free / delete, paged memory can end up with gaps in the pages that waste space and could eventually run out of virtual address space. Microsoft deals with this with it's .NET framework, by occasionally pausing a process to repack paged memory for a process.
To avoid slowdown during repacking of memory in a process, a server type application can use multiple processes for the application, so that during repacking of one process, the other process(es) take more of the load.

Is it possible to partially free dynamically-allocated memory on a POSIX system?

I have a C++ application where I sometimes require a large buffer of POD types (e.g. an array of 25 billion floats) to be held in memory at once in a contiguous block. This particular memory organization is driven by the fact that the application makes use of some C APIs that operate on the data. Therefore, a different arrangement (such as a list of smaller chunks of memory like std::deque uses) isn't feasible.
The application has an algorithm that is run on the array in a streaming fashion; think something like this:
std::vector<float> buf(<very_large_size>);
for (size_t i = 0; i < buf.size(); ++i) do_algorithm(buf[i]);
This particular algorithm is the conclusion of a pipeline of earlier processing steps that have been applied to the dataset. Therefore, once my algorithm has passed over the i-th element in the array, the application no longer needs it.
In theory, therefore, I could free that memory in order to reduce my application's memory footprint as it chews through the data. However, doing something akin to a realloc() (or a std::vector<T>::shrink_to_fit()) would be inefficient because my application would have to spend its time copying the unconsumed data to the new spot at reallocation time.
My application runs on POSIX-compliant operating systems (e.g. Linux, OS X). Is there any interface by which I could ask the operating system to free only a specified region from the front of the block of memory? This would seem to be the most efficient approach, as I could just notify the memory manager that, for example, the first 2 GB of the memory block can be reclaimed once I'm done with it.
If your entire buffer has to be in memory at once, then you probably will not gain much from freeing it partially later.
The main point on this post is basically to NOT tell you to do what you want to do, because the OS will not unnecessarily keep your application's memory in RAM if it's not actually needed. This is the difference between "resident memory usage" and "virtual memory usage". "Resident" is what is currently used and in RAM, "virtual" is the total memory usage of your application. And as long as your swap partition is large enough, "virtual" memory is pretty much a non-issue. [I'm assuming here that your system will not run out of virtual memory space, which is true in a 64-bit application, as long as you are not using hundreds of terabytes of virtual space!]
If you still want to do that, and want to have some reasonable portability, I would suggest building a "wrapper" that behaves kind of like std::vector and allocates lumps of some megabytes (or perhaps a couple of gigabytes) of memory at a time, and then something like:
for (size_t i = 0; i < buf.size(); ++i) {
do_algorithm(buf[i]);
buf.done(i);
}
The done method will simply check if the value if i is (one element) past the end of the current buffer, and free it. [This should inline nicely, and produce very little overhead on the average loop - assuming elements are actually used in linear order, of course].
I'd be very surprised if this gains you anything, unless do_algorithm(buf[i]) takes quite some time (certainly many seconds, probably many minutes or even hours). And of course, it's only going to help if you actually have something else useful to do with that memory. And even then, the OS will reclaim memory that isn't actively used by swapping it out to disk, if the system is short of memory.
In other words, if you allocate 100GB, fill it, leave it sitting without touching, it will eventually ALL be on the hard-disk rather than in RAM.
Further, it is not at all unusual that the heap in the application retains freed memory, and that the OS does not get the memory back until the application exits - and certainly, if only parts of a larger allocation is freed, the runtime will not release it until the whole block has been freed. So, as stated at the beginning, I'm not sure how much this will actually help your application.
As with everything regarding "tuning" and "performance improvements", you need to measure and compare a benchmark, and see how much it helps.
Is it possible to partially free dynamically-allocated memory on a POSIX system?
You can not do it using malloc()/realloc()/free().
However, you can do it in a semi-portable way using mmap() and munmap(). The key point is that if you munmap() some page, malloc() can later use that page:
create an anonymous mapping using mmap();
subsequently call munmap() for regions that you don't need anymore.
The portability issues are:
POSIX doesn't specify anonymous mappings. Some systems provide MAP_ANONYMOUS or MAP_ANON flag. Other systems provide special device file that can be mapped for this purpose. Linux provides both.
I don't think that POSIX guarantees that when you munmap() a page, malloc() will be able to use it. But I think it'll work an all systems that have mmap()/unmap().
Update
If your memory region is so large that most pages surely will be written to swap, you will not loose anything by using file mappings instead of anonymous mappings. File mappings are specified in POSIX.
If you can do without the convenience of std::vector (which won't give you much in this case anyway because you'll never want to copy / return / move that beast anyway), you can do your own memory handling. Ask the operating system for entire pages of memory (via mmap) and return them as appropriate (using munmap). You can tell mmap via its fist argument and the optional MAP_FIXED flag to map the page at a particular address (which you must ensure to be not otherwise occupied, of course) so you can build up an area of contiguous memory. If you allocate the entire memory upfront, then this is not an issue and you can do it with a single mmap and let the operating system choose a convenient place to map it. In the end, this is what malloc does internally. For platforms that don't have sys/mman.h, it's not difficult to fall back to using malloc if you can live with the fact that on those platforms, you won't return memory early.
I'm suspecting that if your allocation sizes are always multiples of the page size, realloc will be smart enough not to copy any data. You'd have to try this out and see if it works (or consult your malloc's documentation) on your particular target platform, though.
mremap is probably what you need. As long as you're shifting whole pages, you can do a super fast realloc (actually the kernel would do it for you).

Returning the size of available virtual memory at run-time in C++

In C++ is there a predefined library function that will return the size of RAM currently available on a computer a program is being run on, at run-time?
For instance, if an object is 4bytes, then can we divide the available virtual memory by 4 bytes to give an estimate of how many more objects could be stored by the program safely?
I have used the sizeof() function to return the size of objects within my program.
Seeing as this was frequently asked for in the helpful responses - The platform the program is running on is Windows (7).
Thanks
Not in the C++ Standard Library - your operating system probably provides this facility though, via a platform-specific API.
There's nothing in the C++ standard that returns the amount of free memory available. Such a function, if available at all, would be platform-specific.
First of all size of the RAM has nothing to do with how much free virtual memory available in the process. It just that your program will slow down if the RAM is less due to frequent page faults. Also, the virtual memory will be mostly fragmented so it makes more sense to find the things such as largest continuous free memory instead of total free memory.
There are no built in C++ functions to do this you have use OS API's to get it. For example, on windows you can use the Win32 APIs to get this information.
It's platform specific, not part of the language standard.
However, there's a Windows specific API to get process memory informations: GetProcessMemoryInfo().
Additionally, virtual addressing allow processes to allocate more than total physical RAM.
In Win32 you can use
MEMORYSTATUS st;
::GlobalMemoryStatus(&st);
There is no good solution for this in Windows. When a program frees a heap block, it almost always gets added to a list of free blocks. You can only discover these is by walking the heap with HeapWalk(). That's expensive and very detrimental to the operation of a multi-threaded program because you have to lock the heaps.
Also, a program almost never runs out of free virtual memory space. It first runs out of a free contiguous chunk of space that's large enough to fit the request. The sum of block sizes you get from HeapWalk is not meaningful unless you only ever make very small allocations.
The most typical reason for wanting a feature like this is because your program is routinely running out of memory. There is a very effective and cheap solution available for that problem. Two hundred bucks buys you a 64-bit version of Windows.