c++ image rotation 90 degree - c++

I want to read the picture in grayscale and rotate it 90 degrees, but I am making a mistake somewhere. Is there anyone who can help?
cv::Mat image = imread(".../jpg", IMREAD_GRAYSCALE);
cv::resize(image, image,cv::Size(400,400));
cv::Mat imageson;
int rows = image.rows;
int cols = image.cols;
for (int i = 0; i < cols; i++)
{
for (int j = 0; j < rows ; j++)
{
imageson.at<uchar>(i,j) = image.at<uchar>(rows-1-j,i);
}
}
cv::imshow("image",imageson);
cv::waitKey(0);
// im beginner btw. output = (exit value:-1)

Related

Opencv only process the parts of image

I want to make a negative transformation for the image which is a very simple program.
But when I run the program. I want to transform all of the pixels in the image, but only 1/3 parts of that are processed. I don't make sure where is wrong. all the code I followed the book. But the result is different.
I think there is something wrong about the columns, but when I change the value of I.cols in negativeImage function with the actual value of image. the output still keep the same. only 1/3 parts of image are processed. If I 3 times the I.cols all of the pixels in the iamge could be processed.
vector<uchar> getNegativeLUT() {
vector<uchar> LUT(256, 0);
for (int i = 0; i < 256; ++i)
LUT[i] = (uchar)(255 - i);
return LUT;
}
void negativeImage(Mat& I) {
vector<uchar> LUT = getNegativeLUT();
for (int i = 0; i < I.rows; ++i) {
for (int j = 0; j < I.cols; ++j) {
I.at<uchar>(i, j) = LUT[I.at<uchar>(i, j)];
//stack overflow
}
}
}
int main() {
Mat image = imread("1.png");
Mat processed_image2 = image.clone();
negativeImage(processed_image2);
printf("%d", image.cols);
imshow("Input Image", image);
imshow("Negative Image", processed_image2);
waitKey(0);
return 0;
}
Output Image
You need to put correct type with at<> operator. Your PNG image has to be converted to 8UC1 to then use uchar type to access each pixel. I suppose your image has 3 channels, so you only iterate over 1/3 of the image. Also, I suggest you to use ptr<> operator in rows loop and then access to pixel as an array.
Mat M;
cvtColor(I, M, CV_BGR2GRAY);
// M is CV_8UC1 type
for(int i = 0; i < M.rows; i++)
{
uchar* p = M.ptr<uchar>(i);
for(int j = 0; j < I.cols; j++)
{
p[j] = LUT[p[j]];
}
}
EDIT: you should use cv::LUT instead of doing it yourself.
cv::Mat lut(1, 256, CV_8UC1);
for( int i = 0; i < 256; ++i)
{
lut.at<uchar>(0,i) = uchar(255-i);
}
cv::LUT(M, lut, result);

variance of sliding window in image

I work on traffic sign detection, firstly I am applied a segmentation on RGB image to obtain red channel image as it is illustrated in image 1:
Secondely I try to find homogeneous region to eliminate not interested region (not a traffic sign) by calculating the variance of sliding window above the image
I use this code but I have always exception
int main(int argc, char** argv)
{
IplImage *image1;
if ((image1 = cvLoadImage("segmenter1/00051.jpg", 0)) == 0)
return NULL;
int rows = image1->width;
int cols = image1->height;
Mat image = Mat::zeros(cols, rows, CV_32FC1);
double x = 0;
double temp = 0;
for (int i = 0; i < rows; i++){
for (int j = 0; j < cols; j++){
temp = cvGet2D(image1, j, i).val[0];
x = temp / 255;
image.at<float>(j, i) = x;
x = image.at<float>(j, i);
}
}
int k = 16;
double seuil = 0.0013;
CvScalar blanc;//pixel blanc
blanc.val[0] = 255;
cv::Scalar mean, stddev; //0:1st channel, 1:2nd channel and 2:3rd channel
for (int j = 0; j < rows - k; j++)
{
for (int i = 0; i < cols - k; i++)
{
double som = 0;
double var = 0;
double t = 0;
for (int jj = j; jj < k+j; jj++)
{
for (int ii = i; ii < k+i; ii++)
{
t = image.at<float>(jj, ii);
som = som + t;
t = t*t;
var =var+ t;
}
}
som = som / (k*k);
if (som>0.18){
var = (var / (k*k)) - (som*som);
if (var < seuil)
cvSet2D(image1, j, i, blanc);
}
}
}
char stsave[80];
cvSaveImage("variance/00051.jpg", image1);
cv::waitKey(0);
return 0;
}
Without the specific exception, I can only guess it is out_of_range. According to opencv docs, cvGet2D and cvSet2D parameters are image, y, x which effectively translates to image, rows, cols. You have flipped the definition of rows, cols and have conflicting usage between the two loops. Maybe fix these and try again.

How to set pixel value of a cv::Mat1b?

I have copied a grayscale image into a cv::Mat1b, and I want to loop through each pixel and read and change its value. How can I do that?
My code looks like this :
cv::Mat1b newImg;
grayImg.copyTo(newImg);
for (int i = 0; i < grayImg.rows; i++) {
for (int j = 0; i < grayImg.cols; j++) {
int pixelValue = static_cast<int>(newImg.at<uchar>(i, j));
if(pixelValue > thresh)
newImg.at<int>(i,j) = 0;
else
newImg.at<int>(i, j) = 255;
}
}
But in the assignments (inside of if and else), I get the error Access violation writing location.
How do I read and write specific pixels correctly?
Thanks !
Edit
Thanks to #Miki and #Micka, this is how I solved it :
for (int i = 0; i < newImg.rows; i++) {
for (int j = 0; j < newImg.cols; j++) {
// read :
cv::Scalar intensity1 = newImg.at<uchar>(i,j);
int intensity = intensity1.val[0];
// write :
newImg(i, j) = 255;
}
}
newImg.at<int>(i,j)
should be
newImg.at<uchar>(i,j)
Because cv::Mat1b is of uchar type
i suggest :
cv::Mat1b newImg;
newImg = grayImg > thresh ;
or
cv::Mat1b newImg;
newImg = grayImg < thresh ;
also look at the OpenCV Tutorials to know how to go through each and every pixel of an image

How can I convert a Mat_ to Mat in the following code?

below is a snippet from the opencv SVM tutorial at this link. And in that snippet is this line of code ' Mat sampleMat = (Mat_(1,2) << j,i);'. Instead of using the Mat_ template, I would need to use a regular Mat object. I was hoping someone can show me how to convert the Mat_ to a Mat in the previous line.
I tried Mat sampleMat = (Mat(1,2, CV_32FC1) << j,i); //but get a long page of errors
I tried Mat sampleMat = Mat(1,2, CV_32FC1) << j,i; //same, long page of errors
I just need the code at the link at the top of the page to run without using the Mat_ and only use a Mat in its place...if someone can show me how to write that line I'd appreciate it.
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1,2) << j,i);
float response = SVM.predict(sampleMat);
if (response == 1)
image.at<Vec3b>(i,j) = green;
else if (response == -1)
image.at<Vec3b>(i,j) = blue;
}
Edit: Trying to run like below but getting errors
Vec3b green(0,255,0), blue (255,0,0);
// Show the decision regions given by the SVM
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat(1, 2, CV_32F);
float * const pmat = sampleMat.ptr<float>();
pmat[0] = i;
pmat[1] = j;
float response = SVM.predict(sampleMat);
if (response == 1)
pmat[0] = green;
pmat[1] = green;
else if (response == -1)
pmat[0] = blue;
pmat[1] = blue;
}
I figured you'd know enough so I didn't need the errors=)
Set the values directly:
Mat sampleMat(1, 2, CV_32F);
sampleMat.at<float>(0,1) = j;
sampleMat.at<float>(0,2) = i;
or
Mat sampleMat(1, 2, CV_32F);
float * const pmat = sampleMat.ptr<float>();
pmat[0] = j;
pmat[1] = i;
Addendum:
Seeing your loop, you could make it a bit more efficient in the case that SVM.predict doesn't modify sampleMat. You can set the image row just once per row, instead of doing it all the time:
for (int i = 0; i < image.rows; ++i)
{
Mat sampleMat(1, 2, CV_32F);
sampleMat.at<float>(0, 2) = i;
for (int j = 0; j < image.cols; ++j)
{
sampleMat.at<float>(0, 1) = j;
...
}
}

using clustered indexes from point cloud in rgb image

I'm working with depth map acquired from two images (i took it from opencv StereoBM) and now i need to find clusters in them
I decided to use pcl region growing segmentation http://www.pointclouds.org/documentation/tutorials/region_growing_segmentation.php. I converted cv::Mat to point cloud after reading this article http://blog.martinperis.com/2012/01/3d-reconstruction-with-opencv-and-point.html and now i have cluster indexes
This to functions here https://gist.github.com/Daiver/5586252
Now i want, to use these indexes to display clusters on depth map from StereoBM (cv::Mat)
I'm trying this but I'm not satisfied with the results
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud; //cloud from depth map and rgb image
std::vector <pcl::PointIndices> clusters;// clusters inices, extracted before
for(int j = 0; j < clusters.size(); j++)
{
cv::Mat to_show = cv::Mat::zeros(288, 384, cv::DataType<uchar>::type);//image has size that equal size of rgb image and depth map
for(int i = 0; i < clusters[j].indices.size(); i++)
{
to_show.data[clusters[j].indices[i]] = 200;// regions in this Mat must be equal with regions from depth map
}
cv::imshow("", to_show);
cv::waitKey();
}
Result
Some cluster
Another cluster
Visualized cloud
How i can project clusters to cv::Mat?
PS sorry for my writing mistakes. English in not my native language
UPD
I've tryed to "restore" depth map by using loops like loops in mat_to_cloud function
int counter = 0;
cv::Mat to_show = cv::Mat::zeros(288, 384, cv::DataType<uchar>::type);
for(int i = 0; i < cloud->height; i++)
{
for(int j = 0; j < cloud->width; j++)
{
to_show.at<uchar>(i, j) = cloud->at(counter).z;
counter++;
}
}
And another order of loops
int counter = 0;
cv::Mat to_show = cv::Mat::zeros(288, 384, cv::DataType::type);
for(int j = 0; j < cloud->width; j++)
{
for(int i = 0; i < cloud->height; i++)
{
to_show.at(i, j) = cloud->at(counter).z;
counter++;
}
}
I don't know why these image is similar
I have not worked with PCL before but it looks like this line might be wrong:
// regions in this Mat must be equal with regions from depth map
to_show.data[clusters[j].indices[i]] = 200;
to_show is an opencv matrix but you use the indices from the point cloud. You need to convert the indices to pixel coordinates first.
I solved my problem, but my solution is a little dirty and silly.
I Made my own simple reprojection function
void straight_reproject_cloud(cv::Mat& img_rgb, cv::Mat& img_disparity, pcl::PointCloud<pcl::PointXYZRGB>::Ptr& point_cloud_ptr)
{
uchar pr, pg, pb;
for (int i = 0; i < img_rgb.rows; i++)
{
uchar* rgb_ptr = img_rgb.ptr<uchar>(i);
uchar* disp_ptr = img_disparity.ptr<uchar>(i);
for (int j = 0; j < img_rgb.cols; j++)
{
uchar d = disp_ptr[j];
if ( d == 0 ) continue; //Discard bad pixels
pb = rgb_ptr[3*j];
pg = rgb_ptr[3*j+1];
pr = rgb_ptr[3*j+2];
//Insert info into point cloud structure
pcl::PointXYZRGB point;
point.x = j;
point.y = i;
point.z = d;
uint32_t rgb = (static_cast<uint32_t>(pr) << 16 |
static_cast<uint32_t>(pg) << 8 | static_cast<uint32_t>(pb));
point.rgb = *reinterpret_cast<float*>(&rgb);
point_cloud_ptr->push_back (point);
}
}
}
This function adds points to cloud directly from images, without changes
New cloud is not coincided with old reprojection but i can work with it
And now points coordinates in cloud is concided to coordinates in images
I can show all clusters from cloud in image:
for(int k = 0; k < clusters.size(); k++)
{
cv::Mat res = cv::Mat::zeros(img_rgb.rows, img_rgb.cols, CV_8U);
//for(int i =0 ; i < point_cloud_ptr->points.size(); i++)
for(int j =0 ; j < clusters[k].indices.size(); j++)
{
int i = clusters[k].indices[j];
int x = point_cloud_ptr->at(i).x;
int y = point_cloud_ptr->at(i).y;
res.at<uchar>(y, x) = (int)(point_cloud_ptr->at(i).z);
}
cv::imshow("rec2", res);
cv::waitKey();
}
New cloud