Apache Beam Streaming data from Kafka to GCS Bucket (Not using pubsub) - google-cloud-platform

I have seen lot of examples of Apache Beam where you read data from PubSub and write to GCS bucket, however is there any example of using KafkaIO and writing it to GCS bucket?
Where I can parse the message and put it in appropriate bucket based on the message content?
For e.g.
message = {type="type_x", some other attributes....}
message = {type="type_y", some other attributes....}
type_x --> goes to bucket x
type_y --> goes to bucket y
My usecase is streaming data from Kafka to GCS bucket, so if someone suggest some better way to do it in GCP its welcome too.
Thanks.
Regards,
Anant.

You can use Secor to load messages to a GCS bucket. Secor is also able to parse incoming messages and puts them under different paths in the same bucket.

You can take a look at the example present here - https://github.com/0x0ece/beam-starter/blob/master/src/main/java/com/dataradiant/beam/examples/StreamWordCount.java
Once you have read the data elements if you want to write to multiple destinations based on a specific data value you can look at multiple outputs using TupleTagList the details of which can be found here - https://beam.apache.org/documentation/programming-guide/#additional-outputs

Related

Is there a way to deal with changes in log schema?

I am in a situation where I need to Extract the log JSON data, which might have changes in its data structure, to AWS S3 in real time manner.
I am thinking of using AWS S3 + AWS Glue Streaming ETL. The thing is the structure or schema of the log JSON data might change(these changes are unpredictable), so my solution needs to be aware of such changes and should still stream the log data smoothly without causing errors... But as far as I know, all the AWS Glue tutorials are showing the demo as if there is no changes in the structure of the incoming data.
Can you recommend or tell me the solution within AWS that's suitable for my case?
Thanks.

Update data in csv table which is stored in AWS S3 bucket

I need a solution for entering new data in csv that is stored in S3 bucket in AWS.
At this point we are downloading the file, editing and then uploading it again in s3 and we would like to automatize this process.
We need to add one row in a three column.
Thank you in advance!
I think you will be able to do that using Lambda Functions. You will need to programmatically make the modifications you need over the CSV but there are multiple programming languages that allow you to do that. One quick example is using python and the csv library
Then you can invoke that lambda or add more logic to the operations you want to do using an AWS API Gateway.
You can access the CSV file (object) inside the S3 Bucket from the lambda code using the AWS SDK and append the new rows with data you pass as parameters to the function
There is no way to directly modify the csv stored in S3 (if that is what you're asking). The process will always entail some version of download, modify, upload. There are many examples of how you can do this, for example here

Continuously write to S3 file

I want to store user action logs continuously to s3 file for that session.
Requirements:
for a session single file
continuous write operations to s3
should be able to download that file at the end of the session.
Dont want to create new file for single session, want to update same file. Please suggest only AWS solutions.
Do i need to create stream and use it with s3 or using mediator storage system and push once in while.
Objects in Amazon S3 are immutable -- they cannot be modified after they are created.
From your description, a good solution would be to use Amazon Kinesis Data Firehose. Your app can stream data to the Firehose and it will combine data together based on size or time. A long session might therefore produce multiple output files, so you would need a separate process that combines those files together into a single file.

Analyze binary NetCDF files with AWS Quicksight / Athena

I have a task to analyze weather forecast data in Quicksight. The forecast data is held in NetCDF binary files in a public S3 bucket. The question is: how do you expose the contents of these binary files to Quicksight or even Athena?
There are python libraries that will decode the data from the binary files, such as Iris. They are used like this:
import iris
filename = iris.sample_data_path('forecast_20200304.nc')
cubes = iris.load(filename)
print(cubes)
So what would be the AWS workflow and services necessary to create a data ingestion pipeline that would:
Respond to an SQS message that a new binary file is available
Access the new binary file and decode it to access the forecast data
Add the decoded data to the set of already decoded data from previous SQS notifications
Make all the decoded data available in Athena / Quicksight
Tricky one, this...
What I would do is probably something like this:
Write a Lambda function in Python that is triggered when new files appear in the S3 bucket – either by S3 notifications (if you control the bucket), by SNS, SQS, or by schedule in EventBridge. The function uses the code snipplet included in your question to transform each new file and upload the transformed data to another S3 bucket.
I don't know the size of these files and how often they are published, so whether to convert to CSV, JSON, or Parquet is something you have to decide – if the data is small CSV will probably be easiest and will be good enough.
With the converted data in a new S3 bucket all you need to do is create an Athena table for the data set and start using QuickSight.
If you end up with a lot of small files you might want to implement a second step where you once per day combine the converted files into bigger files, and possibly Parquet, but don't do anything like that unless you have to.
An alternative way would be to use Athena Federated Query: by implementing Lambda function(s) that respond to specific calls from Athena you can make Athena read any data source that you want. It's currently in preview, and as far as I know all the example code is written in Java – but theoretically it would be possible to write the Lambda functions in Python.
I'm not sure whether it would be less work than implementing an ETL workflow like the one you suggest, but yours is one of the use cases for which Athena Federated Query was designed for and it might be worth looking into. If NetCDF files are common and a data source for such files would be useful for other people I'm sure the Athena team would love to talk to you and help you out.

AWS S3 storage and schema

I have an IOT sensor which sends the following message to IoT MQTT Core topic:
{"ID1":10001,"ID2":1001,"ID3":101,"ValueMax":123}
I have added ACT/RULE which stores the incoming message in an S3 Bucket with the timestamp as a key(each message is stored as a seperate file/row in the bucket).
I have only worked with SQL databases before, so having them stored like this is new to me.
1) Is this the proper way to work with S3 storage?
2) How can I visualize the values in a schema instead of separate files?
3) I am trying to create ML Datasource from the S3 Bucket, but get the error below when Amazon ML tries to create schema:
"Amazon ML can't retrieve the schema. If you've just created this
datasource, wait a moment and try again."
Appreciate all advice there is!
1) Is this the proper way to work with S3 storage?
With only one sensor, using the [timestamp](https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-function-timestamp function in your IoT rule would be a way to name unique objects in S3, but there are issues that might come up.
With more than one sensor, you might have multiple messages arrive at the same timestamp and this would not generate unique object names in S3.
Timestamps from nearly the same time are going to have similar prefixes and designing your S3 keys this way may not give you the best performance at higher message rates.
Since you're using MQTT, you could use the traceId function instead of the timestamp to avoid these two issues if they come up.
2) How can I visualize the values in a schema instead of separate files?
3) I am trying to create ML Datasource from the S3 Bucket, but get the error below when Amazon ML tries to create schema:
For the third question, I think you could be running into a data format problem in ML because your S3 objects contain the JSON data from your messages and not a CSV.
For the second question, I think you're trying to combine message data from successive messages into a CSV, or at least output the message data as a single line of a CSV file. I don't think this is possible with just the Iot SQL language since it's intended to produce JSON.
One alternative is to configure your IoT SQL rule with a Lambda action and use a lambda function to make your JSON to CSV conversion and then write the CSV to your S3 bucket. If you go this direction, you may have to enrich your IoT message data with the timestamp (or traceId) as you call the lambda.
A rule like select timestamp() as timestamp, traceid() as traceid, concat(ID1, ID2, ID3, ValueMax) as values, * as message would produce a JSON like
{"timestamp":1538606018066,"traceid":"abab6381-c369-4a08-931d-c08267d12947","values":[10001,1001,101,123],"message":{"ID1":10001,"ID2":1001,"ID3":101,"ValueMax":123}}
That would be straightforward to use as the source for a CSV row with the data from its values property.