Related
GNU C++ Compiler in Windows 10 returns CLOCKS_PER_SEC = 1000, but I need to measure compiling time for an algorithm that goes below millisecond intervals (it's a school project). Is there a way to redefine CLOCKS_PER_SEC to, say, one million (like UNIX-based OSes)? On a side note, #define CLOCKS_PER_SEC ((clock_t)(1000000)) doesn't seem to work, either.
Short answer : no.
Long answer : No but you can use the QueryPerformanceCounter function, heres an example off of MSDN :
LARGE_INTEGER StartingTime, EndingTime, ElapsedMicroseconds;
LARGE_INTEGER Frequency;
QueryPerformanceFrequency(&Frequency);
QueryPerformanceCounter(&StartingTime);
// Activity to be timed
QueryPerformanceCounter(&EndingTime);
ElapsedMicroseconds.QuadPart = EndingTime.QuadPart - StartingTime.QuadPart;
//
// We now have the elapsed number of ticks, along with the
// number of ticks-per-second. We use these values
// to convert to the number of elapsed microseconds.
// To guard against loss-of-precision, we convert
// to microseconds *before* dividing by ticks-per-second.
//
ElapsedMicroseconds.QuadPart *= 1000000;
ElapsedMicroseconds.QuadPart /= Frequency.QuadPart;
That way, you can even measure nanoseconds but beware : at that precision level, even the tick count can drift and jitter so you might never receive a perfectly accurate result. If you want perfect precision i guess you will be forced to use an RTOS on appropriate, specialized hardware which is shielded against soft errors, for example
Well, this assignment absolutely requires the usage of time.h and time.h only
In this case, measuring short times is hard, but making short times longer is easy... Just repeat your algorithm until you reach, say, 1 second, and then divide the measured time by the number of iterations you did. You may get a skewed picture for cache-related and branch predictor-related times (as repeated iterations will "warm up" the caches and teach the branch predictor), but for the rest it should be decently accurate.
Incidentally, notice that using clock() is a bit problematic, as by standard it measures user CPU time of the current process (so, kernel time and IO wait is excluded), although on Windows it measures wall clock time. That's essentially the same as long as your algorithm is CPU-bound and manages to run pretty much continuously, but you may in for big differences if it is IO-bound or if it is running on a busy system
If you are interested in wall clock time and you are restricted to time.h, your best option is plain old time(); in that case I'd sync up precisely to the change of second with a busy wait, and then measure the number of iterations in a few seconds as said before.
time_t start = time(nullptr);
while(start == time(nullptr));
start = time(nullptr);
int i = 0;
while(time(nullptr) - start < 5) {
// your algorithm
++i;
}
int elapsed = time(nullptr) - start;
double time_per_iteration = double(elapsed) / i;
The thing is, I have to somehow get current time of day in milliseconds in convenient format.
Example of desired output:
21 h 04 min 12 s 512 ms
I know how to get this format in seconds, but I have no idea how to get my hands on milliseconds?
Using the portable std::chrono
auto now = std::chrono::system_clock::now();
auto time = std::chrono::system_clock::to_time_t(now);
auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()) -
std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch());
std::cout << std::put_time(std::localtime(&time), "%H h %M m %S s ");
std::cout << ms.count() << " ms" << std::endl;
Output:
21 h 24 m 22 s 428 ms
Live example
Note for systems with clocks that doesn't support millisecond resolution
As pointed out by #user4581301, on some systems std::system_clock might not have enough resolution for accurately representing current time in milliseconds. If that is the case, try using std::high_resolution_clock for calculating the number of milliseconds since the last second. This will ensure the highest available resolution provided by your implementation.
Taking the time from two clocks will inevitably lead you to get two separate points in time (however small the time difference will be). So keep in mind that using a separate clock for calculating the milliseconds will not yield perfect synchronization between the second, and millisecond periods.
// Use system clock for time.
auto now = std::chrono::system_clock::now();
/* A small amount of time passes between storing the time points. */
// Use separate high resolution clock for calculating milliseconds.
auto hnow = std::chrono::high_resolution_clock::now();
auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(hnow.time_since_epoch()) -
std::chrono::duration_cast<std::chrono::seconds>(hnow.time_since_epoch());
Also, there seems to be no guarantee that the tick events of std::high_resolution_clock and std::system_clock are synchronized, and because of this the millisecond period might not be in sync with the periodic update of the current second given by the system clock.
Because of these reasons, using a separate high resolution clock for millisecond resolution should not be used when <1 second precision is critical.
With the exception of using boost::chrono, I am not aware of any system independent method. I have implemented the following for windows and posix:
LgrDate LgrDate::gmt()
{
LgrDate rtn;
#ifdef _WIN32
SYSTEMTIME sys;
GetSystemTime(&sys);
rtn.setDate(
sys.wYear,
sys.wMonth,
sys.wDay);
rtn.setTime(
sys.wHour,
sys.wMinute,
sys.wSecond,
sys.wMilliseconds*uint4(nsecPerMSec));
#else
struct timeval time_of_day;
struct tm broken_down;
gettimeofday(&time_of_day,0);
gmtime_r(
&time_of_day.tv_sec,
&broken_down);
rtn.setDate(
broken_down.tm_year + 1900,
broken_down.tm_mon + 1,
broken_down.tm_mday);
rtn.setTime(
broken_down.tm_hour,
broken_down.tm_min,
broken_down.tm_sec,
time_of_day.tv_usec * nsecPerUSec);
#endif
return rtn;
} // gmt
On a POSIX system I would do
#include <sys/time.h>
#include <sys/resource.h>
struct timespec tspec;
clock_gettime(CLOCK_REALTIME, &tspec);
int sec = (int) tspec.tv_sec;
int msec = (int) ((double) tspec.tv_nsec) / 1000000.0;
Note, CLOCK_REALTIME is used to get the wall clock, which is adjusted using NTP
and then use whatever you have for the h:m:s part
How can I get the Windows system time with millisecond resolution?
If the above is not possible, then how can I get the operating system start time? I would like to use this value together with timeGetTime() in order to compute a system time with millisecond resolution.
Try this article from MSDN Magazine. It's actually quite complicated.
Implement a Continuously Updating, High-Resolution Time Provider for Windows
(archive link)
This is an elaboration of the above comments to explain the some of the whys.
First, the GetSystemTime* calls are the only Win32 APIs providing the system's time. This time has a fairly coarse granularity, as most applications do not need the overhead required to maintain a higher resolution. Time is (likely) stored internally as a 64-bit count of milliseconds. Calling timeGetTime gets the low order 32 bits. Calling GetSystemTime, etc requests Windows to return this millisecond time, after converting into days, etc and including the system start time.
There are two time sources in a machine: the CPU's clock and an on-board clock (e.g., real-time clock (RTC), Programmable Interval Timers (PIT), and High Precision Event Timer (HPET)). The first has a resolution of around ~0.5ns (2GHz) and the second is generally programmable down to a period of 1ms (though newer chips (HPET) have higher resolution). Windows uses these periodic ticks to perform certain operations, including updating the system time.
Applications can change this period via timerBeginPeriod; however, this affects the entire system. The OS will check / update regular events at the requested frequency. Under low CPU loads / frequencies, there are idle periods for power savings. At high frequencies, there isn't time to put the processor into low power states. See Timer Resolution for further details. Finally, each tick has some overhead and increasing the frequency consumes more CPU cycles.
For higher resolution time, the system time is not maintained to this accuracy, no more than Big Ben has a second hand. Using QueryPerformanceCounter (QPC) or the CPU's ticks (rdtsc) can provide the resolution between the system time ticks. Such an approach was used in the MSDN magazine article Kevin cited. Though these approaches may have drift (e.g., due to frequency scaling), etc and therefore need to be synced to the system time.
In Windows, the base of all time is a function called GetSystemTimeAsFiletime.
It returns a structure that is capable of holding a time with 100ns resoution.
It is kept in UTC
The FILETIME structure records the number of 100ns intervals since January 1, 1600; meaning its resolution is limited to 100ns.
This forms our first function:
A 64-bit number of 100ns ticks since January 1, 1600 is somewhat unwieldy. Windows provides a handy helper function, FileTimeToSystemTime that can decode this 64-bit integer into useful parts:
record SYSTEMTIME {
wYear: Word;
wMonth: Word;
wDayOfWeek: Word;
wDay: Word;
wHour: Word;
wMinute: Word;
wSecond: Word;
wMilliseconds: Word;
}
Notice that SYSTEMTIME has a built-in resolution limitation of 1ms
Now we have a way to go from FILETIME to SYSTEMTIME:
We could write the function to get the current system time as a SYSTEIMTIME structure:
SYSTEMTIME GetSystemTime()
{
//Get the current system time utc in it's native 100ns FILETIME structure
FILETIME ftNow;
GetSytemTimeAsFileTime(ref ft);
//Decode the 100ns intervals into a 1ms resolution SYSTEMTIME for us
SYSTEMTIME stNow;
FileTimeToSystemTime(ref stNow);
return stNow;
}
Except Windows already wrote such a function for you: GetSystemTime
Local, rather than UTC
Now what if you don't want the current time in UTC. What if you want it in your local time? Windows provides a function to convert a FILETIME that is in UTC into your local time: FileTimeToLocalFileTime
You could write a function that returns you a FILETIME in local time already:
FILETIME GetLocalTimeAsFileTime()
{
FILETIME ftNow;
GetSystemTimeAsFileTime(ref ftNow);
//convert to local
FILETIME ftNowLocal
FileTimeToLocalFileTime(ftNow, ref ftNowLocal);
return ftNowLocal;
}
And lets say you want to decode the local FILETIME into a SYSTEMTIME. That's no problem, you can use FileTimeToSystemTime again:
Fortunately, Windows already provides you a function that returns you the value:
Precise
There is another consideration. Before Windows 8, the clock had a resolution of around 15ms. In Windows 8 they improved the clock to 100ns (matching the resolution of FILETIME).
GetSystemTimeAsFileTime (legacy, 15ms resolution)
GetSystemTimeAsPreciseFileTime (Windows 8, 100ns resolution)
This means we should always prefer the new value:
You asked for the time
You asked for the time; but you have some choices.
The timezone:
UTC (system native)
Local timezone
The format:
FILETIME (system native, 100ns resolution)
SYTEMTIME (decoded, 1ms resolution)
Summary
100ns resolution: FILETIME
UTC: GetSytemTimeAsPreciseFileTime (or GetSystemTimeAsFileTime)
Local: (roll your own)
1ms resolution: SYSTEMTIME
UTC: GetSystemTime
Local: GetLocalTime
GetTickCount will not get it done for you.
Look into QueryPerformanceFrequency / QueryPerformanceCounter. The only gotcha here is CPU scaling though, so do your research.
Starting with Windows 8 Microsoft has introduced the new API command GetSystemTimePreciseAsFileTime
Unfortunately you can't use that if you create software which must also run on older operating systems.
My current solution is as follows, but be aware: The determined time is not exact, it is only near to the real time. The result should always be smaller or equal to the real time, but with a fixed error (unless the computer went to standby). The result has a millisecond resolution. For my purpose it is exact enough.
void GetHighResolutionSystemTime(SYSTEMTIME* pst)
{
static LARGE_INTEGER uFrequency = { 0 };
static LARGE_INTEGER uInitialCount;
static LARGE_INTEGER uInitialTime;
static bool bNoHighResolution = false;
if(!bNoHighResolution && uFrequency.QuadPart == 0)
{
// Initialize performance counter to system time mapping
bNoHighResolution = !QueryPerformanceFrequency(&uFrequency);
if(!bNoHighResolution)
{
FILETIME ftOld, ftInitial;
GetSystemTimeAsFileTime(&ftOld);
do
{
GetSystemTimeAsFileTime(&ftInitial);
QueryPerformanceCounter(&uInitialCount);
} while(ftOld.dwHighDateTime == ftInitial.dwHighDateTime && ftOld.dwLowDateTime == ftInitial.dwLowDateTime);
uInitialTime.LowPart = ftInitial.dwLowDateTime;
uInitialTime.HighPart = ftInitial.dwHighDateTime;
}
}
if(bNoHighResolution)
{
GetSystemTime(pst);
}
else
{
LARGE_INTEGER uNow, uSystemTime;
{
FILETIME ftTemp;
GetSystemTimeAsFileTime(&ftTemp);
uSystemTime.LowPart = ftTemp.dwLowDateTime;
uSystemTime.HighPart = ftTemp.dwHighDateTime;
}
QueryPerformanceCounter(&uNow);
LARGE_INTEGER uCurrentTime;
uCurrentTime.QuadPart = uInitialTime.QuadPart + (uNow.QuadPart - uInitialCount.QuadPart) * 10000000 / uFrequency.QuadPart;
if(uCurrentTime.QuadPart < uSystemTime.QuadPart || abs(uSystemTime.QuadPart - uCurrentTime.QuadPart) > 1000000)
{
// The performance counter has been frozen (e. g. after standby on laptops)
// -> Use current system time and determine the high performance time the next time we need it
uFrequency.QuadPart = 0;
uCurrentTime = uSystemTime;
}
FILETIME ftCurrent;
ftCurrent.dwLowDateTime = uCurrentTime.LowPart;
ftCurrent.dwHighDateTime = uCurrentTime.HighPart;
FileTimeToSystemTime(&ftCurrent, pst);
}
}
GetSystemTimeAsFileTime gives the best precision of any Win32 function for absolute time. QPF/QPC as Joel Clark suggested will give better relative time.
Since we all come here for quick snippets instead of boring explanations, I'll write one:
FILETIME t;
GetSystemTimeAsFileTime(&t); // unusable as is
ULARGE_INTEGER i;
i.LowPart = t.dwLowDateTime;
i.HighPart = t.dwHighDateTime;
int64_t ticks_since_1601 = i.QuadPart; // now usable
int64_t us_since_1601 = (i.QuadPart * 1e-1);
int64_t ms_since_1601 = (i.QuadPart * 1e-4);
int64_t sec_since_1601 = (i.QuadPart * 1e-7);
// unix epoch
int64_t unix_us = (i.QuadPart * 1e-1) - 11644473600LL * 1000000;
int64_t unix_ms = (i.QuadPart * 1e-4) - 11644473600LL * 1000;
double unix_sec = (i.QuadPart * 1e-7) - 11644473600LL;
// i.QuadPart is # of 100ns ticks since 1601-01-01T00:00:00Z
// difference to Unix Epoch is 11644473600 seconds (attention to units!)
No idea how drifting performance-counter-based answers went up, don't do slippage bugs, guys.
QueryPerformanceCounter() is built for fine-grained timer resolution.
It is the highest resolution timer that the system has to offer that you can use in your application code to identify performance bottlenecks
Here is a simple implementation for C# devs:
[DllImport("kernel32.dll")]
extern static short QueryPerformanceCounter(ref long x);
[DllImport("kernel32.dll")]
extern static short QueryPerformanceFrequency(ref long x);
private long m_endTime;
private long m_startTime;
private long m_frequency;
public Form1()
{
InitializeComponent();
}
public void Begin()
{
QueryPerformanceCounter(ref m_startTime);
}
public void End()
{
QueryPerformanceCounter(ref m_endTime);
}
private void button1_Click(object sender, EventArgs e)
{
QueryPerformanceFrequency(ref m_frequency);
Begin();
for (long i = 0; i < 1000; i++) ;
End();
MessageBox.Show((m_endTime - m_startTime).ToString());
}
If you are a C/C++ dev, then take a look here: How to use the QueryPerformanceCounter function to time code in Visual C++
Well, this one is very old, yet there is another useful function in Windows C library _ftime, which returns a structure with local time as time_t, milliseconds, timezone, and daylight saving time flag.
In C11 and above (or C++17 and above) you can use timespec_get() to get time with higher precision portably
#include <stdio.h>
#include <time.h>
int main(void)
{
struct timespec ts;
timespec_get(&ts, TIME_UTC);
char buff[100];
strftime(buff, sizeof buff, "%D %T", gmtime(&ts.tv_sec));
printf("Current time: %s.%09ld UTC\n", buff, ts.tv_nsec);
}
If you're using C++ then since C++11 you can use std::chrono::high_resolution_clock, std::chrono::system_clock (wall clock), or std::chrono::steady_clock (monotonic clock) in the new <chrono> header. No need to use Windows-specific APIs anymore
auto start1 = std::chrono::high_resolution_clock::now();
auto start2 = std::chrono::system_clock::now();
auto start3 = std::chrono::steady_clock::now();
// do some work
auto end1 = std::chrono::high_resolution_clock::now();
auto end2 = std::chrono::system_clock::now();
auto end3 = std::chrono::steady_clock::now();
std::chrono::duration<long long, std::milli> diff1 = end1 - start1;
std::chrono::duration<double, std::milli> diff2 = end2 - start2;
auto diff3 = std::chrono::duration_cast<std::chrono::milliseconds>(end3 - start3);
std::cout << diff.count() << ' ' << diff2.count() << ' ' << diff3.count() << '\n';
I have the following code:
long long unsigned int GetCurrentTimestamp()
{
LARGE_INTEGER res;
QueryPerformanceCounter(&res);
return res.QuadPart;
}
long long unsigned int initalizeFrequency()
{
LARGE_INTEGER res;
QueryPerformanceFrequency(&res);
return res.QuadPart;
}
//start time stamp
boost::posix_time::ptime startTime = boost::posix_time::microsec_clock::local_time();
long long unsigned int start = GetCurrentTimestamp();
// ....
// execution that should be measured
// ....
long long unsigned int end = GetCurrentTimestamp();
boost::posix_time::ptime endTime = boost::posix_time::microsec_clock::local_time();
boost::posix_time::time_duration duration = endTime - startTime;
std::cout << "Duration by Boost posix: " << duration.total_microseconds() <<std::endl;
std::cout << "Processing time is " << ((end - start) * 1000000 / initalizeFrequency())
<< " microsec "<< std::endl;
Result of this code is
Duration by Boost posix: 0
Processing time is 24 microsec
Why there is such a big divergence? Boost sucks as much as it should measure microseconds but it measures microseconds with tenth of microseconds error???
Posix time: microsec_clock:
Get the UTC time using a sub second resolution clock. On Unix systems this is implemented using GetTimeOfDay. On most Win32 platforms it is implemented using ftime. Win32 systems often do not achieve microsecond resolution via this API. If higher resolution is critical to your application test your platform to see the achieved resolution.
ftime simply does not provide microsecond resolution. The argument may contain the word microsecond but the implementation does not provide any accuracy in that range. It's granularity is in the ms regime.
You'd get something different than ZERO when you operation needs more time, say more than at least 20ms.
Edit: Note: In the long run the microsec_clock implementation for Windows should use the GetSystemTimePreciseAsFileTime function when possible (min. req. Windows 8 desktop, Windows Server 2012 desktop) to achieve microsecond resolution.
Unfortunately current Boost implementation of boost::posix_time::microsec_clock doesn't uses QueryPerformanceCounter Win32 API, it uses GetSystemTimeAsFileTime instead which in its turn uses GetSystemTime. But system time resolution is milliseconds (or even worse).
I need some way in c++ to keep track of the number of milliseconds since program execution. And I need the precision to be in milliseconds. (In my googling, I've found lots of folks that said to include time.h and then multiply the output of time() by 1000 ... this won't work.)
clock has been suggested a number of times. This has two problems. First of all, it often doesn't have a resolution even close to a millisecond (10-20 ms is probably more common). Second, some implementations of it (e.g., Unix and similar) return CPU time, while others (E.g., Windows) return wall time.
You haven't really said whether you want wall time or CPU time, which makes it hard to give a really good answer. On Windows, you could use GetProcessTimes. That will give you the kernel and user CPU times directly. It will also tell you when the process was created, so if you want milliseconds of wall time since process creation, you can subtract the process creation time from the current time (GetSystemTime). QueryPerformanceCounter has also been mentioned. This has a few oddities of its own -- for example, in some implementations it retrieves time from the CPUs cycle counter, so its frequency varies when/if the CPU speed changes. Other implementations read from the motherboard's 1.024 MHz timer, which does not vary with the CPU speed (and the conditions under which each are used aren't entirely obvious).
On Unix, you can use GetTimeOfDay to just get the wall time with (at least the possibility of) relatively high precision. If you want time for a process, you can use times or getrusage (the latter is newer and gives more complete information that may also be more precise).
Bottom line: as I said in my comment, there's no way to get what you want portably. Since you haven't said whether you want CPU time or wall time, even for a specific system, there's not one right answer. The one you've "accepted" (clock()) has the virtue of being available on essentially any system, but what it returns also varies just about the most widely.
See std::clock()
Include time.h, and then use the clock() function. It returns the number of clock ticks elapsed since the program was launched. Just divide it by "CLOCKS_PER_SEC" to obtain the number of seconds, you can then multiply by 1000 to obtain the number of milliseconds.
Some cross platform solution. This code was used for some kind of benchmarking:
#ifdef WIN32
LARGE_INTEGER g_llFrequency = {0};
BOOL g_bQueryResult = QueryPerformanceFrequency(&g_llFrequency);
#endif
//...
long long osQueryPerfomance()
{
#ifdef WIN32
LARGE_INTEGER llPerf = {0};
QueryPerformanceCounter(&llPerf);
return llPerf.QuadPart * 1000ll / ( g_llFrequency.QuadPart / 1000ll);
#else
struct timeval stTimeVal;
gettimeofday(&stTimeVal, NULL);
return stTimeVal.tv_sec * 1000000ll + stTimeVal.tv_usec;
#endif
}
The most portable way is using the clock function.It usually reports the time that your program has been using the processor, or an approximation thereof. Note however the following:
The resolution is not very good for GNU systems. That's really a pity.
Take care of casting everything to double before doing divisions and assignations.
The counter is held as a 32 bit number in GNU 32 bits, which can be pretty annoying for long-running programs.
There are alternatives using "wall time" which give better resolution, both in Windows and Linux. But as the libc manual states: If you're trying to optimize your program or measure its efficiency, it's very useful to know how much processor time it uses. For that, calendar time and elapsed times are useless because a process may spend time waiting for I/O or for other processes to use the CPU.
Here is a C++0x solution and an example why clock() might not do what you think it does.
#include <chrono>
#include <iostream>
#include <cstdlib>
#include <ctime>
int main()
{
auto start1 = std::chrono::monotonic_clock::now();
auto start2 = std::clock();
sleep(1);
for( int i=0; i<100000000; ++i);
auto end1 = std::chrono::monotonic_clock::now();
auto end2 = std::clock();
auto delta1 = end1-start1;
auto delta2 = end2-start2;
std::cout << "chrono: " << std::chrono::duration_cast<std::chrono::duration<float>>(delta1).count() << std::endl;
std::cout << "clock: " << static_cast<float>(delta2)/CLOCKS_PER_SEC << std::endl;
}
On my system this outputs:
chrono: 1.36839
clock: 0.36
You'll notice the clock() method is missing a second. An astute observer might also notice that clock() looks to have less resolution. On my system it's ticking by in 12 millisecond increments, terrible resolution.
If you are unable or unwilling to use C++0x, take a look at Boost.DateTime's ptime microsec_clock::universal_time().
This isn't C++ specific (nor portable), but you can do:
SYSTEMTIME systemDT;
In Windows.
From there, you can access each member of the systemDT struct.
You can record the time when the program started and compare the current time to the recorded time (systemDT versus systemDTtemp, for instance).
To refresh, you can call GetLocalTime(&systemDT);
To access each member, you would do systemDT.wHour, systemDT.wMinute, systemDT.wMilliseconds.
To get more information on SYSTEMTIME.
Do you want wall clock time, CPU time, or some other measurement? Also, what platform is this? There is no universally portable way to get more precision than time() and clock() give you, but...
on most Unix systems, you can use gettimeofday() and/or clock_gettime(), which give at least microsecond precision and access to a variety of timers;
I'm not nearly as familiar with Windows, but one of these functions probably does what you want.
You can try this code (get from StockFish chess engine source code (GPL)):
#include <iostream>
#include <stdio>
#if !defined(_WIN32) && !defined(_WIN64) // Linux - Unix
# include <sys/time.h>
typedef timeval sys_time_t;
inline void system_time(sys_time_t* t) {
gettimeofday(t, NULL);
}
inline long long time_to_msec(const sys_time_t& t) {
return t.tv_sec * 1000LL + t.tv_usec / 1000;
}
#else // Windows and MinGW
# include <sys/timeb.h>
typedef _timeb sys_time_t;
inline void system_time(sys_time_t* t) { _ftime(t); }
inline long long time_to_msec(const sys_time_t& t) {
return t.time * 1000LL + t.millitm;
}
#endif
struct Time {
void restart() { system_time(&t); }
uint64_t msec() const { return time_to_msec(t); }
long long elapsed() const {
return long long(current_time().msec() - time_to_msec(t));
}
static Time current_time() { Time t; t.restart(); return t; }
private:
sys_time_t t;
};
int main() {
sys_time_t t;
system_time(&t);
long long currentTimeMs = time_to_msec(t);
std::cout << "currentTimeMs:" << currentTimeMs << std::endl;
Time time = Time::current_time();
for (int i = 0; i < 1000000; i++) {
//Do something
}
long long e = time.elapsed();
std::cout << "time elapsed:" << e << std::endl;
getchar(); // wait for keyboard input
}