List instance of semigroup mappeding respective pairs of elements - list

I am looking for most common Haskell library that introduces [a] wrapper that instantiates Semigroup by delegating mappending to its elements in the similar way to:
newtype SList a = SList { slist :: [a] }
instance Semigroup a => Semigroup (SList a) where
l1 <> l2 = SList $ foldl1 (<>) <$> transpose [slist l1, slist l2]
For example, SList [a,b,c] <> SList [d,e,f,g] would evaluate to SList [a <> d,
b <> e, c <> f, g].
To my surprise I couldn't found any in Prelude nor other most popular libraries. Why is that?

Not a wrapper type, but a different function that does that on regular lists: salign from semialign's Data.Semialign. You can either call it directly or implement SList in terms of it:
import Data.Semialign (salign)
instance Semigroup a => Semigroup (SList a) where
SList l1 <> SList l2 = SList (salign l1 l2)

Related

How to use sml to write a function to turn a list of 2-tuples to a flattened list?

I got a problem that needs to turn a list of tuples into a flattened list for example:
[(1,2), (3,4), (5,6)] can be turned into [1,2,3,4,5,6]
I have tried to write a function like this:
fun helper2(nil,b) = []
| helper2(a,nil) = []
| helper2(a::l1,b::l2) =l1::l2
fun flatten2 [] = []
| flatten2 ((a,b)::tl) = helper2(a,b)
It shows:
val flatten2 = fn : ('a list * 'a list list) list -> 'a list list
And when I tried to run it using command flatten2[(1,2),(3,4),(5,6)];
It will give me the following error message:
stdIn:1.2-1.29 Error: operator and operand do not agree [overload conflict]
operator domain: ('Z list * 'Z list list) list
operand: ([int ty] * [int ty]) list
in expression:
flatten2 ((1,2) :: (3,4) :: (<exp>,<exp>) :: nil)
My questions are:
Why SML see the a and b values as lists, not just simply a and b
How can I revise my code so SML can see a and b as 'a and 'b not lists
How to make this code work the way it should be?
Thanks
First question: As to why the type comes out as ('a list * 'a list list) it's because type inference is looking at this part of the code:
| helper2(a::l1,b::l2) =l1::l2
^^
here
Keep in mind that the type of the "cons" (::) operator is 'a -> 'a list -> 'a list, it is gluing a single element onto a list of that same type of element. So SML has concluded that whatever l1 and l2 are, the relationship is that l2 is a list of whatever l1 is.
fun helper2(nil,b) = []
Says that a must be a list because nil has type 'a list. Therefore, l2 has to be a list of lists (of some type 'a).
Question 2 and 3: I'm not quite sure how to correct the code as it is written. I'd probably write something like this:
fun helper2 [] accum = List.rev accum
| helper2 ((a,b)::tl) accum = helper2 tl (b :: a :: accum);
fun flatten2 list = helper2 list [];
helper2 does all of the dirty work. If the input list is empty then we're all done and we can return the reversed accumulator that we've been building up. The second case is where we actually add things to the accumulator. We pattern match on the head and the tail of the list. This pattern match means that the input has type ('a * 'a) list (a list of tuples where both elements are the same type). In the head, we have a tuple and we name the first and second element a and b, respectively. We prepend a then b onto the accumulator and recursively call helper2 on the tail of the list. Eventually, we'll chew through all the elements in the list and then we'll be left with just the accumulator -- which, recall, has all the elements but in the reverse order. Calling List.rev reverses the accumulator and that's our answer.
And when I load and run it I get this:
- flatten2 [(1,2), (3,4), (5,6)];
val it = [1,2,3,4,5,6] : int list
Why SML see the a and b values as lists, not just simply a and b
Chris already answered this in-depth.
You're passing a as the first argument to helper2, which expects a list as its first argument. And you're passing b as the second argument to helper2, which uses its second argument, b::l2, also a list, as the tail of a list where a is the head. So b must be a list of those lists.
This doesn't make any sense, and is most likely a consequence of confusing syntax: You are passing in what you think of single elements a and b in flatten2, but when you deal with them in helper2 they're now lists where the heads are called a and b. Those are not the same a and b.
How can I revise my code so SML can see a and b as 'a and 'b not lists
You could ditch the helper function to begin with:
fun flatten2 [] = []
| flatten2 ((a,b)::pairs) = a :: b :: flatten2 pairs
The purpose of having a helper function is so that it can accumulate the result during recursion, because this version of flatten2 uses a lot of stack space. It can do this with an extra argument so that flatten2 doesn't need to mention it:
This is the version Chris made.
How to make this code work the way it should be?
You can make this code in a lot of ways. Two ways using explicit recursion were mentioned.
Here are some alternatives using higher-order functions:
(* Equivalent to my first version *)
fun flatten2 pairs =
foldr (fn ((a,b), acc) => a :: b :: acc) [] pairs
(* Equivalent to Chris'es version *)
fun flatten2 pairs =
rev (foldl (fn ((a,b), acc) => b :: a :: acc) [] pairs)
(* Yet another alternative *)
fun concatMap f xs =
List.concat (List.map f xs)
fun flatten2 pairs =
concatMap (fn (a,b) => [a,b]) pairs

Haskell Lists in List

I'm very new on Haskell, and I'm trying the following:
To obtain [1,2,3] from [[1,2,3],[4,5,6]]?
example :: [[a]] -> [a]
example [] = []
example [x:xs] = [x]
This example is returning [1] when input is [[1,2,3]] and if I add an other element in the main List, like [[1,2,3],[3,4,5]] then I have a Non-exhaustive pattern function.
You are quite close. In fact what you here want is some sort of "safe" head.
A list [a] has two constructors:
the empty list [], you cover this in the first case; and
the "cons" (x:xs).
It looks like you cover that in the second case, but in fact you do not: you put the pattern within square brackets. As a result, Haskell interprets your pattern as [(x:xs)]. So it thinks you match a singleton list (a list with one element), and that x is the head of the sublist, and xs the tail of the sublist.
In fact you want to cover (x:xs). If we use this pattern, there is another problem: x is the head of the list, so it has type [a]. Therefore we should return x, not [x], since in the latter case, we would wrap the sublist back in a list.
So a correct function is:
example :: [[a]] -> [a]
example [] = []
example (x:_) = x -- round brackets, x instead of [x]
Note that since we are not interested in the tail here, we use an underscore _. If you compile with all warnings (-Wall, or more specific -Wunused-matches) Haskell will otherwise complain about the fact that you declare a variable that you do not use.
Generalizing to a safeHead function
We can generalize this to some sort of generic safeHead :: b -> (a -> b) -> [a] -> b function:
safeHead :: b -> (a -> b) -> [a] -> b
safeHead d _ [] = d
safeHead _ f (x:_) = f x
Here we thus pass three arguments to safeHead: a value (of type b) we should return in case the list is empty; a function to post-process the head (type a -> b), and the list to process. In that case the example is equivalent to:
example :: [[a]] -> [a]
example = safeHead [] id
But we can also return a Maybe [a] here:
example2 :: [a] -> Maybe a
example2 = safeHead Nothing Just

Strong union of two lists

I've defined functions:
fun concaten(x,y) =
if (x = [])
then y
else hd(x) :: concaten(tl(x),y);
as well as:
fun existsin(x,L) =
if (L=[])
then false
else if (x = hd(L))
then true
else existsin(x,tl(L));
and am now trying to define a function of type (((list * list) -> list) -> list) that looks vaguely like the following:
fun strongunion(x,y) =
val xy = concaten(x,y);
if xy=[]
then []
if (existsin(hd(xy),tl(xy)) andalso x!= [])
then strongunion(tl(x),y)
else if (existsin(hd(xy),tl(xy)) andalso x = [])
then strongunion(x,tl(y))
else if (x != [])
then hd(xy) :: strongunion(tl(x),y)
else hd(xy) :: strongunion(x,tl(y));
which takes the "strong" union of two lists, i.e. it combats faulty inputs (lists with element duplicates). This code is, of course, syntactically invalid, but the reason I included it was to show what such a function would look like in an imperative language.
The way I started going about doing this was to first concatenate the lists, then remove duplicated elements from that concatenation (well, technically I am adding non-duplicates to an empty list, but these two operations are consequentially equivalent). To do this, I figured I would design the function to take two lists (type list*list), transform them into their concatenation (type list), then do the duplicate removal (type list), which would be of type (((list*list) -> list) -> list).
My issue is that I have no idea how to do this in SML. I'm required to use SML for a class for which I'm a TA, otherwise I wouldn't bother with it, and instead use something like Haskell. If someone can show me how to construct such higher-order functions, I should be able to take care of the rest, but I just haven't come across such constructions in my reading of SML literature.
I'm a bit unsure if strong union means anything other than just union. If you assume that a function union : ''a list * ''a list -> ''a list takes two lists of elements without duplicates as inputs, then you can make it produce the unions without duplicates by conditionally inserting each element from the one list into the other:
(* insert a single element into a list *)
fun insert (x, []) = [x]
| insert (x, xs as (y::ys)) =
if x = y
then xs
else y::insert(x, ys)
(* using manual recursion *)
fun union ([], ys) = ys
| union (x::xs, ys) = union (xs, insert (x, ys))
(* using higher-order list-combinator *)
fun union (xs, ys) = foldl insert ys xs
Trying this:
- val demo = union ([1,2,3,4], [3,4,5,6]);
> val demo = [3, 4, 5, 6, 1, 2] : int list
Note, however, that union wouldn't be a higher-order function, since it doesn't take functions as input or return functions. You could use a slightly stretched definition and make it curried, i.e. union : ''a list -> ''a list -> ''a list, and say that it's higher-order when partially applying it to only one list, e.g. like union [1,2,3]. It wouldn't even be fully polymorphic since it accepts only lists of types that can be compared (e.g. you can't take the union of two sets of functions).

Unsequence Monad function within Haskell

I'm having some real trouble designing the counterfunction of Haskell's sequence function, which Hoogle tells me doesn't yet exist. This is how it behaves:
ghci> sequence [Just 7, Just 8, Just 9]
Just [7,8,9]
ghci> sequence [getLine, getLine, getLine]
hey
there
stack exchange
["hey","there","stack exchange"] :: IO [String]
My problem is making a function like this:
unsequence :: (Monad m) => m [a] -> [m a]
So that it behaves like this:
ghci> unsequence (Just [7, 8, 9])
[Just 7, Just 8, Just 9]
ghci> sequence getLine
hey
['h','e','y'] :: [IO Char] --(This would actually cause an error, but hey-ho.)
I don't actually know if that's possible, because I'd be escaping the monad at some point, but I've made a start, though I don't know how to set a breakpoint for this recursive function:
unsequence m = (m >>= return . head) : unsequence (m >>= return . tail)
I realise that I need a breakpoint when the m here is equal to return [], but not all monads have Eq instances, so how can I do this? Is this even possible? If so, why and why not? Please tell me that.
You can't have an unsequence :: (Monad m) => m [a] -> [m a]. The problem lies with lists: you can't be sure how may elements you are going to get with a list, and that complicates any reasonable definition of unsequence.
Interestingly, if you were absolutely, 100% sure that the list inside the monad is infinite, you could write something like:
unsequenceInfinite :: (Monad m) => m [a] -> [m a]
unsequenceInfinite x = fmap head x : unsequenceInfinite (fmap tail x)
And it would work!
Also imagine that we have a Pair functor lying around. We can write unsequencePair as
unsequencePair :: (Monad m) => m (Pair a) -> Pair (m a)
unsequencePair x = Pair (fmap firstPairElement x) (fmap secondPairElement x)
In general, it turns out you can only define unsequence for functors with the property that you can always "zip" together two values without losing information. Infinite lists (in Haskell, one possible type for them is Cofree Identity) are an example. The Pair functor is another. But not conventional lists, or functors like Maybe or Either.
In the distributive package, there is a typeclass called Distributive that encapsulates this property. Your unsequence is called distribute there.
It is indeed not possible to create an unsequence function using monads alone. The reason is:
You can safely and easily create a monadic structure from a value using return.
However, it is not safe to remove a value from a monadic structure. For example you can't remove an element from an empty list (i.e. a function of the type [a] -> a is not safe).
Hence we have a special function (i.e. >>=) which safely removes a value from a monadic structure (if one exists), processes it and returns another safe monadic structure.
Hence it is safe to create a monadic structure from a value. However it is not safe to remove a value from a monadic structure.
Suppose we had a function extract :: Monad m => m a -> a which could “safely” remove a value from a monadic structure. We could then implement unsequence as follows:
unsequence :: Monad m => m [a] -> [m a]
unsequence = map return . extract
However, there's no safe way to extract a value from a monadic structure. Hence unsequence [] and unsequence Nothing will return undefined.
You can however create an unsequence function for structures that are both monadic and comonadic. A Comonad is defined as follows:
class Functor w => Comonad w where
extract :: w a -> a
duplicate :: w a -> w (w a)
extend :: (w a -> b) -> w a -> w b
duplicate = extend id
extend f = fmap f . duplicate
A comonadic structure is the opposite of a monadic structure. In particular:
You can safely extract a value from a comonadic structure.
However you can't safely create a new comonadic structure from a value, which is why the duplicate function safely creates a new comonadic structure from a value.
Remember that the definition of unsequence required both return and extract? You can't safely create a new comonadic structure from a value (i.e. comonadic structures don't have return). Hence the unsequence function is defined as follows:
unsequence :: (Comonad m, Monad m) => m [a] -> [m a]
unsequence = map return . extract
Interestingly sequence works on simply monadic structures. So via intuition you might assume that unsequence works on simply comonadic structures. However it not so because you need to first extract the list from the comonadic structure and then put each element of the list into a monadic structure.
The general version of the unsequence function converts a comonadic list structure to a list of monadic structures:
unsequence :: (Comonad w, Monad m) => w [a] -> [m a]
unsequence = map return . extract
On the other hand the sequence function works on simply monadic structures because you are just folding the list of monadic structures into a monadic list structure by chaining all the monads:
import Control.Monad (liftM2)
sequence :: Monad m => [m a] -> m [a]
sequence = foldr (liftM2 (:)) (return [])
Hope that helps.

Getting the head and tail of a custom list type in Haskell

I have a custom list type:
data NNList a = Sing a | Append ( NNList a) ( NNList a) deriving (Eq)
data CList a = Nil | NotNil ( NNList a) deriving (Eq)
I'm trying to implement a function that returns the head and tail of a list:
cListGet :: CList a -> Maybe (a, CList a)
My attempt:
cListGet :: CList a -> Maybe (a, CList a)
cListGet Nil = Nothing
cListGet xs#(NotNil nxs) =
case nxs of
Sing x -> (x, Nil)
Append l r -> ((fst $ cListGet (NotNil l)), (Append (snd $ cListGet (NotNil l)), r))
Which to me means keep going leftwards until I get a single. Once I get the single element (head), return the element and a Nil list. This Nil list is then combined with the list before it's returned as the final result.
I'm not even sure if the logic is 100% correct.
Well, people would normally refer to the data structure you have as a kind of tree, not as a list. But anyway...
Problem #1: Haskell is indentation sensitive, and your case expression is not indented. This leads to a parse error.
Problem #2, and the bigger one: you haven't understood how the Maybe type works yet. I get the impression that you think it works like nulls in more common languages, and this is throwing you off.
In a language like, say, Java, null is a value that can occur where most any other value can. If we have a method with the following signature:
public Foo makeAFoo(Bar someBar)
...then it is legal to call it either of these ways:
// Way #1: pass in an actual value
Bar theBar = getMeABar();
Foo result = makeAFoo(theBar);
// Way #2: pass in a null
Foo result2 = makeAFoo(null)
theBar and null are "parallel" in a sense, or said more precisely, they have the same type—you can replace one with the other in a program and it will compile in both cases.
In Haskell, on the other hand, the string "hello" and Nothing do not have the same type, and you cannot use one where the other goes. Haskell distinguishes between these three things:
A string that's required to be there: "hello" :: String
The absence of an optional string: Nothing :: Maybe String
The presence of an optional string: Just "hello" :: Maybe String
The difference between #1 and #3 is what you're systematically missing in your function. With Maybe a, in the cases where you do have a value you must use Just, which acts like a wrapper to signify "this isn't just an a, it's a Maybe a."
First place you're missing Just is the right hand sides of the case expressions, which we can fix like this:
-- This still fails to compile!
cListGet :: CList a -> Maybe (a, CList a)
cListGet Nil = Nothing
cListGet xs#(NotNil nxs) =
case nxs of
-- I added 'Just' here and in the next line:
Sing x -> Just (x, Nil)
Append l r -> Just (fst $ cListGet (NotNil l), (Append (snd $ cListGet (NotNil l)), r))
But this isn't the end of it, because you're doing fst $ cListGet (NotNil l), which suffers from the converse problem: cListGet returns Maybe (a, CList a), but fst works on (a, b), not on Maybe (a, b). You need to pattern match on the result of cListGet to test whether it's Nothing or Just (x, l'). (This same problem occurs also in your snd $ cListGet (NotNil l).)
Third, you're using your Append constructor wrong. You have it in the form of (Append foo, bar), which should have no comma between foo and bar. In Haskell this sort of thing will give you more confusing error messages than most other languages, because when Haskell sees this, it doesn't tell you "you made a syntax error"; Haskell is rather more literal than most languages, so it figures you're trying to make a pair with Append foo as the first element, and bar as the second one, so it concludes that (Append foo, bar) must have type (NNList a -> NNList a, NNList a).
The fourth and final problem: the problem you've set yourself is not clearly stated, and thus has no good answer. You say you want to find the "head" and "tail" of a CList a. What does that mean? In the case of the Haskell [a] type, with constructors [] and :, this is clear: the head is the x in x:xs, and the tail is the xs.
As I understand you, what you mean by "head" seems to be the leftmost element of the recursive structure. We could get that this way:
cListHead :: CList a -> Maybe a
cListHead Nil = Nothing
-- No need to cram everything together into one definition; deal with
-- the NNList case in an auxiliary function, it's easier...
cListGet (NotNil nxs) = Just (nnListHead nxs)
-- Note how much easier this function is to write, because since 'NNList'
-- doesn't have a 'Nil' case, there's no need to mess around with 'Maybe'
-- here. Basically, by splitting the problem into two functions, only
-- 'cListHead' needs to care about 'Maybe' and 'Just'.
nnListHead :: NNList a -> a
nnListHead (Sing a) = a
nnListHead (Append l _) = nnListHead l
So you might think that "the tail" is everything else. Well, the problem is that "everything else" is not a subpart of your CList or NNList. Take this example:
example :: CList Int
example = NotNil (Append (Append (Sing 1) (Sing 2)) (Sing 3))
The "head" is 1. But there is no subpart of the structure defined in example that contains 2 and 3 without containing 1 as well. You'd have to construct a new CList with a different shape than the original to get that. That's possible to do, but I don't see the value of it as a beginner's exercise, frankly.
In case it's not clear what I mean by a "subpart," think of the example as a tree:
NotNil
|
v
Append
/ \
v v
Sing Append
| / \
v v v
1 Sing Sing
| |
v v
2 3
Subpart = subtree.
Hint: try to rewrite this using only pattern matching and not equality-checking (==).
Edit:
First off, it's crucial that you understand what pattern matching is and how it works. I'd recommend going here and reading up; there are also plenty of other resources about this on the web (Google is your friend).
Once you've done that, here's another hint: First write a function nnListGet :: NNList a -> (a, CList a), then use it to implement cListGet.
Just to add to the other (very thorough) answers: It's good to realize that your custom list is a foldable structure. This means, it represents a sequence of values that can be combined together. Such datatypes can implement Foldable type class. In your case, it would be:
import Prelude hiding (foldr)
import Data.Foldable
data NNList a = Sing a | Append (NNList a) (NNList a) deriving (Eq)
data CList a = Nil | NotNil (NNList a) deriving (Eq)
instance Foldable NNList where
foldr f z (Sing x) = f x z
foldr f z (Append xs ys) = foldr f (foldr f z ys) xs
instance Foldable CList where
foldr _ z Nil = z
foldr f z (NotNil xs) = foldr f z xs
From that you'll get all functions defined in Data.Foldable for free, such as maximum/minimum, searching for an element etc.
For any Foldable, you can implement headMaybe that returns its first element by using First monoid. It's a very simple monoid that returns the left-most non-empty element. So if you fold all elements of a Foldable using this monoid, you'll get its first one:
import Data.Monoid
headMaybe :: (Foldable f) => f a -> Maybe a
headMaybe = getFirst . foldMap (First . Just)
(Alternatively, you can use foldr directly, using Maybe's instance of Alternative, which again returns the left-most non-empty element:
import Control.Applicative
headMaybe = foldr (\x y -> pure x <|> y) Nothing
.)
However, this doesn't solve the second part of your question - computing tailMaybe. This can't be defined in a generic way like headMaybe, and you'll need your custom function for that, as you did.
See also:
Fold on Wikipedia.
Foldable and Traversable on Haskell wiki.
Fold on Haskell wiki.
List processing on Haskell wikibook.
Why did you declare that in terms of two types? Here's a seemingly more appropriate type declaration with a correct function:
data CList a
= Nil
| Sing a
| Append (CList a) (CList a)
deriving (Eq)
headAndTail :: CList a -> Maybe (a, CList a)
headAndTail Nil = Nothing
headAndTail (Sing a) = Just (a, Nil)
headAndTail (Append a b) =
case headAndTail a of
Nothing -> headAndTail b
Just (head, tail) -> Just (head, Append tail b)