How to check is Jenkins pram contains a character - regex

I am trying to check if my Jenkins parameter contains a hostname.
But when I use Regular Expressions to see if it contains the name it doesn't check.
I would guess I have an error in the way I am checking or how I have it wrapped in brackets.
Below is a sample of what I am working with
stage('Release 1') {
when {
expression { params.SECRET_NAME != "" && params.STAGING_ENV != ("*some.host.name*") }
}
steps {
echo "Release 1"
}
}
stage('Release 2') {
when {
expression {params.STAGING_ENV == ("*some.host.name*") && params.SECRET_NAME == ("*+*") }
}
steps {
echo "Release 2"
}
}
}
I want it to skip the stage in my Jenkins pipeline if it does not meet the conditions

Ok, you need multiple changes here, from inside out:
Replace the * with .*. Simply put, in regex * denotes the same (set) of characters any number of times (abc* matches abccccc), whereas .* denotes any character any number of times (abc.* matches abccccc, abcdefg, abcadkhsdalksd, etc.).
Remove the double quotes " surrounding the regex patterns; lest you want them to be interpreted as string literals.
Wrap the regex patterns within delimiters, usually / to define the string boundary.
The brackets () themselves are optional here.
To match regular expressions, replace the equal operator == with the match operator ==~ (strict), which returns a boolean.
There is no "NOT match" operator in Groovy. To invert the match, you need to invert the result of the entire expression.
If the + in *+*should be a literal, then you must escape it as *\+*.
Stitching these together, your pipeline should look like:
stage('Release 1') {
when {
expression {
params.SECRET_NAME != "" && !(params.STAGING_ENV ==~ /.*some.host.name.*/)
}
}
steps {
echo "Release 1"
}
}
stage('Release 2') {
when {
expression {
params.STAGING_ENV ==~ /.*some.host.name.*/ && params.SECRET_NAME ==~ /.*\+.*/
}
}
steps {
echo "Release 2"
}
}
Further reading:
http://docs.groovy-lang.org/latest/html/documentation/core-operators.html
http://web.mit.edu/hackl/www/lab/turkshop/slides/regex-cheatsheet.pdf

Related

Regular Expression: match and count "A" and stop after found "B" by counted times [duplicate]

I need a regular expression to select all the text between two outer brackets.
Example:
START_TEXT(text here(possible text)text(possible text(more text)))END_TXT
^ ^
Result:
(text here(possible text)text(possible text(more text)))
I want to add this answer for quickreference. Feel free to update.
.NET Regex using balancing groups:
\((?>\((?<c>)|[^()]+|\)(?<-c>))*(?(c)(?!))\)
Where c is used as the depth counter.
Demo at Regexstorm.com
Stack Overflow: Using RegEx to balance match parenthesis
Wes' Puzzling Blog: Matching Balanced Constructs with .NET Regular Expressions
Greg Reinacker's Weblog: Nested Constructs in Regular Expressions
PCRE using a recursive pattern:
\((?:[^)(]+|(?R))*+\)
Demo at regex101; Or without alternation:
\((?:[^)(]*(?R)?)*+\)
Demo at regex101; Or unrolled for performance:
\([^)(]*+(?:(?R)[^)(]*)*+\)
Demo at regex101; The pattern is pasted at (?R) which represents (?0).
Perl, PHP, Notepad++, R: perl=TRUE, Python: PyPI regex module with (?V1) for Perl behaviour.
(the new version of PyPI regex package already defaults to this → DEFAULT_VERSION = VERSION1)
Ruby using subexpression calls:
With Ruby 2.0 \g<0> can be used to call full pattern.
\((?>[^)(]+|\g<0>)*\)
Demo at Rubular; Ruby 1.9 only supports capturing group recursion:
(\((?>[^)(]+|\g<1>)*\))
Demo at Rubular  (atomic grouping since Ruby 1.9.3)
JavaScript  API :: XRegExp.matchRecursive
XRegExp.matchRecursive(str, '\\(', '\\)', 'g');
Java: An interesting idea using forward references by #jaytea.
Without recursion up to 3 levels of nesting:
(JS, Java and other regex flavors)
To prevent runaway if unbalanced, with * on innermost [)(] only.
\((?:[^)(]|\((?:[^)(]|\((?:[^)(]|\([^)(]*\))*\))*\))*\)
Demo at regex101; Or unrolled for better performance (preferred).
\([^)(]*(?:\([^)(]*(?:\([^)(]*(?:\([^)(]*\)[^)(]*)*\)[^)(]*)*\)[^)(]*)*\)
Demo at regex101; Deeper nesting needs to be added as required.
Reference - What does this regex mean?
RexEgg.com - Recursive Regular Expressions
Regular-Expressions.info - Regular Expression Recursion
Mastering Regular Expressions - Jeffrey E.F. Friedl 1 2 3 4
Regular expressions are the wrong tool for the job because you are dealing with nested structures, i.e. recursion.
But there is a simple algorithm to do this, which I described in more detail in this answer to a previous question. The gist is to write code which scans through the string keeping a counter of the open parentheses which have not yet been matched by a closing parenthesis. When that counter returns to zero, then you know you've reached the final closing parenthesis.
You can use regex recursion:
\(([^()]|(?R))*\)
[^\(]*(\(.*\))[^\)]*
[^\(]* matches everything that isn't an opening bracket at the beginning of the string, (\(.*\)) captures the required substring enclosed in brackets, and [^\)]* matches everything that isn't a closing bracket at the end of the string. Note that this expression does not attempt to match brackets; a simple parser (see dehmann's answer) would be more suitable for that.
This answer explains the theoretical limitation of why regular expressions are not the right tool for this task.
Regular expressions can not do this.
Regular expressions are based on a computing model known as Finite State Automata (FSA). As the name indicates, a FSA can remember only the current state, it has no information about the previous states.
In the above diagram, S1 and S2 are two states where S1 is the starting and final step. So if we try with the string 0110 , the transition goes as follows:
0 1 1 0
-> S1 -> S2 -> S2 -> S2 ->S1
In the above steps, when we are at second S2 i.e. after parsing 01 of 0110, the FSA has no information about the previous 0 in 01 as it can only remember the current state and the next input symbol.
In the above problem, we need to know the no of opening parenthesis; this means it has to be stored at some place. But since FSAs can not do that, a regular expression can not be written.
However, an algorithm can be written to do this task. Algorithms are generally falls under Pushdown Automata (PDA). PDA is one level above of FSA. PDA has an additional stack to store some additional information. PDAs can be used to solve the above problem, because we can 'push' the opening parenthesis in the stack and 'pop' them once we encounter a closing parenthesis. If at the end, stack is empty, then opening parenthesis and closing parenthesis matches. Otherwise not.
(?<=\().*(?=\))
If you want to select text between two matching parentheses, you are out of luck with regular expressions. This is impossible(*).
This regex just returns the text between the first opening and the last closing parentheses in your string.
(*) Unless your regex engine has features like balancing groups or recursion. The number of engines that support such features is slowly growing, but they are still not a commonly available.
It is actually possible to do it using .NET regular expressions, but it is not trivial, so read carefully.
You can read a nice article here. You also may need to read up on .NET regular expressions. You can start reading here.
Angle brackets <> were used because they do not require escaping.
The regular expression looks like this:
<
[^<>]*
(
(
(?<Open><)
[^<>]*
)+
(
(?<Close-Open>>)
[^<>]*
)+
)*
(?(Open)(?!))
>
I was also stuck in this situation when dealing with nested patterns and regular-expressions is the right tool to solve such problems.
/(\((?>[^()]+|(?1))*\))/
This is the definitive regex:
\(
(?<arguments>
(
([^\(\)']*) |
(\([^\(\)']*\)) |
'(.*?)'
)*
)
\)
Example:
input: ( arg1, arg2, arg3, (arg4), '(pip' )
output: arg1, arg2, arg3, (arg4), '(pip'
note that the '(pip' is correctly managed as string.
(tried in regulator: http://sourceforge.net/projects/regulator/)
I have written a little JavaScript library called balanced to help with this task. You can accomplish this by doing
balanced.matches({
source: source,
open: '(',
close: ')'
});
You can even do replacements:
balanced.replacements({
source: source,
open: '(',
close: ')',
replace: function (source, head, tail) {
return head + source + tail;
}
});
Here's a more complex and interactive example JSFiddle.
Adding to bobble bubble's answer, there are other regex flavors where recursive constructs are supported.
Lua
Use %b() (%b{} / %b[] for curly braces / square brackets):
for s in string.gmatch("Extract (a(b)c) and ((d)f(g))", "%b()") do print(s) end (see demo)
Raku (former Perl6):
Non-overlapping multiple balanced parentheses matches:
my regex paren_any { '(' ~ ')' [ <-[()]>+ || <&paren_any> ]* }
say "Extract (a(b)c) and ((d)f(g))" ~~ m:g/<&paren_any>/;
# => (「(a(b)c)」 「((d)f(g))」)
Overlapping multiple balanced parentheses matches:
say "Extract (a(b)c) and ((d)f(g))" ~~ m:ov:g/<&paren_any>/;
# => (「(a(b)c)」 「(b)」 「((d)f(g))」 「(d)」 「(g)」)
See demo.
Python re non-regex solution
See poke's answer for How to get an expression between balanced parentheses.
Java customizable non-regex solution
Here is a customizable solution allowing single character literal delimiters in Java:
public static List<String> getBalancedSubstrings(String s, Character markStart,
Character markEnd, Boolean includeMarkers)
{
List<String> subTreeList = new ArrayList<String>();
int level = 0;
int lastOpenDelimiter = -1;
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
if (c == markStart) {
level++;
if (level == 1) {
lastOpenDelimiter = (includeMarkers ? i : i + 1);
}
}
else if (c == markEnd) {
if (level == 1) {
subTreeList.add(s.substring(lastOpenDelimiter, (includeMarkers ? i + 1 : i)));
}
if (level > 0) level--;
}
}
return subTreeList;
}
}
Sample usage:
String s = "some text(text here(possible text)text(possible text(more text)))end text";
List<String> balanced = getBalancedSubstrings(s, '(', ')', true);
System.out.println("Balanced substrings:\n" + balanced);
// => [(text here(possible text)text(possible text(more text)))]
The regular expression using Ruby (version 1.9.3 or above):
/(?<match>\((?:\g<match>|[^()]++)*\))/
Demo on rubular
The answer depends on whether you need to match matching sets of brackets, or merely the first open to the last close in the input text.
If you need to match matching nested brackets, then you need something more than regular expressions. - see #dehmann
If it's just first open to last close see #Zach
Decide what you want to happen with:
abc ( 123 ( foobar ) def ) xyz ) ghij
You need to decide what your code needs to match in this case.
"""
Here is a simple python program showing how to use regular
expressions to write a paren-matching recursive parser.
This parser recognises items enclosed by parens, brackets,
braces and <> symbols, but is adaptable to any set of
open/close patterns. This is where the re package greatly
assists in parsing.
"""
import re
# The pattern below recognises a sequence consisting of:
# 1. Any characters not in the set of open/close strings.
# 2. One of the open/close strings.
# 3. The remainder of the string.
#
# There is no reason the opening pattern can't be the
# same as the closing pattern, so quoted strings can
# be included. However quotes are not ignored inside
# quotes. More logic is needed for that....
pat = re.compile("""
( .*? )
( \( | \) | \[ | \] | \{ | \} | \< | \> |
\' | \" | BEGIN | END | $ )
( .* )
""", re.X)
# The keys to the dictionary below are the opening strings,
# and the values are the corresponding closing strings.
# For example "(" is an opening string and ")" is its
# closing string.
matching = { "(" : ")",
"[" : "]",
"{" : "}",
"<" : ">",
'"' : '"',
"'" : "'",
"BEGIN" : "END" }
# The procedure below matches string s and returns a
# recursive list matching the nesting of the open/close
# patterns in s.
def matchnested(s, term=""):
lst = []
while True:
m = pat.match(s)
if m.group(1) != "":
lst.append(m.group(1))
if m.group(2) == term:
return lst, m.group(3)
if m.group(2) in matching:
item, s = matchnested(m.group(3), matching[m.group(2)])
lst.append(m.group(2))
lst.append(item)
lst.append(matching[m.group(2)])
else:
raise ValueError("After <<%s %s>> expected %s not %s" %
(lst, s, term, m.group(2)))
# Unit test.
if __name__ == "__main__":
for s in ("simple string",
""" "double quote" """,
""" 'single quote' """,
"one'two'three'four'five'six'seven",
"one(two(three(four)five)six)seven",
"one(two(three)four)five(six(seven)eight)nine",
"one(two)three[four]five{six}seven<eight>nine",
"one(two[three{four<five>six}seven]eight)nine",
"oneBEGINtwo(threeBEGINfourENDfive)sixENDseven",
"ERROR testing ((( mismatched ))] parens"):
print "\ninput", s
try:
lst, s = matchnested(s)
print "output", lst
except ValueError as e:
print str(e)
print "done"
You need the first and last parentheses. Use something like this:
str.indexOf('('); - it will give you first occurrence
str.lastIndexOf(')'); - last one
So you need a string between,
String searchedString = str.substring(str1.indexOf('('),str1.lastIndexOf(')');
because js regex doesn't support recursive match, i can't make balanced parentheses matching work.
so this is a simple javascript for loop version that make "method(arg)" string into array
push(number) map(test(a(a()))) bass(wow, abc)
$$(groups) filter({ type: 'ORGANIZATION', isDisabled: { $ne: true } }) pickBy(_id, type) map(test()) as(groups)
const parser = str => {
let ops = []
let method, arg
let isMethod = true
let open = []
for (const char of str) {
// skip whitespace
if (char === ' ') continue
// append method or arg string
if (char !== '(' && char !== ')') {
if (isMethod) {
(method ? (method += char) : (method = char))
} else {
(arg ? (arg += char) : (arg = char))
}
}
if (char === '(') {
// nested parenthesis should be a part of arg
if (!isMethod) arg += char
isMethod = false
open.push(char)
} else if (char === ')') {
open.pop()
// check end of arg
if (open.length < 1) {
isMethod = true
ops.push({ method, arg })
method = arg = undefined
} else {
arg += char
}
}
}
return ops
}
// const test = parser(`$$(groups) filter({ type: 'ORGANIZATION', isDisabled: { $ne: true } }) pickBy(_id, type) map(test()) as(groups)`)
const test = parser(`push(number) map(test(a(a()))) bass(wow, abc)`)
console.log(test)
the result is like
[ { method: 'push', arg: 'number' },
{ method: 'map', arg: 'test(a(a()))' },
{ method: 'bass', arg: 'wow,abc' } ]
[ { method: '$$', arg: 'groups' },
{ method: 'filter',
arg: '{type:\'ORGANIZATION\',isDisabled:{$ne:true}}' },
{ method: 'pickBy', arg: '_id,type' },
{ method: 'map', arg: 'test()' },
{ method: 'as', arg: 'groups' } ]
While so many answers mention this in some form by saying that regex does not support recursive matching and so on, the primary reason for this lies in the roots of the Theory of Computation.
Language of the form {a^nb^n | n>=0} is not regular. Regex can only match things that form part of the regular set of languages.
Read more # here
I didn't use regex since it is difficult to deal with nested code. So this snippet should be able to allow you to grab sections of code with balanced brackets:
def extract_code(data):
""" returns an array of code snippets from a string (data)"""
start_pos = None
end_pos = None
count_open = 0
count_close = 0
code_snippets = []
for i,v in enumerate(data):
if v =='{':
count_open+=1
if not start_pos:
start_pos= i
if v=='}':
count_close +=1
if count_open == count_close and not end_pos:
end_pos = i+1
if start_pos and end_pos:
code_snippets.append((start_pos,end_pos))
start_pos = None
end_pos = None
return code_snippets
I used this to extract code snippets from a text file.
This do not fully address the OP question but I though it may be useful to some coming here to search for nested structure regexp:
Parse parmeters from function string (with nested structures) in javascript
Match structures like:
matches brackets, square brackets, parentheses, single and double quotes
Here you can see generated regexp in action
/**
* get param content of function string.
* only params string should be provided without parentheses
* WORK even if some/all params are not set
* #return [param1, param2, param3]
*/
exports.getParamsSAFE = (str, nbParams = 3) => {
const nextParamReg = /^\s*((?:(?:['"([{](?:[^'"()[\]{}]*?|['"([{](?:[^'"()[\]{}]*?|['"([{][^'"()[\]{}]*?['")}\]])*?['")}\]])*?['")}\]])|[^,])*?)\s*(?:,|$)/;
const params = [];
while (str.length) { // this is to avoid a BIG performance issue in javascript regexp engine
str = str.replace(nextParamReg, (full, p1) => {
params.push(p1);
return '';
});
}
return params;
};
This might help to match balanced parenthesis.
\s*\w+[(][^+]*[)]\s*
This one also worked
re.findall(r'\(.+\)', s)

using regular expressions in groovy

I don't understand how I should use regular expressions in groovy despite it having several operators to work with it.
import java.util.regex.*
def line = "Line with 1 digits"
Pattern p = Pattern.compile("\\d+")
Matcher m = p.matcher(line)
if (m.find()) { // true
println "found digit"
} else {
println "not found digit"
}
if (line ==~ /\\d+/) { // false
println "found"
} else {
println "not found"
}
if (line =~ /\\d+/) { // false
println "found"
} else {
println "not found"
}
In my example in java code it found that there is a digit in the string successfully. However in groovy it was not able to do it.
What is wrong?
See this slashy string reference:
Slashy strings are particularly useful for defining regular expressions and patterns, as there is no need to escape backslashes.
You need to use a single backslash with \d in /\d+/ Groovy slashy strings defining a regex.
if (line =~ /\d+/) { // false
println "found"
} else {
println "not found"
}
The line =~ /\d+/ checks if a line contains one or more digits.
The line2 ==~ /\d+/ checks if the whole string consists of only digits.
See IDEONE demo.
Also, see some more information about using regex in Groovy at regular-expressions.info.
You can use find
if (line.find(/\d+/)) {
println "found"
} else {
println "not found"
}
Just as an addition if you need a Boolean, like
def myBool = line.find(/\d+/)
this returns null, if it cannot find it - and the number it matches otherwise.
Same with line =~ /\d+/ that returns a java.util.regex.Matcher.
So to get a Boolean directly you can for example extend the Regex and use matches:
def myBool = line..matches(/.*\d+.*/))

Reg expression validate / \ # & characters

I've been learning how Regular expressions work, which is very tricky for me. I would like to validate this chars below from input field. Basically if string contains any of these characters, alert('bad chars')
/
\
#
&
I found this code, but when I change it around doesn't seem to work. How can I alter this code to meet my needs?
var str = $(this).val();
if(/^[a-zA-Z0-9- ]*$/.test(str) == false) {
alert('bad');
return false;
} else {
alert('good');
}
/^[a-zA-Z0-9- ]*$/ means the following:
^ the string MUST start here
[a-zA-Z0-9- ] a letter between a and z upper or lower case, a number between 0 and 9, dashes (-) and spaces.
* repeated 0 or more times
$ the string must end here.
In the case of "any character but" you can use ^ like so: /^[^\/\\#&]*$/. If this matches true, then it doesn't have any of those characters. ^ right after a [ means match anything that isn't the following.
.
You could just try the following:
if("/[\\/#&]/".test(str) == true) {
alert('bad');
return false;
} else {
alert('good');
}
NOTE: I'm not 100% on what characters need to be escaped in JavaScript vs. .NET regular expressions, but basically, I'm saying if your string contains any of the characters \, /, # or &, then alert 'bad'.

Validate mathematical expressions using regular expression?

I want to validate mathematical expressions using regular expression. The mathematical expression can be this
It can be blank means nothing is entered
If specified it will always start with an operator + or - or * or / and will always be followed by a number that can have
any number of digits and the number can be decimal(contains . in between the numbers) or integer(no '.' symbol within the number).
examples : *0.9 , +22.36 , - 90 , / 0.36365
It can be then followed by what is mentioned in point 2 (above line).
examples : *0.9+5 , +22.36*4/56.33 , -90+87.25/22 , /0.36365/4+2.33
Please help me out.
Something like this should work:
^([-+/*]\d+(\.\d+)?)*
Regexr Demo
^ - beginning of the string
[-+/*] - one of these operators
\d+ - one or more numbers
(\.\d+)? - an optional dot followed by one or more numbers
()* - the whole expression repeated zero or more times
You could try generating such a regex using moo and such:
(?:(?:((?:(?:[ \t]+))))|(?:((?:(?:\/\/.*?$))))|(?:((?:(?:(?<![\d.])[0-9]+(?![\d.])))))|(?:((?:(?:[0-9]+\.(?:[0-9]+\b)?|\.[0-9]+))))|(?:((?:(?:(?:\+)))))|(?:((?:(?:(?:\-)))))|(?:((?:(?:(?:\*)))))|(?:((?:(?:(?:\/)))))|(?:((?:(?:(?:%)))))|(?:((?:(?:(?:\()))))|(?:((?:(?:(?:\)))))))
This regex matches any amount of int, float, braces, whitespace, and the operators +-*/%.
However, expressions such as 2+ would still be validated by the regex, so you might want to use a parser instead.
If you want negative or positive expression you can write it like this>
^\-?[0-9](([-+/*][0-9]+)?([.,][0-9]+)?)*?$
And a second one
^[(]?[-]?([0-9]+)[)]??([(]?([-+/*]([0-9]))?([.,][0-9]+)?[)]?)*$
With parenthesis in expression but doesn't count the number you will need method that validate it or regex.
// the method
public static bool IsPairParenthesis(string matrixExpression)
{
int numberOfParenthesis = 0;
foreach (char character in matrixExpression)
{
if (character == '(')
{
numberOfParenthesis++;
}
if (character == ')')
{
numberOfParenthesis--;
}
}
if (numberOfParenthesis == 0)
{ return true; }
return false;
}
This is java regex, but this is only if not have any braces
[+\-]?(([0-9]+\.[0-9]+)|([0-9]+\.?)|(\.?[0-9]+))([+\-/*](([0-9]+\.[0-9]+)|([0-9]+\.?)|(\.?[0-9]+)))*
Also this with braces in java code
In this case I raplace (..) to number (..), should matches without brace pattern
// without brace pattern
static Pattern numberPattern = Pattern.compile("[+\\-]?(([0-9]+\\.[0-9]+)|([0-9]+\\.?)|(\\.?[0-9]+))([+\\-/*](([0-9]+\\.[0-9]+)|([0-9]+\\.?)|(\\.?[0-9]+)))*");
static Pattern bracePattern = Pattern.compile("\\([^()]+\\)");
public static boolean matchesForMath(String txt) {
if (txt == null || txt.isEmpty()) return false;
txt = txt.replaceAll("\\s+", "");
if (!txt.contains("(") && !txt.contains(")")) return numberPattern.matcher(txt).matches();
if (txt.contains("(") ^ txt.contains(")")) return false;
if (txt.contains("()")) return false;
Queue<String> toBeRematch = new ArrayDeque<>();
toBeRematch.add(txt);
while (toBeRematch.size() > 0) {
String line = toBeRematch.poll();
Matcher m = bracePattern.matcher(line);
if (m.find()) {
String newline = line.substring(0, m.start()) + "1" + line.substring(m.end());
String withoutBraces = line.substring(m.start() + 1, m.end() - 1);
toBeRematch.add(newline);
if (!numberPattern.matcher(withoutBraces).matches()) return false;
}
}
return true;
}

Regular expression to match balanced parentheses

I need a regular expression to select all the text between two outer brackets.
Example:
START_TEXT(text here(possible text)text(possible text(more text)))END_TXT
^ ^
Result:
(text here(possible text)text(possible text(more text)))
I want to add this answer for quickreference. Feel free to update.
.NET Regex using balancing groups:
\((?>\((?<c>)|[^()]+|\)(?<-c>))*(?(c)(?!))\)
Where c is used as the depth counter.
Demo at Regexstorm.com
Stack Overflow: Using RegEx to balance match parenthesis
Wes' Puzzling Blog: Matching Balanced Constructs with .NET Regular Expressions
Greg Reinacker's Weblog: Nested Constructs in Regular Expressions
PCRE using a recursive pattern:
\((?:[^)(]+|(?R))*+\)
Demo at regex101; Or without alternation:
\((?:[^)(]*(?R)?)*+\)
Demo at regex101; Or unrolled for performance:
\([^)(]*+(?:(?R)[^)(]*)*+\)
Demo at regex101; The pattern is pasted at (?R) which represents (?0).
Perl, PHP, Notepad++, R: perl=TRUE, Python: PyPI regex module with (?V1) for Perl behaviour.
(the new version of PyPI regex package already defaults to this → DEFAULT_VERSION = VERSION1)
Ruby using subexpression calls:
With Ruby 2.0 \g<0> can be used to call full pattern.
\((?>[^)(]+|\g<0>)*\)
Demo at Rubular; Ruby 1.9 only supports capturing group recursion:
(\((?>[^)(]+|\g<1>)*\))
Demo at Rubular  (atomic grouping since Ruby 1.9.3)
JavaScript  API :: XRegExp.matchRecursive
XRegExp.matchRecursive(str, '\\(', '\\)', 'g');
Java: An interesting idea using forward references by #jaytea.
Without recursion up to 3 levels of nesting:
(JS, Java and other regex flavors)
To prevent runaway if unbalanced, with * on innermost [)(] only.
\((?:[^)(]|\((?:[^)(]|\((?:[^)(]|\([^)(]*\))*\))*\))*\)
Demo at regex101; Or unrolled for better performance (preferred).
\([^)(]*(?:\([^)(]*(?:\([^)(]*(?:\([^)(]*\)[^)(]*)*\)[^)(]*)*\)[^)(]*)*\)
Demo at regex101; Deeper nesting needs to be added as required.
Reference - What does this regex mean?
RexEgg.com - Recursive Regular Expressions
Regular-Expressions.info - Regular Expression Recursion
Mastering Regular Expressions - Jeffrey E.F. Friedl 1 2 3 4
Regular expressions are the wrong tool for the job because you are dealing with nested structures, i.e. recursion.
But there is a simple algorithm to do this, which I described in more detail in this answer to a previous question. The gist is to write code which scans through the string keeping a counter of the open parentheses which have not yet been matched by a closing parenthesis. When that counter returns to zero, then you know you've reached the final closing parenthesis.
You can use regex recursion:
\(([^()]|(?R))*\)
[^\(]*(\(.*\))[^\)]*
[^\(]* matches everything that isn't an opening bracket at the beginning of the string, (\(.*\)) captures the required substring enclosed in brackets, and [^\)]* matches everything that isn't a closing bracket at the end of the string. Note that this expression does not attempt to match brackets; a simple parser (see dehmann's answer) would be more suitable for that.
This answer explains the theoretical limitation of why regular expressions are not the right tool for this task.
Regular expressions can not do this.
Regular expressions are based on a computing model known as Finite State Automata (FSA). As the name indicates, a FSA can remember only the current state, it has no information about the previous states.
In the above diagram, S1 and S2 are two states where S1 is the starting and final step. So if we try with the string 0110 , the transition goes as follows:
0 1 1 0
-> S1 -> S2 -> S2 -> S2 ->S1
In the above steps, when we are at second S2 i.e. after parsing 01 of 0110, the FSA has no information about the previous 0 in 01 as it can only remember the current state and the next input symbol.
In the above problem, we need to know the no of opening parenthesis; this means it has to be stored at some place. But since FSAs can not do that, a regular expression can not be written.
However, an algorithm can be written to do this task. Algorithms are generally falls under Pushdown Automata (PDA). PDA is one level above of FSA. PDA has an additional stack to store some additional information. PDAs can be used to solve the above problem, because we can 'push' the opening parenthesis in the stack and 'pop' them once we encounter a closing parenthesis. If at the end, stack is empty, then opening parenthesis and closing parenthesis matches. Otherwise not.
(?<=\().*(?=\))
If you want to select text between two matching parentheses, you are out of luck with regular expressions. This is impossible(*).
This regex just returns the text between the first opening and the last closing parentheses in your string.
(*) Unless your regex engine has features like balancing groups or recursion. The number of engines that support such features is slowly growing, but they are still not a commonly available.
It is actually possible to do it using .NET regular expressions, but it is not trivial, so read carefully.
You can read a nice article here. You also may need to read up on .NET regular expressions. You can start reading here.
Angle brackets <> were used because they do not require escaping.
The regular expression looks like this:
<
[^<>]*
(
(
(?<Open><)
[^<>]*
)+
(
(?<Close-Open>>)
[^<>]*
)+
)*
(?(Open)(?!))
>
I was also stuck in this situation when dealing with nested patterns and regular-expressions is the right tool to solve such problems.
/(\((?>[^()]+|(?1))*\))/
This is the definitive regex:
\(
(?<arguments>
(
([^\(\)']*) |
(\([^\(\)']*\)) |
'(.*?)'
)*
)
\)
Example:
input: ( arg1, arg2, arg3, (arg4), '(pip' )
output: arg1, arg2, arg3, (arg4), '(pip'
note that the '(pip' is correctly managed as string.
(tried in regulator: http://sourceforge.net/projects/regulator/)
I have written a little JavaScript library called balanced to help with this task. You can accomplish this by doing
balanced.matches({
source: source,
open: '(',
close: ')'
});
You can even do replacements:
balanced.replacements({
source: source,
open: '(',
close: ')',
replace: function (source, head, tail) {
return head + source + tail;
}
});
Here's a more complex and interactive example JSFiddle.
Adding to bobble bubble's answer, there are other regex flavors where recursive constructs are supported.
Lua
Use %b() (%b{} / %b[] for curly braces / square brackets):
for s in string.gmatch("Extract (a(b)c) and ((d)f(g))", "%b()") do print(s) end (see demo)
Raku (former Perl6):
Non-overlapping multiple balanced parentheses matches:
my regex paren_any { '(' ~ ')' [ <-[()]>+ || <&paren_any> ]* }
say "Extract (a(b)c) and ((d)f(g))" ~~ m:g/<&paren_any>/;
# => (「(a(b)c)」 「((d)f(g))」)
Overlapping multiple balanced parentheses matches:
say "Extract (a(b)c) and ((d)f(g))" ~~ m:ov:g/<&paren_any>/;
# => (「(a(b)c)」 「(b)」 「((d)f(g))」 「(d)」 「(g)」)
See demo.
Python re non-regex solution
See poke's answer for How to get an expression between balanced parentheses.
Java customizable non-regex solution
Here is a customizable solution allowing single character literal delimiters in Java:
public static List<String> getBalancedSubstrings(String s, Character markStart,
Character markEnd, Boolean includeMarkers)
{
List<String> subTreeList = new ArrayList<String>();
int level = 0;
int lastOpenDelimiter = -1;
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
if (c == markStart) {
level++;
if (level == 1) {
lastOpenDelimiter = (includeMarkers ? i : i + 1);
}
}
else if (c == markEnd) {
if (level == 1) {
subTreeList.add(s.substring(lastOpenDelimiter, (includeMarkers ? i + 1 : i)));
}
if (level > 0) level--;
}
}
return subTreeList;
}
}
Sample usage:
String s = "some text(text here(possible text)text(possible text(more text)))end text";
List<String> balanced = getBalancedSubstrings(s, '(', ')', true);
System.out.println("Balanced substrings:\n" + balanced);
// => [(text here(possible text)text(possible text(more text)))]
The regular expression using Ruby (version 1.9.3 or above):
/(?<match>\((?:\g<match>|[^()]++)*\))/
Demo on rubular
The answer depends on whether you need to match matching sets of brackets, or merely the first open to the last close in the input text.
If you need to match matching nested brackets, then you need something more than regular expressions. - see #dehmann
If it's just first open to last close see #Zach
Decide what you want to happen with:
abc ( 123 ( foobar ) def ) xyz ) ghij
You need to decide what your code needs to match in this case.
"""
Here is a simple python program showing how to use regular
expressions to write a paren-matching recursive parser.
This parser recognises items enclosed by parens, brackets,
braces and <> symbols, but is adaptable to any set of
open/close patterns. This is where the re package greatly
assists in parsing.
"""
import re
# The pattern below recognises a sequence consisting of:
# 1. Any characters not in the set of open/close strings.
# 2. One of the open/close strings.
# 3. The remainder of the string.
#
# There is no reason the opening pattern can't be the
# same as the closing pattern, so quoted strings can
# be included. However quotes are not ignored inside
# quotes. More logic is needed for that....
pat = re.compile("""
( .*? )
( \( | \) | \[ | \] | \{ | \} | \< | \> |
\' | \" | BEGIN | END | $ )
( .* )
""", re.X)
# The keys to the dictionary below are the opening strings,
# and the values are the corresponding closing strings.
# For example "(" is an opening string and ")" is its
# closing string.
matching = { "(" : ")",
"[" : "]",
"{" : "}",
"<" : ">",
'"' : '"',
"'" : "'",
"BEGIN" : "END" }
# The procedure below matches string s and returns a
# recursive list matching the nesting of the open/close
# patterns in s.
def matchnested(s, term=""):
lst = []
while True:
m = pat.match(s)
if m.group(1) != "":
lst.append(m.group(1))
if m.group(2) == term:
return lst, m.group(3)
if m.group(2) in matching:
item, s = matchnested(m.group(3), matching[m.group(2)])
lst.append(m.group(2))
lst.append(item)
lst.append(matching[m.group(2)])
else:
raise ValueError("After <<%s %s>> expected %s not %s" %
(lst, s, term, m.group(2)))
# Unit test.
if __name__ == "__main__":
for s in ("simple string",
""" "double quote" """,
""" 'single quote' """,
"one'two'three'four'five'six'seven",
"one(two(three(four)five)six)seven",
"one(two(three)four)five(six(seven)eight)nine",
"one(two)three[four]five{six}seven<eight>nine",
"one(two[three{four<five>six}seven]eight)nine",
"oneBEGINtwo(threeBEGINfourENDfive)sixENDseven",
"ERROR testing ((( mismatched ))] parens"):
print "\ninput", s
try:
lst, s = matchnested(s)
print "output", lst
except ValueError as e:
print str(e)
print "done"
You need the first and last parentheses. Use something like this:
str.indexOf('('); - it will give you first occurrence
str.lastIndexOf(')'); - last one
So you need a string between,
String searchedString = str.substring(str1.indexOf('('),str1.lastIndexOf(')');
because js regex doesn't support recursive match, i can't make balanced parentheses matching work.
so this is a simple javascript for loop version that make "method(arg)" string into array
push(number) map(test(a(a()))) bass(wow, abc)
$$(groups) filter({ type: 'ORGANIZATION', isDisabled: { $ne: true } }) pickBy(_id, type) map(test()) as(groups)
const parser = str => {
let ops = []
let method, arg
let isMethod = true
let open = []
for (const char of str) {
// skip whitespace
if (char === ' ') continue
// append method or arg string
if (char !== '(' && char !== ')') {
if (isMethod) {
(method ? (method += char) : (method = char))
} else {
(arg ? (arg += char) : (arg = char))
}
}
if (char === '(') {
// nested parenthesis should be a part of arg
if (!isMethod) arg += char
isMethod = false
open.push(char)
} else if (char === ')') {
open.pop()
// check end of arg
if (open.length < 1) {
isMethod = true
ops.push({ method, arg })
method = arg = undefined
} else {
arg += char
}
}
}
return ops
}
// const test = parser(`$$(groups) filter({ type: 'ORGANIZATION', isDisabled: { $ne: true } }) pickBy(_id, type) map(test()) as(groups)`)
const test = parser(`push(number) map(test(a(a()))) bass(wow, abc)`)
console.log(test)
the result is like
[ { method: 'push', arg: 'number' },
{ method: 'map', arg: 'test(a(a()))' },
{ method: 'bass', arg: 'wow,abc' } ]
[ { method: '$$', arg: 'groups' },
{ method: 'filter',
arg: '{type:\'ORGANIZATION\',isDisabled:{$ne:true}}' },
{ method: 'pickBy', arg: '_id,type' },
{ method: 'map', arg: 'test()' },
{ method: 'as', arg: 'groups' } ]
While so many answers mention this in some form by saying that regex does not support recursive matching and so on, the primary reason for this lies in the roots of the Theory of Computation.
Language of the form {a^nb^n | n>=0} is not regular. Regex can only match things that form part of the regular set of languages.
Read more # here
I didn't use regex since it is difficult to deal with nested code. So this snippet should be able to allow you to grab sections of code with balanced brackets:
def extract_code(data):
""" returns an array of code snippets from a string (data)"""
start_pos = None
end_pos = None
count_open = 0
count_close = 0
code_snippets = []
for i,v in enumerate(data):
if v =='{':
count_open+=1
if not start_pos:
start_pos= i
if v=='}':
count_close +=1
if count_open == count_close and not end_pos:
end_pos = i+1
if start_pos and end_pos:
code_snippets.append((start_pos,end_pos))
start_pos = None
end_pos = None
return code_snippets
I used this to extract code snippets from a text file.
This do not fully address the OP question but I though it may be useful to some coming here to search for nested structure regexp:
Parse parmeters from function string (with nested structures) in javascript
Match structures like:
matches brackets, square brackets, parentheses, single and double quotes
Here you can see generated regexp in action
/**
* get param content of function string.
* only params string should be provided without parentheses
* WORK even if some/all params are not set
* #return [param1, param2, param3]
*/
exports.getParamsSAFE = (str, nbParams = 3) => {
const nextParamReg = /^\s*((?:(?:['"([{](?:[^'"()[\]{}]*?|['"([{](?:[^'"()[\]{}]*?|['"([{][^'"()[\]{}]*?['")}\]])*?['")}\]])*?['")}\]])|[^,])*?)\s*(?:,|$)/;
const params = [];
while (str.length) { // this is to avoid a BIG performance issue in javascript regexp engine
str = str.replace(nextParamReg, (full, p1) => {
params.push(p1);
return '';
});
}
return params;
};
This might help to match balanced parenthesis.
\s*\w+[(][^+]*[)]\s*
This one also worked
re.findall(r'\(.+\)', s)