I am currently using the two following blocks of code to access nested values in ClojureScript:
(def response (re-frame/subscribe [::subs/quote]))
(def body (:body #response))
(def value (:value body))
(println value)
(def result (-> #(re-frame/subscribe [::subs/quote]) :body :value))
(println result)
(def lol (get-in #(re-frame/subscribe [::subs/quote]) [:body :value]))
(println lol)
Are there any better / more succinct ways of doing this?
Keys can be used as operators to retrieve its value like so:
(def lol (:value (:body #(re-frame/subscribe [::subs/quote]))))
(println lol)
However, I prefer the verbose way using a function as get-in
Related
I'm trying to handle following DSL:
(simple-query
(is :category "car/audi/80")
(is :price 15000))
that went quite smooth, so I added one more thing - options passed to the query:
(simple-query {:page 1 :limit 100}
(is :category "car/audi/80")
(is :price 15000))
and now I have a problem how to handle this case in most civilized way. as you can see simple-query may get hash-map as a first element (followed by long list of criteria) or may have no hash-mapped options at all. moreover, I would like to have defaults as a default set of options in case when some (or all) of them are not provided explicite in query.
this is what I figured out:
(def ^{:dynamic true} *defaults* {:page 1
:limit 50})
(defn simple-query [& body]
(let [opts (first body)
[params criteria] (if (map? opts)
[(merge *defaults* opts) (rest body)]
[*defaults* body])]
(execute-query params criteria)))
I feel it's kind of messy. any idea how to simplify this construction?
To solve this problem in my own code, I have a handy function I'd like you to meet... take-when.
user> (defn take-when [pred [x & more :as fail]]
(if (pred x) [x more] [nil fail]))
#'user/take-when
user> (take-when map? [{:foo :bar} 1 2 3])
[{:foo :bar} (1 2 3)]
user> (take-when map? [1 2 3])
[nil [1 2 3]]
So we can use this to implement a parser for your optional map first argument...
user> (defn maybe-first-map [& args]
(let [defaults {:foo :bar}
[maybe-map args] (take-when map? args)
options (merge defaults maybe-map)]
... ;; do work
))
So as far as I'm concerned, your proposed solution is more or less spot on, I would just clean it up by factoring out parser for grabbing the options map (here into my take-when helper) and by factoring out the merging of defaults into its own binding statement.
As a general matter, using a dynamic var for storing configurations is an antipattern due to potential missbehavior when evaluated lazily.
What about something like this?
(defn simple-query
[& body]
(if (map? (first body))
(execute-query (merge *defaults* (first body)) (rest body))
(execute-query *defaults* body)))
I have this code and would like to get the metadata transform
(defn truncate
[& {:keys [len]}]
(fn ^:transform [value]
(clojure.string/join (take len value))))
Ex: (meta (var (truncate)) //doesn't work
Something like this is possible? (meta (meta (var truncate))
UPDATE:
I moved it top the function name and solved it this way:
(defn- func-meta [func]
(let [[name-space func-name _] (clojure.string/split (str func) #"\$")]
(meta (ns-resolve (symbol name-space) (symbol func-name)))))
(func-meta (transform/truncate)) ;=> metadata
Attaching this type of metadata to arglists has no particular meaning in Clojure. (Type hints may be attached to arglists, but that's a different matter.) You can, however, attach metadata to the function itself using either of the following methods:
(defn foo []
^:foo (fn [] 1))
(defn foo []
(with-meta (fn [] 1) {:foo 1}))
;; in either case:
(meta (foo))
;= {:foo true}
Also, the var special form gives convenient access to Vars:
(var +)
;= #'clojure.core/+
The #' shorthand notation is used much more frequently.
The function below does 2 things -
Checks if the atom is nil or fetch-agin is true, and then fetches the data.
It processes the data by calling (add-date-strings).
What is a better pattern to separate out the above two concerns ?
(def retrieved-data (atom nil))
(defn fetch-it!
[fetch-again?]
(if (or fetch-again?
(nil? #retrieved-data))
(->> (exec-services)
(map #(add-date-strings (:time %)))
(reset! retrieved-data))
#retrieved-data))
One possible refactoring would be:
(def retrieved-data (atom nil))
(defn fetch []
(->> (exec-services)
(map #(add-date-strings (:time %)))))
(defn fetch-it!
([]
(fetch-it! false))
([force]
(if (or force (nil? #retrieved-data))
(reset! retrieved-data (fetch))
#retrieved-data)))
By the way, the pattern to seperate out concerns is called "functions" :)
To really separate the concerns I think it might be better to define a separate fetch and process function. So that in no way they are complected.
(def retrieved-data (atom nil))
(defn fetcher []
(->> (exec-services)
(map #(add-date-strings (:time %)))))
(defn fetch-again? [force]
(fn [data] (or force (nil? data))))
(defn fetch-it! [fetch-fn data fetch-again?]
(when (fetch-again? #data))
(reset! data (fetch-fn))))
;;Usage
(fetch-it! fetcher retrieved-data (fetch-again? true))
Notice that I also gave the data atom as an argument.
I'm trying to figure out the best way to troll a namespace for functions that contain a specific bit of metadata. I've come up with a solution, but it feels a little awkward and I'm not at all sure I'm going about it the right way. There's a second component to this as well: I don't just want the names of the functions, I want to find them and then execute them. Here's a snippet of what I'm doing presently:
(defn wrap-routes
[req from-ns]
(let [publics (ns-publics from-ns)
routes (->>
(keys publics)
(map #(meta (% publics)))
(filter #(= (:route-handler %) true))
(map #(:name %)))
resp (first
(->>
(map #((% publics) req) routes)
(filter #(:status %))))]
(or resp not-found)))
As you can see, I'm doing all sorts of gymnastics to see if my metadata is attached to any functions in a given namespace and then am doing extra work after that to get the actual function back. I'm sure there must be a better way. So my question is, how would you do this?
(defn wrap-routes [req from-ns]
(or (first (filter :status
(for [[name f] (ns-publics from-ns)
:when (:route-handler (meta f))]
(f req))))
not-found))
You can do something like this:
(defn wrap-routes
[req from-ns]
(->> (ns-publics from-ns)
(filter #(:route-handler (meta (%1 1))))
(map #((%1 1) req))
(filter #(:status %))
first
(#(or % not-found))))
If I have the request "size=3&mean=1&sd=3&type=pdf&distr=normal" what's the idiomatic way of writing the function (defn request->map [request] ...) that takes this request and
returns a map {:size 3, :mean 1, :sd 3, :type pdf, :distr normal}
Here is my attempt (using clojure.walk and clojure.string):
(defn request-to-map
[request]
(keywordize-keys
(apply hash-map
(split request #"(&|=)"))))
I am interested in how others would solve this problem.
Using form-decode and keywordize-keys:
(use 'ring.util.codec)
(use 'clojure.walk)
(keywordize-keys (form-decode "hello=world&foo=bar"))
{:foo "bar", :hello "world"}
Assuming you want to parse HTTP request query parameters, why not use ring? ring.middleware.params contains what you want.
The function for parameter extraction goes like this:
(defn- parse-params
"Parse parameters from a string into a map."
[^String param-string encoding]
(reduce
(fn [param-map encoded-param]
(if-let [[_ key val] (re-matches #"([^=]+)=(.*)" encoded-param)]
(assoc-param param-map
(codec/url-decode key encoding)
(codec/url-decode (or val "") encoding))
param-map))
{}
(string/split param-string #"&")))
You can do this easily with a number of Java libraries. I'd be hesitant to try to roll my own parser unless I read the URI specs carefully and made sure I wasn't missing any edge cases (e.g. params appearing in the query twice with different values). This uses jetty-util:
(import '[org.eclipse.jetty.util UrlEncoded MultiMap])
(defn parse-query-string [query]
(let [params (MultiMap.)]
(UrlEncoded/decodeTo query params "UTF-8")
(into {} params)))
user> (parse-query-string "size=3&mean=1&sd=3&type=pdf&distr=normal")
{"sd" "3", "mean" "1", "distr" "normal", "type" "pdf", "size" "3"}
Can also use this library for both clojure and clojurescript: https://github.com/cemerick/url
user=> (-> "a=1&b=2&c=3" cemerick.url/query->map clojure.walk/keywordize-keys)
{:a "1", :b "2", :c "3"}
Yours looks fine. I tend to overuse regexes, so I would have solved it as
(defn request-to-keywords [req]
(into {} (for [[_ k v] (re-seq #"([^&=]+)=([^&]+)" req)]
[(keyword k) v])))
(request-to-keywords "size=1&test=3NA=G")
{:size "1", :test "3NA=G"}
Edit: try to stay away from clojure.walk though. I don't think it's officially deprecated, but it's not very well maintained. (I use it plenty too, though, so don't feel too bad).
I came across this question when constructing my own site and the answer can be a bit different, and easier, if you are passing parameters internally.
Using Secretary to handle routing: https://github.com/gf3/secretary
Parameters are automatically extracted to a map in :query-params when a route match is found. The example given in the documentation:
(defroute "/users/:id" [id query-params]
(js/console.log (str "User: " id))
(js/console.log (pr-str query-params)))
(defroute #"/users/(\d+)" [id {:keys [query-params]}]
(js/console.log (str "User: " id))
(js/console.log (pr-str query-params)))
;; In both instances...
(secretary/dispach! "/users/10?action=delete")
;; ... will log
;; User: 10
;; "{:action \"delete\"}"
You can use ring.middleware.params. Here's an example with aleph:
user=> (require '[aleph.http :as http])
user=> (defn my-handler [req] (println "params:" (:params req)))
user=> (def server (http/start-server (wrap-params my-handler)))
wrap-params creates an entry in the request object called :params. If you want the query parameters as keywords, you can use ring.middleware.keyword-params. Be sure to wrap with wrap-params first:
user=> (require '[ring.middleware.params :refer [wrap-params]])
user=> (require '[ring.middleware.keyword-params :refer [wrap-keyword-params])
user=> (def server
(http/start-server (wrap-keyword-params (wrap-params my-handler))))
However, be mindful that this includes a dependency on ring.