i am trying to find a solution to start and stop multiple threads in a infinite loops.
Each thread should be a seperated task and should run parallel. The threads are starting in a infinite loop and the thread itself got also in a infinite loop. Each loop should stop with the "GetKeyState" so i should be able to toggle the threads. But i am not able to start e.g. 2 Threads (Functions of the program), because the .join() is blocking the execution, and without the .join() the threading does not work.
Do you guys have a possible solution for this problem? The toggle start of one Thread is equal to the toggle stop of the infinite loop of the thread.
Here is some code i tried
#include <iostream>
#include <thread>
#include <Windows.h>
class KeyToggle {
public:
KeyToggle(int key) :mKey(key), mActive(false) {}
operator bool() {
if (GetAsyncKeyState(mKey)) {
if (!mActive) {
mActive = true;
return true;
}
}
else
mActive = false;
return false;
}
private:
int mKey;
bool mActive;
};
KeyToggle toggle(VK_NUMPAD1);
KeyToggle toggle2(VK_NUMPAD2);
void threadFunc() {
while (!toggle) {
std::cout << "Thread_1\n";
}
}
void threadFunc2() {
while (!toggle2) {
std::cout << "Thread_2\n";
}
}
int main()
{
bool bToggle = false;
bool bToggle2 = false;
std::thread t1;
std::thread t2;
while (!GetKeyState(VK_NUMPAD0)) {
if (toggle) {
bToggle = !bToggle;
if (bToggle) {
std::thread t1(threadFunc);
t1.join();
}
}
if (toggle2) {
bToggle2 = !bToggle2;
if (bToggle2) {
std::thread t2(threadFunc2);
t2.join();
}
}
}
}
Solution with the idea of #Someprogrammerdude
#include <iostream>
#include <thread>
#include <Windows.h>
#include <atomic>
std::atomic<bool> aToggle1 = false;
std::atomic<bool> aToggle2 = false;
std::atomic<bool> aToggleStopAll = false;
class KeyToggle {
public:
KeyToggle(int key) :mKey(key), mActive(false) {}
operator bool() {
if (GetAsyncKeyState(mKey)) {
if (!mActive) {
mActive = true;
return true;
}
}
else
mActive = false;
return false;
}
private:
int mKey;
bool mActive;
};
KeyToggle toggle(VK_NUMPAD1);
KeyToggle toggle2(VK_NUMPAD2);
void threadFunc() {
while(aToggleStopAll==false)
{
if(aToggle1) { std::cout << "Thread_1\n"; }
}
}
void threadFunc2() {
while(aToggleStopAll==false)
{
if(aToggle2) { std::cout << "Thread_2\n"; }
}
}
int main()
{
std::thread t1(threadFunc);
std::thread t2(threadFunc2);
while (!GetKeyState(VK_NUMPAD0)) {
if (toggle) {
aToggle1 = !aToggle1;
}
if (toggle2) {
aToggle2 = !aToggle2;
}
}
aToggleStopAll = true;
t1.join();
t2.join();
}
Related
I wonder whether I can use the side effects of a conditional_variable test?
Is it guaranteed that the conditional_variable test is returning to execution if it returns true, or can there be the situation that the test returns
true, but it is called again or times out in between?
In the below example maybeCmd_locked() de-queues a cmd, however I want to
avoid that it is called 2 times for one exit of the conditional_variable wait:
if (cv.wait_until(lk, now + 100ms, [&cmd,this]{ return ((cmd = maybeCmd_locked()) != -1); }))
//g++ test.cpp -o test.exe -lstdc++ -lpthread
#include <stdlib.h>
#include <stdio.h>
#include <thread>
#include <queue>
#include <chrono>
#include <mutex>
#include <condition_variable>
using namespace std::literals::chrono_literals;
class eventLooper {
public:
eventLooper() : threadexit(false) {};
bool threadexit;
std::queue<int> cmds;
std::mutex m;
std::condition_variable cv;;
int maybeCmd_locked()
{
if (cmds.size() > 0) {
int cmd = cmds.front();
cmds.pop();
return cmd;
}
return -1;
}
int getNextCmd(void)
{
int cmd = -1;
std::unique_lock<std::mutex> lk(m);
auto now = std::chrono::system_clock::now();
if (cv.wait_until(lk, now + 100ms, [&cmd,this]{ return ((cmd = maybeCmd_locked()) != -1); }))
{
return cmd;
}
return -1;
}
int sendCmd(int cmd)
{
std::lock_guard<std::mutex> lock(m);
cmds.push(cmd);
cv.notify_one();
return 0;
}
void run(void)
{
int cmd;
printf("run\n");
std::this_thread::sleep_for(std::chrono::milliseconds(10));
while (!threadexit)
{
cmd = getNextCmd();
if (cmd == -1) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
} else {
printf("cmd received: %d\n", cmd);
}
}
}
};
eventLooper e;
int main(int argc, char **argv)
{
(void) argc;
(void) argv;
std::thread n(&eventLooper::run, &e);
for (int i = 0; i < 10; i++)
{
std::this_thread::sleep_for(1000ms);
e.sendCmd(i);
}
std::this_thread::sleep_for(1000ms);
e.threadexit = true;
n.join();
printf("exit\n");
return 0;
}
The predicate is always checked under the lock, and another wait isn't done if the predicate returns true. In a simplifed version of your code (which doesn't have time outs) is:
if (cv.wait(lk, [&cmd,this]{ return ((cmd = maybeCmd_locked()) != -1); }))
{
return cmd;
}
cv.wait(lock, pred) is defined to be equivalent of:
while(!pred())
{
wait(lock);
}
In this case you can see that your predicate cannot be called twice if it returns true the first time.
Adding the timeout to the question doesn't change how this work. cv.wait_until(...) is the equivalent of:
while (!pred()) {
if (wait_until(lock, timeout_time) == std::cv_status::timeout) {
return pred();
}
}
Again, its clear that what you're worried about cannot happen.
I am making a program using threads and a shared buffer. The two threads run indefinitely in the background, one thread will fill a shared buffer with data and the other thread will write the content of the shared buffer into a file.
The user can start or stop the data filling which is resulting in the thread entering into a waiting state until the user starts the thread again. Each loop the buffer is filled with 50 floats.
This is the code :
#include <iostream>
#include <vector>
#include <iterator>
#include <utility>
#include <fstream>
#include <condition_variable>
#include <mutex>
#include <thread>
using namespace std;
std::mutex m;
std::condition_variable cv;
std::vector<std::vector<float>> datas;
bool keep_running = true, start_running = false;
void writing_thread()
{
ofstream myfile;
bool opn = false;
while(1)
{
while(keep_running)
{
// Open the file only once
if(!opn)
{
myfile.open("IQ_Datas.txt");
opn = true;
}
// Wait until main() sends data
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [] {return !datas.empty();});
auto d = std::move(datas);
lk.unlock();
for(auto &entry : d)
{
for(auto &e : entry)
myfile << e << endl;
}
}
if(opn)
{
myfile.close();
opn = false;
}
}
}
void sending_thread()
{
std::vector<float> m_buffer;
int cpt=0;
//Fill the buffer with 50 floats
for(float i=0; i<50; i++)
m_buffer.push_back(i);
while(1)
{
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [] {return keep_running && start_running;});
}
while(keep_running)
{
//Each loop d is containing 50 floats
std::vector<float> d = m_buffer;
cout << "in3" << endl; //Commenting this line makes the program crash
{
std::lock_guard<std::mutex> lk(m);
if (!keep_running)break;
datas.push_back(std::move(d));
}
cv.notify_one();
cpt++;
}
cout << "Total data: " << cpt*50 << endl;
cpt = 0;
}
}
void start()
{
{
std::unique_lock<std::mutex> lk(m);
start_running = true;
}
cv.notify_all();
}
void stop()
{
{
std::unique_lock<std::mutex> lk(m);
start_running = false;
}
cv.notify_all();
}
int main()
{
int go = 0;
thread t1(sending_thread);
thread t2(writing_thread);
t1.detach();
t2.detach();
while(1)
{
std::cin >> go;
if(go == 1)
{
start();
keep_running = true;
}
else if(go == 0)
{
stop();
keep_running = false;
}
}
return 0;
}
I have 2 issues with this code :
When commenting the line cout << "in3" << endl; the program will crash after ~20-40 seconds with the error message : terminate called after throwing an instance of 'std::bad_alloc'
what(): std::bad_alloc. If i let the cout, the program will run without problems.
When the program is working, after stoping sending_thread i display the total amount of data that has been copied with cout << "Total data: " << cpt*50 << endl;. For small amount of datas, all of it is written correctly into the file but when the amount is big, there is missing data. Missing/Correct data (Total number of lines in the file does not match total data)
Why with the cout the program is running correctly ? And what is causing the missing data ? Is it because sending_thread is filling the buffer too fast while writing_threadtakes too much time to write into the file?
EDIT: Some precisions, adding more cout into sending_threadseems to fix all the issues. First thread produced 21 million floats and second thread successfully wrote in the file 21 million floats. It seems like without the cout, producer threads works too fast for the consumer thread to keep retrieving data from the shared buffer while writing it into a file.
To avoid:
Moved-from object 'datas' of type 'std::vector' is moved:
auto d = std::move(datas);
^~~~~~~~~~~~~~~~
Replace this:
// Wait until main() sends data
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [] {return !datas.empty();});
auto d = std::move(datas);
lk.unlock();
With this:
// Wait until main() sends data
std::vector<std::vector<float>> d;
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [] { return !datas.empty(); });
datas.swap(d);
}
Also replace your bool variables that are accessed from multiple threads with std::atomic_bool or std::atomic_flag.
The bad_alloc comes from sending_thread being much faster than writing_thread so it will run out of memory. When you slow down sending_thread enough (with printing), the problem is less visible, but you should have some synchronization to do it properly. You could make a wrapper class around it and provide insert and extraction methods to make sure all access is synchronized properly and also give it a max number of elements. An example:
template<typename T>
class atomic2dvector {
public:
atomic2dvector(size_t max_elements) : m_max_elements(max_elements) {}
atomic2dvector(const atomic2dvector&) = delete;
atomic2dvector(atomic2dvector&&) = delete;
atomic2dvector& operator=(const atomic2dvector&) = delete;
atomic2dvector& operator=(atomic2dvector&&) = delete;
~atomic2dvector() { shutdown(); }
bool insert_one(std::vector<T>&& other) {
std::unique_lock<std::mutex> lock(m_mtx);
while(m_current_elements + m_data.size() > m_max_elements && m_shutdown == false)
m_cv.wait(lock);
if(m_shutdown) return false;
m_current_elements += other.size();
m_data.emplace_back(std::forward<std::vector<T>>(other));
m_cv.notify_one();
return true;
}
std::vector<std::vector<T>> extract_all() {
std::vector<std::vector<T>> return_value;
std::unique_lock<std::mutex> lock(m_mtx);
while(m_data.empty() && m_shutdown == false) m_cv.wait(lock);
if(m_shutdown == false) {
m_current_elements = 0;
return_value.swap(m_data);
} else {
// return an empty vector if we should shutdown
}
m_cv.notify_one();
return return_value;
}
bool is_active() const { return m_shutdown == false; }
void shutdown() {
m_shutdown = true;
m_cv.notify_all();
}
private:
size_t m_max_elements;
size_t m_current_elements = 0;
std::atomic<bool> m_shutdown = false;
std::condition_variable m_cv{};
std::mutex m_mtx{};
std::vector<std::vector<T>> m_data{};
};
If you'd like to keep extracting data even after shutdown, you can change extract_all() to this:
std::vector<std::vector<T>> extract_all() {
std::vector<std::vector<T>> return_value;
std::unique_lock<std::mutex> lock(m_mtx);
while(m_data.empty() && m_shutdown == false) m_cv.wait(lock);
m_current_elements = 0;
return_value.swap(m_data);
m_cv.notify_one();
return return_value;
}
A full example could look like this:
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <fstream>
#include <iostream>
#include <iterator>
#include <mutex>
#include <thread>
#include <utility>
#include <vector>
using namespace std;
template<typename T>
class atomic2dvector {
public:
atomic2dvector(size_t max_elements) : m_max_elements(max_elements) {}
atomic2dvector(const atomic2dvector&) = delete;
atomic2dvector(atomic2dvector&&) = delete;
atomic2dvector& operator=(const atomic2dvector&) = delete;
atomic2dvector& operator=(atomic2dvector&&) = delete;
~atomic2dvector() { shutdown(); }
bool insert_one(std::vector<T>&& other) {
std::unique_lock<std::mutex> lock(m_mtx);
while(m_current_elements + m_data.size() > m_max_elements &&
m_shutdown == false)
m_cv.wait(lock);
if(m_shutdown) return false;
m_current_elements += other.size();
m_data.emplace_back(std::forward<std::vector<T>>(other));
m_cv.notify_one();
return true;
}
std::vector<std::vector<T>> extract_all() {
std::vector<std::vector<T>> return_value;
std::unique_lock<std::mutex> lock(m_mtx);
while(m_data.empty() && m_shutdown == false) m_cv.wait(lock);
m_current_elements = 0;
return_value.swap(m_data);
m_cv.notify_one();
return return_value;
}
bool is_active() const { return m_shutdown == false; }
void shutdown() {
m_shutdown = true;
m_cv.notify_all();
}
private:
size_t m_max_elements;
size_t m_current_elements = 0;
std::atomic<bool> m_shutdown = false;
std::condition_variable m_cv{};
std::mutex m_mtx{};
std::vector<std::vector<T>> m_data{};
};
std::mutex m;
std::condition_variable cv;
atomic2dvector<float> datas(256 * 1024 * 1024 / sizeof(float)); // 0.25 GiB limit
std::atomic_bool start_running = false;
void writing_thread() {
std::ofstream myfile("IQ_Datas.txt");
if(myfile) {
std::cout << "writing_thread waiting\n";
std::vector<std::vector<float>> d;
while((d = datas.extract_all()).empty() == false) {
std::cout << "got " << d.size() << "\n";
for(auto& entry : d) {
for(auto& e : entry) myfile << e << "\n";
}
std::cout << "wrote " << d.size() << "\n\n";
}
}
std::cout << "writing_thread shutting down\n";
}
void sending_thread() {
std::vector<float> m_buffer;
std::uintmax_t cpt = 0;
// Fill the buffer with 50 floats
for(float i = 0; i < 50; i++) m_buffer.push_back(i);
while(true) {
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [] {
return start_running == true || datas.is_active() == false;
});
}
if(datas.is_active() == false) break;
std::cout << "sending...\n";
while(start_running == true) {
// Each loop d is containing 50 floats
std::vector<float> d = m_buffer;
if(datas.insert_one(std::move(d)) == false) break;
cpt++;
}
cout << "Total data: " << cpt * 50 << endl;
cpt = 0;
}
std::cout << "sending_thread shutting down\n";
}
void start() {
std::unique_lock<std::mutex> lk(m);
start_running = true;
cv.notify_all();
}
void stop() {
std::unique_lock<std::mutex> lk(m);
start_running = false;
cv.notify_all();
}
void quit() {
datas.shutdown();
cv.notify_all();
}
int main() {
int go = 0;
thread t1(sending_thread);
thread t2(writing_thread);
std::this_thread::sleep_for(std::chrono::milliseconds(100));
std::cout << "Enter 1 to make the sending thread send and 0 to make it stop "
"sending. Enter a non-integer to shutdown.\n";
while(std::cin >> go) {
if(go == 1) {
start();
} else if(go == 0) {
stop();
}
}
std::cout << "--- shutting down ---\n";
quit();
std::cout << "joining threads\n";
t1.join();
std::cout << "t1 joined\n";
t2.join();
std::cout << "t2 joined\n";
}
I am new to multithreading and i need your help.
Consider the following code:
vector <int> vec;
int j = 0;
void Fill()
{
for (int i = 0; i < 500; i++)
{
Sleep(500);
vec.push_back(i);
}
}
void Proces()
{
int count = 0;
int n=-1;
while (true) {
Sleep(250);
if (!vec.empty())
{
if (n != vec.back()) {
n = vec.back();
cout << n;
count++;
}
}
if (count == 101)break;
}
}
void getinput()
{
while (true) {
int k=0;
cin >> k;
//if the user enters an integer i want to kill all the threads
}
}
int main()
{
thread t1(Fill);
thread t2(Proces);
thread t3(getinput);
t1.join();
t2.join();
t3.join();
cout << "From main()";
}
The point is that i want to kill t1(Fill) and t2(Proces) from t3(getinput).Is there and way to do it,and if there is could you please post and example.
A common way to make a thread exit is to have an (atomic) flag that the thread checks to see if it should exit. Then externally you set this flag and the thread will notice it and exit naturally.
Something like
#include <thread>
#include <atomic>
#include <iostream>
#include <chrono>
// Flag telling the thread to continue or exit
std::atomic<bool> exit_thread_flag{false};
void thread_function()
{
// Loop while flag if not set
while (!exit_thread_flag)
{
std::cout << "Hello from thread\n";
std::this_thread::sleep_for(std::chrono::seconds(1)); // Sleep for one second
}
}
int main()
{
std::thread t{thread_function}; // Create and start the thread
std::this_thread::sleep_for(std::chrono::seconds(5)); // Sleep for five seconds
exit_thread_flag = true; // Tell thread to exit
t.join(); // Wait for thread to exit
}
You have to define an exit condition and lock the container before accessing it. Of course you could build an own collection as wrapper around an existing using proper locking and thus making it thread-safe.
Here is an example of locking and an exit condition:
class Test
{
public:
Test()
: exitCondition(false)
{
work = std::thread([this]() { DoWork(); });
}
~Test()
{
if (work.joinable())
work.join();
}
void Add(int i)
{
mutex.lock();
things.push_back(i);
mutex.unlock();
}
void RequestStop(bool waitForExit = false)
{
exitCondition.exchange(true);
if (waitForExit)
work.join();
}
private:
void DoWork()
{
while (!exitCondition)
{
mutex.lock();
if (!things.empty())
{
for (auto itr = things.begin(); itr != things.end();)
itr = things.erase(itr);
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
mutex.unlock();
}
}
private:
std::vector<int> things;
std::thread work;
std::atomic<bool> exitCondition;
std::mutex mutex;
};
int wmain(int, wchar_t**)
{
Test t;
t.Add(1);
t.Add(2);
t.Add(3);
t.RequestStop(true);
return 0;
}
std::atomic<bool> exit_flag{false};
...
void Fill() {
for (int i = 0; i < 500; i++) {
if (exit_flag) return;
...
}
}
void Proces() {
while (true) {
if (exit_flag) return;
...
}
}
void getinput() {
while (true) {
...
if ( /* the user enters an integer i want to kill all the threads */ )
exit_flag = true;
}
}
I am using an online C++11 compiler, link found here: cpp.sh (C++ Shell).
In my current project, I would like to have a watchdog class, to be able to check somehow the status of a thread or FSM (for example).
After some work (I'm not a C++11 guru), I finally got the code below, that compiles ok.
I also did some basic/trivial tests, but it seems the test program doesn't want to exit.
It says "Program running" and the only way to (force) exit is to hit the "Stop" button... :(
Well, my question : What am I doing wrong?
Any ideas, suggestions you can provide are highly appreciated.
Here is the full code, including my test app:
Watchdog (as MCVE):
#include <thread>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <mutex>
#include <iostream>
using namespace std::chrono;
class Watchdog
{
public:
Watchdog();
~Watchdog();
void Start(unsigned int milliseconds, std::function<void()> callback = 0);
void Stop();
void Pet();
private:
unsigned int m_interval;
std::atomic<bool> m_running;
std::thread m_thread;
std::function<void()> m_callback;
std::mutex m_mutex;
steady_clock::time_point m_lastPetTime;
std::condition_variable m_stopCondition;
void Loop();
};
Watchdog::Watchdog()
{
m_running = false;
}
Watchdog::~Watchdog()
{
Stop();
}
void Watchdog::Start(unsigned int milliseconds, std::function<void()> callback)
{
std::unique_lock<std::mutex> locker(m_mutex);
if(m_running == false)
{
m_lastPetTime = steady_clock::now();
m_interval = milliseconds;
m_callback = callback;
m_running = true;
m_thread = std::thread(&Watchdog::Loop, this);
}
}
void Watchdog::Stop()
{
std::unique_lock<std::mutex> locker(m_mutex);
if(m_running == true)
{
m_running = false;
m_stopCondition.notify_all();
m_thread.join();
}
}
void Watchdog::Pet()
{
std::unique_lock<std::mutex> locker(m_mutex);
m_lastPetTime = steady_clock::now();
m_stopCondition.notify_all();
}
void Watchdog::Loop()
{
std::unique_lock<std::mutex> locker(m_mutex);
while(m_running == true)
{
if(m_stopCondition.wait_for(locker, milliseconds(m_interval)) == std::cv_status::timeout)
{
if(m_callback != nullptr)
m_callback();
}
}
}
int main(int argc, char *argv[])
{
Watchdog wdog;
wdog.Start(3000, [] { std::cout << " WDOG TRIGGERED!!! "; });
for(auto i = 0; i < 10; i++)
{
std::cout << "[+]";
wdog.Pet();
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
}
-
You're doing a deadlock here.
void Watchdog::Stop()
{
std::unique_lock<std::mutex> locker(m_mutex);
if(m_running == true)
{
m_running = false;
m_stopCondition.notify_all();
m_thread.join();
^ ~~~~~~~~~~~~~~
m_mutex is locked; m_thread cannot continue execution
}
}
Some additional suggestion: use simple if conditions, do not compare with true or false.
i have 3 thread and 2 shared resources, which need some locking...i tried to illustrate the resources with 2 buffers...
- thread 1 can only access resource 1
- thread 2 can access resource 1 and 2
- thread 3 can access resource 1 and 2
can someone tell me why the following locking fails? since thread2 and thread3 will access resource 1 and 2...i thought i could use try_lock? ...it seems the issue pops up, when thread2 and thread3 is only able to lock 1 mutex at a time...any idea?
#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <vector>
#include <algorithm>
#include <cassert>
using namespace std;
class SynchronizationTest {
private:
mutex lock_r1;
mutex lock_r2;
vector<pair<string, int>> buffer_r1;
vector<pair<string, int>> buffer_r2;
unsigned int buffer_r1_max_size;
unsigned int buffer_r2_max_size;
bool buffer_r1_inc_element(const string &thread_id) {
if (buffer_r1.size() == buffer_r1_max_size) {
return true;
}
if (buffer_r1.size() == 0) {
buffer_r1.push_back(make_pair(thread_id, 0));
}
else {
int last_val = buffer_r1.back().second;
buffer_r1.push_back(make_pair(thread_id, ++last_val));
}
return false;
}
bool buffer_r2_inc_element(const string &thread_id) {
if (buffer_r2.size() == buffer_r2_max_size) {
return true;
}
if (buffer_r2.size() == 0) {
buffer_r2.push_back(make_pair(thread_id, 0));
}
else {
int last_val = buffer_r2.back().second;
buffer_r2.push_back(make_pair(thread_id, ++last_val));
}
return false;
}
public:
SynchronizationTest(int buff_r1_size, int buff_r2_size) : buffer_r1_max_size(buff_r1_size),
buffer_r2_max_size(buff_r2_size) {}
void thread1() {
bool buffer_r1_full = false;
while (!buffer_r1_full) {
{
unique_lock<mutex> l(lock_r1, std::defer_lock);
if (l.try_lock()) {
buffer_r1_full = buffer_r1_inc_element("thread1");
}
}
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
void thread2() {
bool buffer_r1_full = false;
bool buffer_r2_full = false;
while (!buffer_r1_full || !buffer_r2_full) {
{
unique_lock<mutex> lock1(lock_r1, defer_lock);
unique_lock<mutex> lock2(lock_r2, defer_lock);
int result = try_lock(lock1, lock2);
if(result == -1) {
buffer_r1_full = buffer_r1_inc_element("thread2");
buffer_r2_full = buffer_r2_inc_element("thread2");
}
else if(result != 0) {
buffer_r1_full = buffer_r1_inc_element("thread2");
}
else if(result != 1) {
buffer_r2_full = buffer_r2_inc_element("thread2");
}
}
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
void thread3() {
bool buffer_r1_full = false;
bool buffer_r2_full = false;
while (!buffer_r1_full || !buffer_r2_full) {
{
unique_lock<mutex> lock1(lock_r1, defer_lock);
unique_lock<mutex> lock2(lock_r2, defer_lock);
int result = try_lock(lock1, lock2);
if(result == -1) {
buffer_r1_full = buffer_r1_inc_element("thread3");
buffer_r2_full = buffer_r2_inc_element("thread3");
}
else if(result != 0) {
buffer_r1_full = buffer_r1_inc_element("thread3");
}
else if(result != 1) {
buffer_r2_full = buffer_r2_inc_element("thread3");
}
}
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
void print_buffer() {
for_each(buffer_r1.begin(), buffer_r1.end(), [](pair<string, int> p) { cout << p.first.c_str() << " " << p.second << endl; });
cout << '\n';
for_each(buffer_r2.begin(), buffer_r2.end(), [](pair<string, int> p) { cout << p.first.c_str() << " " << p.second << endl; });
}
};
int main() {
// your code goes here
SynchronizationTest st(20, 20);
thread t1(&SynchronizationTest::thread1, &st);
thread t2(&SynchronizationTest::thread2, &st);
thread t3(&SynchronizationTest::thread3, &st);
t1.join();
t2.join();
t3.join();
st.print_buffer();
return 0;
}
std::try_lock does not work that way. If it returns -1, all locks are held. If it returns a non-negative integer, no locks are held. The returned value tells which lock failed, but any locks that were locked successfully are released before try_lock returns.
problem solved:
unique_lock<mutex> lock1(lock_r1, defer_lock);
unique_lock<mutex> lock2(lock_r2, defer_lock);
bool result1 = lock1.try_lock();
bool result2 = lock2.try_lock();
if(result1 && result2) {
buffer_r1_full = buffer_r1_inc_element("thread2");
buffer_r2_full = buffer_r2_inc_element("thread2");
}
else if(result1) {
buffer_r1_full = buffer_r1_inc_element("thread2");
}
else if(result2) {
buffer_r2_full = buffer_r2_inc_element("thread2");
}