I am fairly new to Clojure and would help help with some code. I have a function which takes a vector and i would like to loop through the vector and get the value at an index 'i' and the value of 'i' itself. 'i' is the value which is incremented in the loop.
I have checked 'for' at the clojure docs at for and wrote the following code.
(for [i some-vector]
(print (get-intersec i (.length some-vector) loop-count)))
The loop-count variable is supposed to be the loop count.
I have also checked loop but it does not seem like a feasible solution. Can someone help me with a clojure function i can use or help me write a macro or function that can do that.
Thank you.
Ps: To solve my problem, i use my own counter but would like a better solution.
First, keep in mind that for is for list comprehension, that is, creating new sequences. For looping through a sequence for some side effect, like printing, you probably want to use doseq.
To include a numeric count with each element as you loop through, you can use map-indexed:
(def xs [:a :b :c :d])
(doseq [[n elem] (map-indexed #(vector %1 %2) xs)]
(println n "->" elem))
Output:
0 -> :a
1 -> :b
2 -> :c
3 -> :d
If you find yourself doing this a lot, like I did, you can create a macro:
(defmacro doseq-indexed [[[item idx] coll] & forms]
`(doseq [[~idx ~item] (map-indexed #(vector %1 %2) ~coll)]
~#forms))
And use it like this:
> (doseq-indexed [[n elem] xs] (println n "->" elem))
0 -> :a
1 -> :b
2 -> :c
3 -> :d
Don't forget dotimes for simple stuff like this:
(let [data [:a :b :c :d]]
(dotimes [i (count data)]
(println i " -> " (data i))
; or (nth data i)
; or (get data i)
))
with result
0 -> :a
1 -> :b
2 -> :c
3 -> :d
Using loop/recur would look like this:
(let [data [:a :b :c :d]]
(loop [i 0
items data]
(let [curr (first items)]
(when curr
(println i "->" curr)
(recur (inc i) (rest items))))))
Update:
If you need this a lot, I already wrote a function that will add the index value to the beginning of each entry in a sequence:
(ns tst.demo.core
(:use tupelo.test)
(:require [tupelo.core :as t]) )
(dotest
(let [data [:a :b :c :d]]
(t/spy-pretty :indexed-data
(t/indexed data))))
with result
:indexed-data =>
([0 :a]
[1 :b]
[2 :c]
[3 :d])
The general signature is:
(indexed & colls)
Given one or more collections, returns a sequence of indexed tuples
from the collections like:
(indexed xs ys zs) -> [ [0 x0 y0 z0]
[1 x1 y1 z1]
[2 x2 y2 z2]
... ]
If your not set on using for, you could use map-indexed e.g.
(map-indexed (fn [i v]
(get-intersect v (.length some-vector) i))
some-vector))
I don't know what get-intersect is and assume .length is java interop? Anyway, map-indexed expects a function of 2 arguments, the 1st is the index and the second is the value.
Related
I'm trying to write a function with recur that cut the sequence as soon as it encounters a repetition ([1 2 3 1 4] should return [1 2 3]), this is my function:
(defn cut-at-repetition [a-seq]
(loop[[head & tail] a-seq, coll '()]
(if (empty? head)
coll
(if (contains? coll head)
coll
(recur (rest tail) (conj coll head))))))
The first problem is with the contains? that throws an exception, I tried replacing it with some but with no success. The second problem is in the recur part which will also throw an exception
You've made several mistakes:
You've used contains? on a sequence. It only works on associative
collections. Use some instead.
You've tested the first element of the sequence (head) for empty?.
Test the whole sequence.
Use a vector to accumulate the answer. conj adds elements to the
front of a list, reversing the answer.
Correcting these, we get
(defn cut-at-repetition [a-seq]
(loop [[head & tail :as all] a-seq, coll []]
(if (empty? all)
coll
(if (some #(= head %) coll)
coll
(recur tail (conj coll head))))))
(cut-at-repetition [1 2 3 1 4])
=> [1 2 3]
The above works, but it's slow, since it scans the whole sequence for every absent element. So better use a set.
Let's call the function take-distinct, since it is similar to take-while. If we follow that precedent and make it lazy, we can do it thus:
(defn take-distinct [coll]
(letfn [(td [seen unseen]
(lazy-seq
(when-let [[x & xs] (seq unseen)]
(when-not (contains? seen x)
(cons x (td (conj seen x) xs))))))]
(td #{} coll)))
We get the expected results for finite sequences:
(map (juxt identity take-distinct) [[] (range 5) [2 3 2]]
=> ([[] nil] [(0 1 2 3 4) (0 1 2 3 4)] [[2 3 2] (2 3)])
And we can take as much as we need from an endless result:
(take 10 (take-distinct (range)))
=> (0 1 2 3 4 5 6 7 8 9)
I would call your eager version take-distinctv, on the map -> mapv precedent. And I'd do it this way:
(defn take-distinctv [coll]
(loop [seen-vec [], seen-set #{}, unseen coll]
(if-let [[x & xs] (seq unseen)]
(if (contains? seen-set x)
seen-vec
(recur (conj seen-vec x) (conj seen-set x) xs))
seen-vec)))
Notice that we carry the seen elements twice:
as a vector, to return as the solution; and
as a set, to test for membership of.
Two of the three mistakes were commented on by #cfrick.
There is a tradeoff between saving a line or two and making the logic as simple & explicit as possible. To make it as obvious as possible, I would do it something like this:
(defn cut-at-repetition
[values]
(loop [remaining-values values
result []]
(if (empty? remaining-values)
result
(let [found-values (into #{} result)
new-value (first remaining-values)]
(if (contains? found-values new-value)
result
(recur
(rest remaining-values)
(conj result new-value)))))))
(cut-at-repetition [1 2 3 1 4]) => [1 2 3]
Also, be sure to bookmark The Clojure Cheatsheet and always keep a browser tab open to it.
I'd like to hear feedback on this utility function which I wrote for myself (uses filter with stateful pred instead of a loop):
(defn my-distinct
"Returns distinct values from a seq, as defined by id-getter."
[id-getter coll]
(let [seen-ids (volatile! #{})
seen? (fn [id] (if-not (contains? #seen-ids id)
(vswap! seen-ids conj id)))]
(filter (comp seen? id-getter) coll)))
(my-distinct identity "abracadabra")
; (\a \b \r \c \d)
(->> (for [i (range 50)] {:id (mod (* i i) 21) :value i})
(my-distinct :id)
pprint)
; ({:id 0, :value 0}
; {:id 1, :value 1}
; {:id 4, :value 2}
; {:id 9, :value 3}
; {:id 16, :value 4}
; {:id 15, :value 6}
; {:id 7, :value 7}
; {:id 18, :value 9})
Docs of filter says "pred must be free of side-effects" but I'm not sure if it is ok in this case. Is filter guaranteed to iterate over the sequence in order and not for example take skips forward?
Is there a convenient way in ClojureScript to pretty print a nested hash-map in the way that the whole tree-structure becomes immediately visible.
For instance a map like this
(def my-map {:a {:b 1 :c 9} :b {:d 8 :e {:f 2 :g 3 :h 4}} :c 10})
should be printed like this:
{:a {:b 1
:c 9}
:b {:d 8
:e {:f 2
:g 3
:h 4}}
:c 10}
EDIT: There might also be vectors in the map. The usecase is just to inspect larger data structures during development.
There is no built-in way to do it. You might come close to what you want by using cljs.pprint and setting cljs.pprint/*print-right-margin* to a low value.
I would recommend to take a look at a small library shodan which provides a very useful inspect function:
(require '[shodan.inspection :refer [inspect]])
(inspect {:aaaaaa 1
:bbbbbb {:ccc 2
:dddddd [1 2 3 4 5]}})
It won't print anything in your CLJS REPL but will provide a handy view in your browser's console:
You can collapse and expand nested datastructures - it basically does what you asked for.
As a personal challenge I wrote the following code:
(enable-console-print!)
(def atomic? (complement coll?))
(def padding #(apply str (repeat % " ")))
(def tabulate #(apply str (repeat % "\t")))
(def strcat #(->> (apply concat %&) (apply str)))
(defn my-max-key [x] (if (empty? x) [""] (apply (partial max-key count) x)))
(defn longest-key [m] (->> m keys (filter atomic?) (map str) my-max-key))
(def length (comp count str))
(def not-map? (complement map?))
(def nested? #(some coll? %))
(def join #(apply str (interpose % %2)))
(def join-lines (partial join "\n"))
(defn has-atomic? [coll] (some atomic? coll))
(defn diff-key-lengths [key1 key2] (- (length key1) (length key2)))
(defn convert
([thing] (convert -1 thing))
([depth thing]
(defn convert-items []
(defn convert-seq []
(conj []
(map (partial convert (inc depth)) thing)
""))
(defn string-horizontally [[key value]]
(str (tabulate (inc depth))
key
(padding (diff-key-lengths (longest-key thing) key))
" → "
value))
(defn string-vertically [[key value]]
(str (convert (inc depth) key) "\n"
(convert (+ 2 depth) "↓") "\n"
(convert (inc depth) value) "\n"))
(defn convert-kv [[key value]]
(if (nested? [key value])
(string-vertically [key value])
(string-horizontally [key value])))
(cond (atomic? thing)
[(str (tabulate depth) thing)]
(not-map? thing)
(convert-seq)
(map? thing)
(map convert-kv thing)))
(->> (convert-items) flatten join-lines)))
(def sample-input [["the first thing in this nested vector"]
{{"this is a key in a nested map"
"that points to me!!!"}
{"and that entire map points to this map!!!"
"cool!!!"
"but it gets cooler cause..."
"the value's line up!!!"}}])
(->> sample-input convert println)
The terminal output is (psst... the values in a map do line up but I don't think that chrome uses a monospaced font!):
In Clojure, how can I find the value of a key that may be deep in a nested map structure? For example:
(def m {:a {:b "b"
:c "c"
:d {:e "e"
:f "f"}}})
(find-nested m :f)
=> "f"
Clojure offers tree-seq to do a depth-first traversal of any value. This will simplify the logic needed to find your nested key:
(defn find-nested
[m k]
(->> (tree-seq map? vals m)
(filter map?)
(some k)))
(find-nested {:a {:b {:c 1}, :d 2}} :c)
;; => 1
Also, finding all matches becomes a matter of replacing some with keep:
(defn find-all-nested
[m k]
(->> (tree-seq map? vals m)
(filter map?)
(keep k)))
(find-all-nested {:a {:b {:c 1}, :c 2}} :c)
;; => [2 1]
Note that maps with nil values might require some special treatment.
Update: If you look at the code above, you can see that k can actually be a function which offers a lot more possibilities:
to find a string key:
(find-nested m #(get % "k"))
to find multiple keys:
(find-nested m #(some % [:a :b]))
to find only positive values in maps of integers:
(find-nested m #(when (some-> % :k pos?) (:k %)))
If you know the nested path then use get-in.
=> (get-in m [:a :d :f])
=> "f"
See here for details: https://clojuredocs.org/clojure.core/get-in
If you don't know the path in your nested structure you could write a function that recurses through the nested map looking for the particular key in question and either returns its value when it finds the first one or returns all the values for :f in a seq.
If you know the "path", consider using get-in:
(get-in m [:a :d :f]) ; => "f"
If the "path" is unknown you can use something like next function:
(defn find-in [m k]
(if (map? m)
(let [v (m k)]
(->> m
vals
(map #(find-in % k)) ; Search in "child" maps
(cons v) ; Add result from current level
(filter (complement nil?))
first))))
(find-in m :f) ; "f"
(find-in m :d) ; {:e "e", :f "f"}
Note: given function will find only the first occurrence.
Here is a version that will find the key without knowing the path to it. If there are multiple matching keys, only one will be returned:
(defn find-key [m k]
(loop [m' m]
(when (seq m')
(if-let [v (get m' k)]
v
(recur (reduce merge
(map (fn [[_ v]]
(when (map? v) v))
m')))))))
If you require all values you can use:
(defn merge-map-vals [m]
(reduce (partial merge-with vector)
(map (fn [[_ v]]
(when (map? v) v))
m)))
(defn find-key [m k]
(flatten
(nfirst
(drop-while first
(iterate (fn [[m' acc]]
(if (seq m')
(if-let [v (get m' k)]
[(merge-map-vals m') (conj acc v)]
[(merge-map-vals m') acc])
[nil acc]))
[m []])))))
I need to build a seq of seqs (vec of vecs) by combining first, second, etc elements of the given seqs.
After a quick searching and looking at the cheat sheet. I haven't found one and finished with writing my own:
(defn zip
"From the sequence of sequences return a another sequence of sequenses
where first result sequense consist of first elements of input sequences
second element consist of second elements of input sequenses etc.
Example:
[[:a 0 \\a] [:b 1 \\b] [:c 2 \\c]] => ([:a :b :c] [0 1 2] [\\a \\b \\c])"
[coll]
(let [num-elems (count (first coll))
inits (for [_ (range num-elems)] [])]
(reduce (fn [cols elems] (map-indexed
(fn [idx coll] (conj coll (elems idx))) cols))
inits coll)))
I'm interested if there is a standard method for this?
(apply map vector [[:a 0 \a] [:b 1 \b] [:c 2 \c]])
;; ([:a :b :c] [0 1 2] [\a \b \c])
You can use the variable arity of map to accomplish this.
From the map docstring:
... Returns a lazy sequence consisting of the result of applying f to
the set of first items of each coll, followed by applying f to the set
of second items in each coll, until any one of the colls is exhausted.
Any remaining items in other colls are ignored....
Kyle's solution is a great one and I see no reason why not to use it, but if you want to write such a function from scratch you could write something like the following:
(defn zip
([ret s]
(let [a (map first s)]
(if (every? nil? a)
ret
(recur (conj ret a) (map rest s)))))
([s]
(reverse (zip nil s))))
Given:
(def my-vec [{:a "foo" :b 10} {:a "bar" :b 13} {:a "baz" :b 7}])
How could iterate over each element to print that element's :a and the sum of all :b's to that point? That is:
"foo" 10
"bar" 23
"baz" 30
I'm trying things like this to no avail:
; Does not work!
(map #(prn (:a %2) %1) (iterate #(+ (:b %2) %1) 0)) my-vec)
This doesn't work because the "iterate" lazy-seq can't refer to the current element in my-vec (as far as I can tell).
TIA! Sean
user> (reduce (fn [total {:keys [a b]}]
(let [total (+ total b)]
(prn a total)
total))
0 my-vec)
"foo" 10
"bar" 23
"baz" 30
30
You could look at this as starting with a sequence of maps, filtering out a sequence of the :a values and a separate sequence of the rolling sum of the :b values and then mapping a function of two arguments onto the two derived sequences.
create sequence of just the :a and :b values with
(map :a my-vec)
(map :b my-vec)
then a function to get the rolling sum:
(defn sums [sum seq]
"produce a seq of the rolling sum"
(if (empty? seq)
sum
(lazy-seq
(cons sum
(recur (+ sum (first seq)) (rest seq))))))
then put them together:
(map #(prn %1 %s) (map :a my-vec) (sums 0 (map :b my-vec)))
This separates the problem of generating the data from processing it. Hopefully this makes life easier.
PS: whats a better way of getting the rolling sum?
Transform it into the summed sequence:
(defn f [start mapvec]
(if (empty? mapvec) '()
(let [[ m & tail ] mapvec]
(cons [(m :a)(+ start (m :b))] (f (+ start (m :b)) tail)))))
Called as:
(f 0 my-vec)
returns:
(["foo" 10] ["bar" 23] ["baz" 30])