Accumulate values to a list - clojure

I'd like to create a list depending on the results of some functions. In Java (my background), I'd do something like:
List<String> messages = ...
if(condition 1)
messages.add(message 1);
if(condition 2)
messages.add(message 2);
...
if(condition N)
messages.add(message N);
In clojure, I think I'll need to create a list using let like the following (just dummy example):
(let [result
(vec
(if (= 1 1) "message1" "message2")
(if (= 1 0) "message3" "message4"))]
result)
I've also checked cond but I need to be appending the elements to the list considering all the validations (and cond breaks after one condition is satisfied).
Which way should I follow to achieve this?

If you want them to be conditionally added like in the Java example, you could use cond->, which does not short circuit:
(let [messages []]
(cond-> messages ; Conditionally thread through conj
(= 1 1) (conj "Message1")
(= 0 1) (conj "Message2")
(= 0 0) (conj "Message3")))
=> ["Message1" "Message3"]
If you want to conditionally add one or the other like your second example suggests however, you could just use plain conj with some if expressions:
(let [messages []]
(conj messages
(if (= 1 1) "Message1" "Message2")
(if (= 0 1) "Message3" "Message4")))
=> ["Message1" "Message4"]
And I'll note that your original attempt almost worked. Instead of vec, you could have used vector, or just a vector literal:
(let [messages [(if (= 1 1) "Message1" "Message2")
(if (= 1 0) "Message3" "Message4")]]
messages)
=> ["Message1" "Message4"]
Although, this is would only be beneficial if you didn't already have a messages populated that you wanted to add to. If that was the case, you'd have to use concat or into:
(let [old-messages ["old stuff"]
messages [(if (= 1 1) "Message1" "Message2")
(if (= 1 0) "Message3" "Message4")]]
(into old-messages messages))
=> ["old stuff" "Message1" "Message4"]

Take a look at cond->.
For example, your Java example could be written like:
(cond-> (some-fn-returning-messages)
(= 1 1) (conj "message1")
(= 1 2) (conj "message2")
...
(= 1 n) (conj "messagen"))

I see several answers pointing to the cond-> macro which appears to match your request most closely in that it is nearest to the style outlined in your question.
Depending on the number of conditions you have, your question seems like a good candiate for simply using filter.
(def nums (range 10))
(filter #(or (even? %) (= 7 %)) nums)
If you have a bunch of conditions (functions), and "or-ing" them together would be unwieldy, you can use some-fn.
Numbers from 0-19 that are either even, divisible by 7, greater than 17, or exactly equal to 1. Stupid example I know, just wanted to show a simple use-case.
(filter (some-fn
even?
#(zero? (mod % 7))
#(> % 17)
#(= 1 %))
(range 20))

Looks like everyone had the same idea! I did mine with keywords:
(ns tst.demo.core
(:use tupelo.core demo.core tupelo.test))
(defn accum
[conds]
(cond-> [] ; append to the vector in order 1,2,3
(contains? conds :cond-1) (conj :msg-1)
(contains? conds :cond-2) (conj :msg-2)
(contains? conds :cond-3) (conj :msg-3)))
(dotest
(is= [:msg-1] (accum #{:cond-1}))
(is= [:msg-1 :msg-3] (accum #{:cond-1 :cond-3}))
(is= [:msg-1 :msg-2] (accum #{:cond-2 :cond-1}))
(is= [:msg-2 :msg-3] (accum #{:cond-2 :cond-3}))
(is= [:msg-1 :msg-2 :msg-3] (accum #{:cond-3 :cond-2 :cond-1 })) ; note sets are unsorted
)
If you want more power, you can use cond-it-> from the Tupelo library. It threads the target value through both the condition and the action forms, and uses the special symbol it to show where the threaded value is to be placed. This modified example shows a 4th condition where, "msg-3 is jealous of msg-1" and always boots it out of the result:
(ns tst.demo.core
(:use tupelo.core demo.core tupelo.test))
(defn accum
[conds]
(cond-it-> #{} ; accumulate result in a set
(contains? conds :cond-1) (conj it :msg-1)
(contains? conds :cond-2) (conj it :msg-2)
(contains? conds :cond-3) (conj it :msg-3)
(contains? it :msg-3) (disj it :msg-1) ; :msg-3 doesn't like :msg-1
))
; remember that sets are unsorted
(dotest
(is= #{:msg-1} (accum #{:cond-1}))
(is= #{:msg-3} (accum #{:cond-1 :cond-3}))
(is= #{:msg-1 :msg-2} (accum #{:cond-2 :cond-1}))
(is= #{:msg-2 :msg-3} (accum #{:cond-2 :cond-3}))
(is= #{:msg-2 :msg-3} (accum #{:cond-3 :cond-2 :cond-1 }))
)

Not necessarily relevant to your use case, and certainly not a mainstream solution, but once in a while I like cl-format's conditional expressions:
(require '[clojure.pprint :refer [cl-format]])
(require '[clojure.data.generators :as g])
(cl-format nil
"~:[He~;She~] ~:[did~;did not~] ~:[thought about it~;care~]"
(g/boolean) (g/boolean) (g/boolean))

A typical case would be validating a piece of data to produce an error list.
I would construct a table that maps condition to message:
(def error->message-table
{condition1 message1
condition2 message2
...})
Note that the conditions are functions. Since we can never properly recognise functions by value, you could make this table a sequence of pairs.
However you implement the table, all we have to do is collect the messages for the predicates that apply:
(defn messages [stuff]
(->> error->message-table
(filter (fn [pair] ((first pair) stuff)))
(map second)))
Without a coherent example, it's difficult to be more explicit.
First-class functions and the packaged control structures within filter and map give us the means to express the algorithm briefly and clearly, isolating the content into a data structure.

Related

Return an else value when using recur

I am new to Clojure, and doing my best to forget all my previous experience with more procedural languages (java, ruby, swift) and embrace Clojure for what it is. I am actually really enjoying the way it makes me think differently -- however, I have come up against a pattern that I just can't seem to figure out. The easiest way to illustrate, is with some code:
(defn char-to-int [c] (Integer/valueOf (str c)))
(defn digits-dont-decrease? [str]
(let [digits (map char-to-int (seq str)) i 0]
(when (< i 5)
(if (> (nth digits i) (nth digits (+ i 1)))
false
(recur (inc i))))))
(def result (digits-dont-decrease? "112233"))
(if (= true result)
(println "fit rules")
(println "doesn't fit rules"))
The input is a 6 digit number as a string, and I am simply attempting to make sure that each digit from left to right is >= the previous digit. I want to return false if it doesn't, and true if it does. The false situation works great -- however, given that recur needs to be the last thing in the function (as far as I can tell), how do I return true. As it is, when the condition is satisfied, I get an illegal argument exception:
Execution error (IllegalArgumentException) at clojure.exercise.two/digits-dont-decrease? (four:20).
Don't know how to create ISeq from: java.lang.Long
How should I be thinking about this? I assume my past training is getting in my mental way.
This is not answering your question, but also shows an alternative. While the (apply < ...) approach over the whole string is very elegant for small strings (it is eager), you can use every? for an short-circuiting approach. E.g.:
user=> (defn nr-seq [s] (map #(Integer/parseInt (str %)) s))
#'user/nr-seq
user=> (every? (partial apply <=) (partition 2 1 (nr-seq "123")))
true
You need nothing but
(apply <= "112233")
Reason: string is a sequence of character and comparison operator works on character.
(->> "0123456789" (mapcat #(repeat 1000 %)) (apply str) (def loooong))
(count loooong)
10000
(time (apply <= loooong))
"Elapsed time: 21.006625 msecs"
true
(->> "9123456789" (mapcat #(repeat 1000 %)) (apply str) (def bad-loooong))
(count bad-loooong)
10000
(time (apply <= bad-loooong))
"Elapsed time: 2.581750 msecs"
false
(above runs on my iPhone)
In this case, you don't really need loop/recur. Just use the built-in nature of <= like so:
(ns tst.demo.core
(:use demo.core tupelo.core tupelo.test))
(def true-samples
["123"
"112233"
"13"])
(def false-samples
["10"
"12324"])
(defn char->int
[char-or-str]
(let [str-val (str char-or-str)] ; coerce any chars to len-1 strings
(assert (= 1 (count str-val)))
(Integer/parseInt str-val)))
(dotest
(is= 5 (char->int "5"))
(is= 5 (char->int \5))
(is= [1 2 3] (mapv char->int "123"))
; this shows what we are going for
(is (<= 1 1 2 2 3 3))
(isnt (<= 1 1 2 1 3 3))
and now test the char sequences:
;-----------------------------------------------------------------------------
; using built-in `<=` function
(doseq [true-samp true-samples]
(let [digit-vals (mapv char->int true-samp)]
(is (apply <= digit-vals))))
(doseq [false-samp false-samples]
(let [digit-vals (mapv char->int false-samp)]
(isnt (apply <= digit-vals))))
if you want to write your own, you can like so:
(defn increasing-equal-seq?
"Returns true iff sequence is non-decreasing"
[coll]
(when (< (count coll) 2)
(throw (ex-info "coll must have at least 2 vals" {:coll coll})))
(loop [prev (first coll)
remaining (rest coll)]
(if (empty? remaining)
true
(let [curr (first remaining)
prev-next curr
remaining-next (rest remaining)]
(if (<= prev curr)
(recur prev-next remaining-next)
false)))))
;-----------------------------------------------------------------------------
; using home-grown loop/recur
(doseq [true-samp true-samples]
(let [digit-vals (mapv char->int true-samp)]
(is (increasing-equal-seq? digit-vals))))
(doseq [false-samp false-samples]
(let [digit-vals (mapv char->int false-samp)]
(isnt (increasing-equal-seq? digit-vals))))
)
with result
-------------------------------
Clojure 1.10.1 Java 13
-------------------------------
Testing tst.demo.core
Ran 2 tests containing 15 assertions.
0 failures, 0 errors.
Passed all tests
Finished at 23:36:17.096 (run time: 0.028s)
You an use loop with recur.
Assuming you require following input v/s output -
"543221" => false
"54321" => false
"12345" => true
"123345" => true
Following function can help
;; Assuming char-to-int is defined by you before as per the question
(defn digits-dont-decrease?
[strng]
(let [digits (map char-to-int (seq strng))]
(loop [;;the bindings in loop act as initial state
decreases true
i (- (count digits) 2)]
(let [decreases (and decreases (>= (nth digits (+ i 1)) (nth digits i)))]
(if (or (< i 1) (not decreases))
decreases
(recur decreases (dec i)))))))
This should work for numeric string of any length.
Hope this helps. Please let me know if you were looking for something else :).
(defn non-decreasing? [str]
(every?
identity
(map
(fn [a b]
(<= (int a) (int b)))
(seq str)
(rest str))))
(defn non-decreasing-loop? [str]
(loop [a (seq str) b (rest str)]
(if-not (seq b)
true
(if (<= (int (first a)) (int (first b)))
(recur (rest a) (rest b))
false))))
(non-decreasing? "112334589")
(non-decreasing? "112324589")
(non-decreasing-loop? "112334589")
(non-decreasing-loop? "112324589")

Clojure: Find even numbers in a vector

I am coming from a Java background trying to learn Clojure. As the best way of learning is by actually writing some code, I took a very simple example of finding even numbers in a vector. Below is the piece of code I wrote:
`
(defn even-vector-2 [input]
(def output [])
(loop [x input]
(if (not= (count x) 0)
(do
(if (= (mod (first x) 2) 0)
(do
(def output (conj output (first x)))))
(recur (rest x)))))
output)
`
This code works, but it is lame that I had to use a global symbol to make it work. The reason I had to use the global symbol is because I wanted to change the state of the symbol every time I find an even number in the vector. let doesn't allow me to change the value of the symbol. Is there a way this can be achieved without using global symbols / atoms.
The idiomatic solution is straightfoward:
(filter even? [1 2 3])
; -> (2)
For your educational purposes an implementation with loop/recur
(defn filter-even [v]
(loop [r []
[x & xs :as v] v]
(if (seq v) ;; if current v is not empty
(if (even? x)
(recur (conj r x) xs) ;; bind r to r with x, bind v to rest
(recur r xs)) ;; leave r as is
r))) ;; terminate by not calling recur, return r
The main problem with your code is you're polluting the namespace by using def. You should never really use def inside a function. If you absolutely need mutability, use an atom or similar object.
Now, for your question. If you want to do this the "hard way", just make output a part of the loop:
(defn even-vector-3 [input]
(loop [[n & rest-input] input ; Deconstruct the head from the tail
output []] ; Output is just looped with the input
(if n ; n will be nil if the list is empty
(recur rest-input
(if (= (mod n 2) 0)
(conj output n)
output)) ; Adding nothing since the number is odd
output)))
Rarely is explicit looping necessary though. This is a typical case for a fold: you want to accumulate a list that's a variable-length version of another list. This is a quick version:
(defn even-vector-4 [input]
(reduce ; Reducing the input into another list
(fn [acc n]
(if (= (rem n 2) 0)
(conj acc n)
acc))
[] ; This is the initial accumulator.
input))
Really though, you're just filtering a list. Just use the core's filter:
(filter #(= (rem % 2) 0) [1 2 3 4])
Note, filter is lazy.
Try
#(filterv even? %)
if you want to return a vector or
#(filter even? %)
if you want a lazy sequence.
If you want to combine this with more transformations, you might want to go for a transducer:
(filter even?)
If you wanted to write it using loop/recur, I'd do it like this:
(defn keep-even
"Accepts a vector of numbers, returning a vector of the even ones."
[input]
(loop [result []
unused input]
(if (empty? unused)
result
(let [curr-value (first unused)
next-result (if (is-even? curr-value)
(conj result curr-value)
result)
next-unused (rest unused) ]
(recur next-result next-unused)))))
This gets the same result as the built-in filter function.
Take a look at filter, even? and vec
check out http://cljs.info/cheatsheet/
(defn even-vector-2 [input](vec(filter even? input)))
If you want a lazy solution, filter is your friend.
Here is a non-lazy simple solution (loop/recur can be avoided if you apply always the same function without precise work) :
(defn keep-even-numbers
[coll]
(reduce
(fn [agg nb]
(if (zero? (rem nb 2)) (conj agg nb) agg))
[] coll))
If you like mutability for "fun", here is a solution with temporary mutable collection :
(defn mkeep-even-numbers
[coll]
(persistent!
(reduce
(fn [agg nb]
(if (zero? (rem nb 2)) (conj! agg nb) agg))
(transient []) coll)))
...which is slightly faster !
mod would be better than rem if you extend the odd/even definition to negative integers
You can also replace [] by the collection you want, here a vector !
In Clojure, you generally don't need to write a low-level loop with loop/recur. Here is a quick demo.
(ns tst.clj.core
(:require
[tupelo.core :as t] ))
(t/refer-tupelo)
(defn is-even?
"Returns true if x is even, otherwise false."
[x]
(zero? (mod x 2)))
; quick sanity checks
(spyx (is-even? 2))
(spyx (is-even? 3))
(defn keep-even
"Accepts a vector of numbers, returning a vector of the even ones."
[input]
(into [] ; forces result into vector, eagerly
(filter is-even? input)))
; demonstrate on [0 1 2...9]
(spyx (keep-even (range 10)))
with result:
(is-even? 2) => true
(is-even? 3) => false
(keep-even (range 10)) => [0 2 4 6 8]
Your project.clj needs the following for spyx to work:
:dependencies [
[tupelo "0.9.11"]

Clojure macros: quoting, unquoting and evaluation

I have the following code:
(ns macroo)
(def primitives #{::byte ::short ::int})
(defn primitive? [type]
(contains? primitives type))
(def pp clojure.pprint/pprint)
(defn foo [buffer data schema]
(println schema))
(defmacro write-fn [buffer schema schemas]
(let [data (gensym)]
`(fn [~data]
~(cond
(primitive? schema) `(foo ~buffer ~data ~schema)
(vector? schema) (if (= ::some (first schema))
`(do (foo ~buffer (count ~data) ::short)
(map #((write-fn ~buffer ~(second schema) ~schemas) %)
~data))
`(do ~#(for [[i s] (map-indexed vector schema)]
((write-fn buffer s schemas) `(get ~data ~i)))))
:else [schema `(primitive? ~schema) (primitive? schema)])))) ; for debugging
(pp (clojure.walk/macroexpand-all '(write-fn 0 [::int ::int] 0)))
The problem is, upon evaluating the last expression, I get
=>
(fn*
([G__6506]
(do
[:macroo/int :macroo/int true false]
[:macroo/int :macroo/int true false])))
I'll explain the code if necessary, but for now i'll just state the problem (it might be just a newbie error I'm making):
`(primitive? ~schema)
and
(primitive? schema)
in the :else branch return true and false respectively, and since i'm using the second version in the cond expression, it fails where it shouldn't (I'd prefer the second version as it would be evaluated at compile time if i'm not mistaken).
I suspect it might have something to do with symbols being namespace qualified?
After some investigations (see edits), here is a working Clojure alternative. Basically, you rarely need recursive macros. If you
need to build forms recursively, delegate to auxiliary functions and call them from the macro (also, write-fn is not a good name).
(defmacro write-fn [buffer schemas fun]
;; we will evaluate "buffer" and "fun" only once
;; and we need gensym for intermediate variables.
(let [fsym (gensym)
bsym (gensym)]
;; define two mutually recursive function
;; to parse and build a map consisting of two keys
;;
;; - args is the argument list of the generated function
;; - body is a list of generated forms
;;
(letfn [(transformer [schema]
(cond
(primitive? schema)
(let [g (gensym)]
{:args g
:body `(~fsym ~schema ~bsym ~g)})
(sequential? schema)
(if (and(= (count schema) 2)
(= (first schema) ::some)
(primitive? (second schema)))
(let [g (gensym)]
{:args ['& g]
:body
`(doseq [i# ~g]
(~fsym ~(second schema) ~bsym i#))})
(reduce reducer {:args [] :body []} schema))
:else (throw (Exception. "Bad input"))))
(reducer [{:keys [args body]} schema]
(let [{arg :args code :body} (transformer schema)]
{:args (conj args arg)
:body (conj body code)}))]
(let [{:keys [args body]} (transformer schemas)]
`(let [~fsym ~fun
~bsym ~buffer]
(fn [~args] ~#body))))))
The macro takes a buffer (whatever it is), a schema as defined by your language and a function to be called for each value being visited by the generated function.
Example
(pp (macroexpand
'(write-fn 0
[::int [::some ::short] [::int ::short ::int]]
(fn [& more] (apply println more)))))
... produces the following:
(let*
[G__1178 (fn [& more] (apply println more)) G__1179 0]
(clojure.core/fn
[[G__1180 [& G__1181] [G__1182 G__1183 G__1184]]]
(G__1178 :macroo/int G__1179 G__1180)
(clojure.core/doseq
[i__1110__auto__ G__1181]
(G__1178 :macroo/short G__1179 i__1110__auto__))
[(G__1178 :macroo/int G__1179 G__1182)
(G__1178 :macroo/short G__1179 G__1183)
(G__1178 :macroo/int G__1179 G__1184)]))
First, evaluate buffer and fun and bind them to local variables
Return a closure which accept one argument and destructures it according to the given schema, thanks to Clojure's destructuring capabilities.
For each value, call fun with the appropriate arguments.
When the schema is [::some x], accept zero or more values as a vector and call the function fun for each of those values. This needs to be done with a loop, since the size is only know when calling the function.
If we pass the vector [32 [1 3 4 5 6 7] [2 55 1]] to the function generated by the above macroexpansion, the following is printed:
:macroo/int 0 32
:macroo/short 0 1
:macroo/short 0 3
:macroo/short 0 4
:macroo/short 0 5
:macroo/short 0 6
:macroo/short 0 7
:macroo/int 0 2
:macroo/short 0 55
:macroo/int 0 1
In this line:
`(do ~#(for [[i s] (map-indexed vector schema)]
((write-fn buffer s schemas) `(get ~data ~i)))))
you are calling write-fn, the macro, in your current scope, where s is just a symbol, not one of the entries in schema. Instead, you want to emit code that will run in the caller's scope:
`(do ~#(for [[i s] (map-indexed vector schema)]
`((write-fn ~buffer ~s ~schemas) (get ~data ~i)))))
And make a similar change to the other branch of the if, as well.
As an aside, it looks to me at first glance like this doesn't really need to be a macro, but could be a higher-order function instead: take in a schema or whatever, and return a function of data. My guess is you're doing it as a macro for performance, in which case I would counsel you to try it out the slow, easy way first; once you have that working you can make it a macro if necessary. Or, maybe I'm wrong and there's something in here that fundamentally has to be a macro.

Building a lazy, impure id generator

I'd like to know how to create an infinite, impure sequence of unique values in Clojure.
(def generator ...) ; def, not defn
(take 4 generator) ; => (1 2 3 4)
(take 4 generator) ; => (5 6 7 8). note the generator's impurity.
I think that such a design could be more convenient than e.g. wrapping a single integer value into a reference type and increment it from its consumers, as:
The proposed approach reduces the implementation details to a single point of change: the generator. Otherwise all the consumers would have to care about both the reference type (atom), and the concrete function that provides the next value (inc)
Sequences can take advantage many clojure.core functions. 'Manually' building a list of ids out of an atom would be a bit bulky: (take 4 (repeatedly #(swap! _ inc)))
I couldn't come up with a working implementation. Is it possible at all?
You can wrap a lazy sequence around an impure class (like a java.util.concurrent.atomic.AtomicLong) to create an id sequence:
(def id-counter (java.util.concurrent.atomic.AtomicLong.))
(defn id-gen []
(cons
(.getAndIncrement id-counter)
(lazy-seq
(id-gen))))
This works, but only if you don't save the head of the sequence. If you create a var that captures the head:
(def id-seq (id-gen))
Then call it repeatedly, it will return ids from the beginning of the sequence, because you've held onto the head of the sequence:
(take 3 id-seq)
;; => (0 1 2)
(take 3 id-seq)
;; => (0 1 2)
(take 3 id-seq)
;; => (0 1 2)
If you re-create the sequence though, you'll get fresh values because of the impurity:
(take 3 (id-gen))
;; (3 4 5)
(take 3 (id-gen))
;; (6 7 8)
(take 3 (id-gen))
;; (9 10 11)
I only recommend doing the following for educational purposes (not production code), but you can create your own instance of ISeq which implements the impurity more directly:
(def custom-seq
(reify clojure.lang.ISeq
(first [this] (.getAndIncrement id-counter))
(next [this] (.getAndIncrement id-counter))
(cons [this thing]
(cons thing this))
(more [this] (cons
(.getAndIncrement id-counter)
this))
(count [this] (throw (RuntimeException. "count: not supported")))
(empty [this] (throw (RuntimeException. "empty: not supported")))
(equiv [this obj] (throw (RuntimeException. "equiv: not supported")))
(seq [this] this)))
(take 3 custom-seq)
;; (12 13 14)
(take 3 custom-seq)
;; (15 16 17)
I had a fun time discovering something during answering your question. The first thing that occured to me was that perhaps, for whatever ultimate goal you need these IDs for, the gensym function might be helpful.
Then, I thought "well hey, that seems to increment some impure counter to generate new IDs" and "well hey, what's in the source code for that?" Which led me to this:
(. clojure.lang.RT (nextID))
Which seems to do what you need. Cool! If you want to use it the way you suggest, then I would probably make it a function:
(defn generate-id []
(. clojure.lang.RT (nextID)))
Then you can do:
user> (repeatedly 5 generate-id)
=> (372 373 374 375 376)
I haven't yet tested whether this will produce always unique values "globally"--I'm not sure about terminology, but I'm talking about when you might be using this generate-id function from within different threads, but want to still be sure that it's producing unique values.
this is another solution, maybe:
user=> (defn positive-numbers
([] (positive-numbers 1))
([n] (cons n (lazy-seq (positive-numbers (inc n))))))
#'user/positive-numbers
user=> (take 4 (positive-numbers))
(1 2 3 4)
user=> (take 4 (positive-numbers 5))
(5 6 7 8)
A way that would be more idiomatic, thread-safe, and invites no weirdness over head references would be to use a closure over one of clojures built in mutable references. Here is a quick sample I worked up since I was having the same issue. It simply closes over a ref.
(def id-generator (let [counter (ref 0)]
(fn [] (dosync (let [cur-val #counter]
(do (alter counter + 1)
cur-val))))))
Every time you call (id-generator) you will get the next number in the sequence.
Here's another quick way:
user> (defn make-generator [& [ii init]]
(let [a (atom (or ii 0 ))
f #(swap! a inc)]
#(repeatedly f)))
#'user/make-generator
user> (def g (make-generator))
#'user/g
user> (take 3 (g))
(1 2 3)
user> (take 3 (g))
(4 5 6)
user> (take 3 (g))
(7 8 9)
This is hack but it works and it is extremely simple
; there be dragons !
(defn id-gen [n] (repeatedly n (fn [] (hash #()))))
(id-gen 3) ; (2133991908 877609209 1060288067 442239263 274390974)
Basically clojure creates an 'anonymous' function but since clojure itselfs needs a name for that, it uses uniques impure ids to avoid collitions. If you hash a unique name then you should get a unique number.
Hope it helps
Creating identifiers from an arbitrary collection of seed identifiers:
(defonce ^:private counter (volatile! 0))
(defn- next-int []
(vswap! counter inc))
(defn- char-range
[a b]
(mapv char
(range (int a) (int b))))
(defn- unique-id-gen
"Generates a sequence of unique identifiers seeded with ids sequence"
[ids]
;; Laziness ftw:
(apply concat
(iterate (fn [xs]
(for [x xs
y ids]
(str x y)))
(map str ids))))
(def inf-ids-seq (unique-id-gen (concat (char-range \a \z)
(char-range \A \Z)
(char-range \0 \9)
[\_ \-])))
(defn- new-class
"Returns an unused new classname"
[]
(nth inf-ids-seq (next-int)))
(repeatedly 10 new-class)
Demonstration:
(take 16 (unique-id-gen [\a 8 \c]))
;; => ("a" "8" "c" "aa" "a8" "ac" "8a" "88" "8c" "ca" "c8" "cc" "aaa" "aa8" "aac" "a8a")

Clojure transients - assoc! causing exception

Here is the function I'm trying to run...
(defn mongean [cards times]
(let [_cards (transient cards)]
(loop [i 0 c (get cards i) _count (count cards) _current (/ _count 2)]
(assoc! _cards _current c)
(if ((rem i 2) = 0)
(def _newcur (- _current (inc i)))
(def _newcur (+ _current (inc i))))
(if (<= i _count)
(recur (inc i) (get cards i) _count _newcur )))
(persistent! _cards)))
It's resulting in this Exception...
Exception in thread "main" java.lang.ClassCastException: clojure.lang.PersistentHashSet$TransientHashSet cannot be cast to clojure.lang.ITransientAssociative
Being new to clojure, I'd also appreciate any constructive criticism of my approach above. The goal is to take a List, and return a re-ordered list.
I assume that you are trying to implement the Mongean shuffle. Your approach is very imperative and you should try to use a more functional approach.
This would be a possible implementation, were we calculate the final order of the cards (as per Wikipedia formula) and then we use the built-in replace function to do the mapping:
(defn mongean [cards]
(let [num-cards (count cards)
final-order (concat (reverse (range 1 num-cards 2)) (range 0 num-cards 2))]
(replace cards final-order)))
user> (mongean [1 2 3 4 5 6 7 8])
(8 6 4 2 1 3 5 7)
How do you call that function? It looks like you're passing a set, so that its transient version will also be a set and hence can't be used with any of the assoc functions, as they work on associative data structures and vectors:
user=> (assoc #{} :a 1)
ClassCastException clojure.lang.PersistentHashSet cannot be cast to clojure.lang.Associative clojure.lang.RT.assoc (RT.java:691)
user=> (assoc! (transient #{}) :a 1)
ClassCastException clojure.lang.PersistentHashSet$TransientHashSet cannot be cast to clojure.lang.ITransientAssociative clojure.core/assoc! (core.clj:2959)
; the following works as it uses maps and vectors
user=> (assoc {} :a 1)
{:a 1}
user=> (assoc! (transient {}) :a 1)
#<TransientArrayMap clojure.lang.PersistentArrayMap$TransientArrayMap#65cd1dff>
user=> (assoc [] 0 :a)
[:a]
Now, let's try to discuss the code itself. It's a bit hard to follow your code and try to understand what the goal really is without some more hints on what you want to achieve, but as general comments:
you have a times input parameter you don't use at all
you are supposed to use the result of a transient mutation, not assume that the transient will mutate in place
avoid transients if you can, they're only meant as a performance optimization
the binding _current (/ _count 2) is probably not what you want, as (/ 5 2) really returns 5/2 and it seems that you want to use it as a position in the result
constants like _count don't need to be part of the loop binding, you can use the outer let so that you don't have to pass them at each and every iteration
use let instead of def for naming things inside a function
(if ((rem 1 2) = 0)) is definitely not what you want
Now, leaving aside the shuffling algorithm, if you need to rearrange a sequence you might just produce a sequence of new positions, map them with the original cards to produce pairs of [position card] and finally reduce them by placing the card at the new position, using the original sequence as the seed:
(defn generate [coll] ; counts down from (count coll) to 0, change to
; implement your shuffling algorithm
(range (dec (count coll)) -1 -1))
(defn mongean [cards times]
(let [positions (generate cards) ; get the new positions
assemble (fn [dest [pos card]] ; assoc the card at the wanted position
(assoc dest pos card))]
(reduce assemble cards (map vector positions cards))))
If you simply want to shuffle:
(defn mongean [cards times] (shuffle cards))