Texture compression from 4096 to 512 without losing quality - compression

I baked texture on a 4k image and I downscaled it to 512 using Gimp but the quality is bad in Unity 3D. The image format is png.
Is it a good idea to bake texture on a 4k image and to downscale to 512 for mobile game?
What can I do to keep a good quality on baked texture with small size (512 or below) for mobile game development?

In general, you can expect to sacrifice some texture quality if you use a smaller texture. It makes sense: with less data, something must be lost, and that's usually fine details and sharp edges. There are some strategies available, though, to get the most out of your texture data:
Make sure your model's UVs are laid out as efficiently as possible. Parts where detail is important -- like faces -- should be given more UV space than parts where detail is unimportant -- like low-frequency clothing or the undersides of models. Minimize unused texture space.
Where feasible, you can use overlapping UVs to reuse similar portions of your UV space. If your model is exactly symmetrical, you could map the halves to the same space. Or if your model is a crate with identical sides, you could map each side to the same UV square.
See if you can decompose your texture into multiple textures that are less sensitive to downsizing, then layer them together. For instance, a landscape texture might be decomposable into a low-frequency color texture and a high-frequency noise texture. In that case, the low-frequency texture could be scaled much smaller without loss of quality, while the high-frequency texture might be replaceable with a cropped, tiled texture, or procedurally generated in the shader.
Experiment with different resizing algorithms. Most image editors have an option to resize using bicubic or bilinear methods. Bicubic does a better job preserving edges, while bilinear can sometimes be a better match for some content/shaders. You may also be able to improve a resized texture with careful use of blur or sharpen filters.
If the hardware targeted by your game supports it, you should evaluate using hardware compression formats, like ETC2 or ASTC. The ETC2 format, for example, can compress 24-bit RGB texture data to be six times smaller while still having the same image dimensions. The compression is lossy, so some image information is lost and there are some artifacts, but for some content it can look better than raw textures rescaled to a similar data size. Depending on content, some combination of resizing and hardware texture compression may get you closest to your desired quality/size tradeoff. The Unity manual claims it automatically picks a good default texture format when exporting, but you can try other ones in the export options.
Usually, the motivation for using smaller textures is to consume less video memory and improve performance. However, if the motivation is simply to reduce the download size of the game, you could try alternate image formats. JPG, for instance, lets you choose an image quality value to get a smaller file size. It's rarely used for games, though, because it takes up as much video memory as a similarly sized PNG, can have artifacts, and doesn't support alpha.

Related

Rendering visualization of spectrogram efficiently

I'm trying to find a clever way to render a large spectrogram (say, fullscreen). A spectrogram is a coordinate-system, where the x-axis is time, the y-axis is frequency and the colour intensity is the magnitude of the frequency component, and it looks like this (youtube).
What's interesting to note is that each frame, a new column (1 pixel wide) is new, but the whole rest of the spectrum is the same, only shifted left one pixel. Currently I'm just writing to a circular software buffer acting like an image, and drawing that - but it is obviously slow at high framerates and screensizes.
Is there any obvious solution to this problem, using OpenGL (or some software trick - has to be cross-platform, though)? Perhaps through some use of buffer on the GPU memory, with a shader that fills it (admittedly, i have a very vague understanding of OpenGL beyond drawing simple stuff)? It revolves around keeping the old data on the GPU memory as i see it.
Use a single channel texture for the waterfall (this is what you're drawing, a waterfall plot) in which you update one column or row at a time using glTexSubImage. By using GL_WRAP mode you can simply advance the texture coordinates beyond the bounds of the texture and it will, well, wrap. By moving the texture opposing to the update you can get the waterfall effect (i.e. moving spectrogram, with the updates coming in at the right edge).
To give the whole thing color, use the texture's values as an index into a transfer function LUT texture using a fragment shader.
You can use the GPU library for spectrogram calculations: nnAudio
https://github.com/KinWaiCheuk/nnAudio

openGL invert textures orientation during pixel-transfer?

as we all know, openGL uses a pixel-data orientation that has 0/0 at left/bottom, whereas the rest of the world (including virtually all image formats) uses left/top.
this has been a source of endless worries (at least for me) for years, and i still have not been able to come up with a good solution.
in my application i want to support following image data as textures:
image data from various image sources (including still-images, video-files and live-video)
image data acquired via copying the framebuffer to main memory (glReadPixels)
image data acquired via grabbing the framebuffer to texture (glCopyTexImage)
(case #1 delivers images with top-down orientation (in about 98% of the cases; for the sake of simplicity let's assume that all "external images" have top-down orientation); #2 and #3 have bottom-up orientation)
i want to be able to apply all of these textures onto various arbitrarily complex objects (e.g. 3D-models read from disk, that have texture coordinate information stored).
thus i want a single representation of the texture_coords of an object. when rendering the object, i do not want to be bothered with the orientation of the image source.
(until now, i have always carried a topdown-flag alongside the texture id, that get's used when the texture coordinates are actually set. i want to get rid of this clumsy hack!
basically i see three ways to solve the problem.
make sure all image data is in the "correct" (in openGL terms this
is upside down) orientation, converting all the "incorrect" data, before passing it to openGL
provide different texture-coordinates depending on the image-orientation (0..1 for bottom-up images, 1..0 for top-down images)
flip the images on the gfx-card
in the olde times i've been doing #1, but it turned out to be too slow. we want to avoid the copy of the pixel-buffer at all cost.
so i've switched to #2 a couple of years ago, but it is way to complicated to maintain. i don't really understand why i should carry metadata of the original image around, once i transfered the image to the gfx-card and have a nice little abstract "texture"-object.
i'm in the process of finally converting my code to VBOs, and would like to avoit having to update my texcoord arrays, just because i'm using an image of the same size but with different orientation!
which leaves #3, which i never managed to work for me (but i believe it must be quite simple).
intuitively i though about using something like glPixelZoom().
this works great with glDrawPixels() (but who is using that in real life?), and afaik it should work with glReadPixels().
the latter is great as it allows me to at least force a reasonably fast homogenous pixel orientation (top-down) for all images in main memory.
however, it seems thatglPixelZoom() has no effect on data transfered via glTexImage2D, let alone glCopyTex2D(), so the textures generated from main-memory pixels will all be upside down (which i could live with, as this only means that i have to convert all incoming texcoords to top-down when loading them).
now the remaining problem is, that i haven't found a way yet to copy a framebuffer to a texture (using glCopyTex(Sub)Image) that can be used with those top-down texcoords (that is: how to flip the image when using glCopyTexImage())
is there a solution for this simple problem? something that is fast, easy to maintain and runs on openGL-1.1 through 4.x?
ah, and ideally it would work with both power-of-two and non-power-of-two (or rectangle) textures. (as far as this is possible...)
is there a solution for this simple problem? something that is fast, easy to maintain and runs on openGL-1.1 through 4.x?
No.
There is no method to change the orientation of pixel data at pixel upload time. There is no method to change the orientation of a texture in-situ. The only method for changing the orientation of a texture (besides downloading, flipping and re-uploading) is to use an upside-down framebuffer blit from a framebuffer containing a source texture to a framebuffer containing a destination texture. And glFramebufferBlit is not available on any hardware that's so old it doesn't support GL 2.x.
So you're going to have to do what everyone else does: flip your textures before uploading them. Or better yet, flip the textures on disk, then load them without flipping them.
However, if you really, really want to not flip data, you could simply have all of your shaders take a uniform that tells them whether or not to invert the Y of their texture coordinate data. Inversion shouldn't be anything more than a multiply/add operation. This could be done in the vertex shader to minimize processing time.
Or, if you're coding in the dark ages of fixed-function, you can apply a texture matrix that inverts the Y.
why arent you change the way how you map the texture to the polygone ?
I use this mapping coordinates { 0, 1, 1, 1, 0, 0, 1, 0 } for origin top left
and this mapping coordinates { 0, 0, 1, 0, 0, 1, 1, 1 } for origin bottom left.
Then you dont need to manualy switch your pictures.
more details about mapping textures to a polygone could be found here:
http://iphonedevelopment.blogspot.de/2009/05/opengl-es-from-ground-up-part-6_25.html

Are there advantages of MipMaps aside from the performance ones?

Is the only true advantage of the mipmaps that the filtering required in real time will be less demanding, as it will have been done partly in advance?
Could you not achieve identical results with linear or anisotropic filtering and a little bit more processing power?
Not with "a little bit" more processing power, but with several orders of magnitude more. As an extreme example, consider a quad with a texture mapped to it, but scaled down so the quad is rendered onto a single screen pixel. That screen pixel is then expected to have the average colour value over the entire texture.
When using mipmaps, there will be a 1x1 precomputed mipmap level that has the colour value you want. One simple lookup, fast and easy.
When not using mipmaps, to achieve the exact same effect, rendering this one pixel would mean doing a texture lookup for every single pixel in the texture and then averaging over them. We could take shortcuts by averaging over only, say, 16 equally spaced pixels, but that could make a marked difference in the output (consider what this would do to checkerboard patterns).
So whilst this theoretically could be done without mipmaps in real time, it would effectively mean calculating large portions of the entire mipmap pyramid for every pixel. There would be no visual difference, but you'd have to start measuring framerates in frames per hour.

Texturing Opengl Terrain?

What is the best way to texture terrain made from quads in OpenGL? I have around 30 different textures I want to have for my terrains (1 texture per terrain type, so 30 terrain types) and would like to have smooth transitions between any two of the terrains.
I have been doing some browsing on the web and found that there are many different methods, including 3d texturing, Alpha channels, blending, and using shaders. However, which of these is the most efficient and can handle the amount of textures I am looking to use? For example: This popular answer describes how to use some techniques, but since the mixmap only has 4 properties (RGBA) and so can only support 4 textures.
I should also note that I know nothing about shaders, so non-shader required techniques would be preferable.
Since you linked to an answer that describes texture splatting, and its question mentions the game Oblivion, I can provide some additional insight into that.
Basic texture splatting with an RGBA mixmap only supports four textures per terrain quad, but you can use different sets of textures for different quads. Oblivion divides its terrain into squares (called "cells") of 32 grid points (192 feet) per side, and each cell defines its own set of four terrain textures. So you can't have lots of texture diversity within a small area, but you can easily vary your textures over larger regions. If you prefer, you can define texture sets for smaller regions, even individual quads, at the expense of using more memory.
If you really need more than four textures in a quad, you can use multiple mixmaps. For each additional one, you just do another texture lookup to get four more blending factors, and blend in four more textures on top of the results from the previous mixmap. You can scale up to as many textures as you want, again at the expense of memory.
Texture splatting can be tricky to combine with with LOD techniques on the height map, because when a single low-detail terrain quad represents a group of high-detail quads, you have to sample several different mixmaps for different regions of the big quad. Oblivion sidesteps that problem by using texture splatting only for full-detail terrain; distant cells, rendered at lower resolution, use precomputed textures produced by the editor, which does the splatting and downscaling in advance.
One alternative to texture splatting is to use a clipmap to render a "megatexture". With this approach, you have a single large texture that represents your entire terrain, and you avoid filling up your RAM by loading different parts of it with only as much detail as is actually needed to render it based on the viewer's current position. (Distant parts of the terrain can't be seen at full detail, so there's no need to load them at full detail.)
The advantage of this approach is its artistic freedom: you can place fine details anywhere you want in the texture, without regard to the vertex grid. The disadvantage is that it's rather complex to implement, and the entire clipmap has to be stored somewhere, probably in a big file on disk, so that you can load parts of it into RAM as needed.

Sum image intensities in GPU

I have an application where I need take the average intensity of an image for around 1 million images. It "feels" like a job for a GPU fragment shader, but fragment shaders are for per-pixel local computations, while image averaging is a global operation.
One approach I considered is loading the image into a texture, applying a 2x2 box-blur, load the result back into a N/2 x N/2 texture and repeating until the output is 1x1. However, this would take log n applications of the shader.
Is there a way to do it in one pass? Or should I just break down and use CUDA/OpenCL?
The summation operation is a specific case of the "reduction," a standard operation in CUDA and OpenCL libraries. A nice writeup on it is available on the cuda demos page. In CUDA, Thrust and CUDPP are just two examples of libraries that provide reduction. I'm less familiar with OpenCL, but CLPP seems to be a good library that provides reduction. Just copy your color buffer to an OpenGL pixel buffer object and use the appropriate OpenGL interoperability call to make that pixel buffer's memory accessible in CUDA/OpenCL.
If it must be done using the opengl API (as the original question required), the solution is to render to a texture, create a mipmap of the texture, and read in the 1x1 texture. You have to set the filtering right (bilinear is appropriate, I think), but it should get close to the right answer, modulo precision error.
My gut tells me to attempt your implementation in OpenCL. You can optimize for your image size and graphics hardware by breaking up the images into bespoke chunks of data that are then summed in parallel. Could be very fast indeed.
Fragment shaders are great for convolutions but that result is usually written to the gl_FragColor so it makes sense. Ultimately you will have to loop over every pixel in the texture and sum the result which is then read back in the main program. Generating image statistics perhaps not what the fragment shader was designed for and its not clear that a major performance gain is to be had since its not guaranteed a particular buffer is located in GPU memory.
It sounds like you may be applying this algorithm to a real-time motion detection scenario, or some other automated feature detection application. It may be faster to compute some statistics from a sample of pixels rather than the entire image and then build a machine learning classifier.
Best of luck to you in any case!
It doesn't need CUDA if you like to stick to GLSL. Like in the CUDA solution mentioned here, it can be done in a fragment shader staight forward. However, you need about log(resolution) draw calls.
Just set up a shader that takes 2x2 pixel samples from the original image, and output the average sum of those. The result is an image with half resolution in both axes. Repeat that until the image is 1x1 px.
Some considerations: Use GL_FLOAT luminance textures if avaliable, to get an more precise sum. Use glViewport to quarter the rendering area in each stage. The result then ends up in the top left pixel of your framebuffer.