How to count the number of permutations? - c++

We are given array-'a' and array-'b' consisting of positive integers.
How can I count all the permutation of array 'a' which are strictly lexicographically smaller than array-'b'?
Arrays can contain as many as 10^5 integers(positive)
Example:
1 2 3 is lexicographically smaller than 3 1 2
1 2 3 is lexicographically smaller than 1 4 5.
I would like the solution to be in C++.
Input : 3
1 2 3
2 1 3
Output : 2
Only permutations 1,2,3 and 1,3,2 are lexicographically smaller than 2 1 3

Let's just tackle the algorithm. Once you get that figured out, the implementation should be pretty straightforward. Does this look like it does what you're looking for?
Pseudo code:
function get_perms(a,b)
#count the number of digits in a that are <b[0]
count = sum(a<b[0])
Nperms = (len(a)-1)! #modify this formula as needed
N = count*Nperms
if sum(a==b[0]) > 0
remove 1 b[0] from a
# repeat the process with the substring assuming a[0]==b[0]
N += sum(a==b[0])*get_perms(a,b[1:end])
return N
main()
get_perms(a,b)
Edit: I did a little searching. I believe that this is what you are looking for.

Related

Can we really avoid extra space when all the values are non-negative?

This question is a follow-up of another one I had asked quite a while ago:
We have been given an array of integers and another number k and we need to find the total number of continuous subarrays whose sum equals to k. For e.g., for the input: [1,1,1] and k=2, the expected output is 2.
In the accepted answer, #talex says:
PS: BTW if all values are non-negative there is better algorithm. it doesn't require extra memory.
While I didn't think much about it then, I am curious about it now. IMHO, we will require extra memory. In the event that all the input values are non-negative, our running (prefix) sum will go on increasing, and as such, sure, we don't need an unordered_map to store the frequency of a particular sum. But, we will still need extra memory (perhaps an unordered_set) to store the running (prefix) sums that we get along the way. This obviously contradicts what #talex said.
Could someone please confirm if we absolutely do need extra memory or if it could be avoided?
Thanks!
Let's start with a slightly simpler problem: all values are positive (no zeros). In this case the sub arrays can overlap, but they cannot contain one another.
I.e.: arr = 2 1 5 1 1 5 1 2, Sum = 8
2 1 5 1 1 5 1 2
|---|
|-----|
|-----|
|---|
But this situation can never occur:
* * * * * * *
|-------|
|---|
With this in mind there is algorithm that doesn't require extra space (well.. O(1) space) and has O(n) time complexity. The ideea is to have left and right indexes indicating the current sequence and the sum of the current sequence.
if the sum is k increment the counter, advance left and right
if the sum is less than k then advance right
else advance left
Now if there are zeros the intervals can contain one another, but only if the zeros are on the margins of the interval.
To adapt to non-negative numbers:
Do as above, except:
skip zeros when advancing left
if sum is k:
count consecutive zeros to the right of right, lets say zeroes_right_count
count consecutive zeros to the left of left. lets say zeroes_left_count
instead of incrementing the count as before, increase the counter by: (zeroes_left_count + 1) * (zeroes_right_count + 1)
Example:
... 7 0 0 5 1 2 0 0 0 9 ...
^ ^
left right
Here we have 2 zeroes to the left and 3 zeros to the right. This makes (2 + 1) * (3 + 1) = 12 sequences with sum 8 here:
5 1 2
5 1 2 0
5 1 2 0 0
5 1 2 0 0 0
0 5 1 2
0 5 1 2 0
0 5 1 2 0 0
0 5 1 2 0 0 0
0 0 5 1 2
0 0 5 1 2 0
0 0 5 1 2 0 0
0 0 5 1 2 0 0 0
I think this algorithm would work, using O(1) space.
We maintain two pointers to the beginning and end of the current subsequence, as well as the sum of the current subsequence. Initially, both pointers point to array[0], and the sum is obviously set to array[0].
Advance the end pointer (thus extending the subsequence to the right), and increase the sum by the value it points to, until that sum exceeds k. Then advance the start pointer (thus shrinking the subsequence from the left), and decrease the sum, until that sum gets below k. Keep doing this until the end pointer reaches the end of the array. Keep track of the number of times the sum was exactly k.

How to find and return a repeating sequence within a vector

I have a vector that is filled dynamically and will always contain a repeating sequence with characters and length that I am unsure of. For example, the vector could contain these elements:
0 1 1 2 3 1 0 1 1 2 3 1 0 1 1 2
and the repeating sequence in that vector is:
0 1 1 2 3 1
How can I search the vector and find those elements. I would like to put the found sequence in a new vector. I assumed at first it would only take a simple for loop and checking for repetition of the first and second element in the array, so in the case above I would exit the loop when I reached 0 1 a second time, but the problem is that it cannot be assumed that the first 2 elements will be in the repeating pattern, so
0 1 2 3 2 3 2 3 2 3
can be valid elements in the vector. Any ideas?
in general (infinite result) it is impossible to know the sequence because something like that can happen 1 million 0 and then 1,after 1000 zero u will think that the sequence is zero only,but if the vector is finite
you can write somethink like that
for(I..VECTORSIZE / 2)
if(VECTORSIZE % I == 0)
CHECK IF SUBVECTOR(0,I) == SUBVECTOR(I,I*2) == SUBVECTOR(I*2,I*3)....
return I
else continute;

Counting ways of breaking up a string of digits into numbers under 26

Given a string of digits, I wish to find the number of ways of breaking up the string into individual numbers so that each number is under 26.
For example, "8888888" can only be broken up as "8 8 8 8 8 8 8". Whereas "1234567" can be broken up as "1 2 3 4 5 6 7", "12 3 4 5 6 7" and "1 23 4 5 6 7".
I'd like both a recurrence relation for the solution, and some code that uses dynamic programming.
This is what I've got so far. It only covers the base cases which are a empty string should return 1 a string of one digit should return 1 and a string of all numbers larger than 2 should return 1.
int countPerms(vector<int> number, int currentPermCount)
{
vector< vector<int> > permsOfNumber;
vector<int> working;
int totalPerms=0, size=number.size();
bool areAllOverTwo=true, forLoop = true;
if (number.size() <=1)
{
//TODO: print out permetations
return 1;
}
for (int i = 0; i < number.size()-1; i++) //minus one here because we dont care what the last digit is if all of them before it are over 2 then there is only one way to decode them
{
if (number.at(i) <= 2)
{
areAllOverTwo = false;
}
}
if (areAllOverTwo) //if all the nubmers are over 2 then there is only one possable combination 3456676546 has only one combination.
{
permsOfNumber.push_back(number);
//TODO: write function to print out the permetions
return 1;
}
do
{
//TODO find all the peremtions here
} while (forLoop);
return totalPerms;
}
Assuming you either don't have zeros, or you disallow numbers with leading zeros), the recurrence relations are:
N(1aS) = N(S) + N(aS)
N(2aS) = N(S) + N(aS) if a < 6.
N(a) = 1
N(aS) = N(S) otherwise
Here, a refers to a single digit, and S to a number. The first line of the recurrence relation says that if your string starts with a 1, then you can either have it on its own, or join it with the next digit. The second line says that if you start with a 2 you can either have it on its own, or join it with the next digit assuming that gives a number less than 26. The third line is the termination condition: when you're down to 1 digit, the result is 1. The final line says if you haven't been able to match one of the previous rules, then the first digit can't be joined to the second, so it must stand on its own.
The recurrence relations can be implemented fairly directly as an iterative dynamic programming solution. Here's code in Python, but it's easy to translate into other languages.
def N(S):
a1, a2 = 1, 1
for i in xrange(len(S) - 2, -1, -1):
if S[i] == '1' or S[i] == '2' and S[i+1] < '6':
a1, a2 = a1 + a2, a1
else:
a1, a2 = a1, a1
return a1
print N('88888888')
print N('12345678')
Output:
1
3
An interesting observation is that N('1' * n) is the n+1'st fibonacci number:
for i in xrange(1, 20):
print i, N('1' * i)
Output:
1 1
2 2
3 3
4 5
5 8
6 13
7 21
8 34
9 55
If I understand correctly, there are only 25 possibilities. My first crack at this would be to initialize an array of 25 ints all to zero and when I find a number less than 25, set that index to 1. Then I would count up all the 1's in the array when I was finished looking at the string.
What do you mean by recurrence? If you're looking for a recursive function, you would need to find a good way to break the string of numbers down recursively. I'm not sure that's the best approach here. I would just go through digit by digit and as you said if the digit is 2 or less, then store it and test appending the next digit... i.e. 10*digit + next. I hope that helped! Good luck.
Another way to think about it is that, after the initial single digit possibility, for every sequence of contiguous possible pairs of digits (e.g., 111 or 12223) of length n we multiply the result by:
1 + sum, i=1 to floor (n/2), of (n-i) choose i
For example, with a sequence of 11111, we can have
i=1, 1 1 1 11 => 5 - 1 = 4 choose 1 (possibilities with one pair)
i=2, 1 11 11 => 5 - 2 = 3 choose 2 (possibilities with two pairs)
This seems directly related to Wikipedia's description of Fibonacci numbers' "Use in Mathematics," for example, in counting "the number of compositions of 1s and 2s that sum to a given total n" (http://en.wikipedia.org/wiki/Fibonacci_number).
Using the combinatorial method (or other fast Fibonacci's) could be suitable for strings with very long sequences.

Max number ways to jump to the last element

I had a question from a contest and would like to know the solution.
Question is about finding max number of unique ways to jump to last element. I am thinking about a solution with dynamic programming but couldnt figure it out.
You can jump max 3 steps in any position. Number of steps will be given as n, and our program should calculate Max number of jumps to reach n+1 position.
For example:
n=4, max number of jumps to n+1 position should be 7
Jump1: 1 2 1
Jump2: 1 1 2
Jump3: 2 1 1
Jump4: 1 3
Jump5: 3 1
Jump6: 2 2
Jump7: 1 1 1 1
Thank you
The longest journey, says the proverb, starts with a single step.
In this case, there are three possible first steps in the journey to the end: a hop of 1, 2 or 3 spots. In each case, the journey will continue from a closer point, either 1, 2 or 3 steps closer to the end. So if we know the number of possible paths from the closer points, we can simply add them up:
paths(n) = paths(n-1) // First hop was one, n-1 elements left
+ paths(n-2) // First hop was two, n-2 elements left
+ paths(n-3) // First hop was three, n-3 elements left.
The similarity to the Fibonacci recursion is not coincidental. This sequence is often called the "Tribonacci sequence", and you can easily look that up in the usual places (mathworld, wikipedia, oeis, etc.) to find a variety of computation techniques, including the one below.
Clearly, you can compute the Tribonacci function in O(n) by starting at the end and working backwards (defining f(0) = 1, f(-1) = 0, f(-2) = 0 to provide a starting position.) But it's easy to do better than that, using the same technique that can be used to compute Fibonacci numbers in O(log n) operations.
Here's the Fibonacci algorithm. We start with the observation that the matrix product:
| 1 1 |
[ a b ] x | | = [ a+b a ]
| 1 0 |
Let's use F(n) for the nth Fibonacci number, and call matrix of 1s and 0s above MF. We can see that
[ F(n) F(n-1) ] = [ 1 0 ] × MF × MF × … × MF
n products
But since matrix multiplication is associative, we can rewrite that as:
[ F(n) F(n-1) ] = [ 1 0 ] × MFn
Again, since matrix multiplication is associative, we can compute MFn in O(log N) steps. For example, we could use the recursion:
= Mn/2 × Mn/2 if n is even
Mn
= M × M(n-1)/2 × M(n-1)/2 if n is odd
Similarly, for the Tribonacci numbers T(n), we can define the matrix MT:
| 1 1 0 |
MT = | 1 0 1 |
| 1 0 0 |
and by the same logic as above:
[ T(n) T(n-1) T(n-2) ] = [ 1 0 0 ] × MTn
Do you know number of ways for n = 0, n = 1 and n = 2?
For any larger value N, number of ways = number of ways for N - 1 + number of ways for N - 2 + number of ways for N - 3
You should not calculate the number of ways for given n more than 1 time. (Remember it in a dp array)
The important function is going to be (number_of_elements)!/product((number_repeated_characters)!)
For instance, if you know 2211 is one of your paths, then 4!/2!*2! = 6 so there are 6 path combinations for 2 "2"s and 2 "1"s.
Since you're only going up to a maximum of 3 steps, it's really not too bad once you know that formula. Really you're just looking for the combinations of 2s and 3s that can replace the 1s in your input. I suggest starting with 1 3 and then going through each 2 that fills in the remainder. Then repeat for 2 3s and so on. If you precompute and save all the factorials, it should run very fast, although I'm sure there are additional optimizations.

Permutations with some fixed numbers

How to effectively generate permutations of a number (or chars in word), if i need some char/digit on specified place?
e.g. Generate all numbers with digit 3 at second place from the beginning and digit 1 at second place from the end of the number. Each digit in number has to be unique and you can choose only from digits 1-5.
4 3 2 1 5
4 3 5 1 2
2 3 4 1 5
2 3 5 1 4
5 3 2 1 4
5 3 4 1 2
I know there's a next_permutation function, so i can prepare an array with numbers {4, 2, 5} and post this in cycle to this function, but how to handle the fixed positions?
Generate all permutations of 2 4 5 and insert 3 and 1 in your output routine. Just remember the positions were they have to be:
int perm[3] = {2, 4, 5};
const int N = sizeof(perm) / sizeof(int);
std::map<int,int> fixed; // note: zero-indexed
fixed[1] = 3;
fixed[3] = 1;
do {
for (int i=0, j=0; i<5; i++)
if (fixed.find(i) != fixed.end())
std::cout << " " << fixed[i];
else
std::cout << " " << perm[j++];
std::cout << std::endl;
} while (std::next_permutation(perm, perm + N));
outputs
2 3 4 1 5
2 3 5 1 4
4 3 2 1 5
4 3 5 1 2
5 3 2 1 4
5 3 4 1 2
I've read the other answers and I believe they are better than mine for your specific problem. However I'm answering in case someone needs a generalized solution to your problem.
I recently needed to generate all permutations of the 3 separate continuous ranges [first1, last1) + [first2, last2) + [first3, last3). This corresponds to your case with all three ranges being of length 1 and separated by only 1 element. In my case the only restriction is that distance(first3, last3) >= distance(first1, last1) + distance(first2, last2) (which I'm sure could be relaxed with more computational expense).
My application was to generate each unique permutation but not its reverse. The code is here:
http://howardhinnant.github.io/combinations.html
And the specific applicable function is combine_discontinuous3 (which creates combinations), and its use in reversible_permutation::operator() which creates the permutations.
This isn't a ready-made packaged solution to your problem. But it is a tool set that could be used to solve generalizations of your problem. Again, for your exact simple problem, I recommend the simpler solutions others have already offered.
Remember at which places you want your fixed numbers. Remove them from the array.
Generate permutations as usual. After every permutation, insert your fixed numbers to the spots where they should appear, and output.
If you have a set of digits {4,3,2,1,5} and you know that 3 and 1 will not be permutated, then you can take them out of the set and just generate a powerset for {4, 2, 5}. All you have to do after that is just insert 1 and 3 in their respective positions for each set in the power set.
I posted a similar question and in there you can see the code for a powerset.