How to convert -1x10^200 to IEEE 754 double precision - c++

So like above, I want to find the IEEE 754 representation of -1x10^200.
I know we can get the sign be to be 1, as we have a negative number. However I am unsure of how to find the mantissa/exponent. My initial idea was to convert 10^200 to 2^x. However x is not a whole number. So I figure we need to get a fraction somehow by separating the 10^200 somehow. Theoretically one could use very long devision, but I am looking for a more elegant answer that can be done without a high precision calculator.

−10200 cannot be represented in IEEE-754 basic 64-bit binary format. The closest number that can be represented is -99999999999999996973312221251036165947450327545502362648241750950346848435554075534196338404706251868027512415973882408182135734368278484639385041047239877871023591066789981811181813306167128854888448.
The encoding of this in the 64-bit format is 0xe974e718d7d7625a. It has a sign of − (encoded as 1 in bit 63), an exponent of 664 (encoded as 1687 or 0x697 in bits 62 to 52), and a significand of 0x1.4e718d7d7625a (encoded as 0x4e718d7d7625a in bits 51 to 0).
Given that the exponent is 664, you can find the significand by dividing 10200 by 2664, writing the result in binary, and rounding after 52 bits after the radix point. Alternately, after dividing by 2664, multiply by 252 and round to an integer.

Related

fibonacci series Precision [duplicate]

From what I have read, a value of data type double has an approximate precision of 15 decimal places. However, when I use a number whose decimal representation repeats, such as 1.0/7.0, I find that the variable holds the value of 0.14285714285714285 - which is 17 places (via the debugger).
I would like to know why it is represented as 17 places internally, and why a precision of 15 is always written at ~15?
An IEEE double has 53 significant bits (that's the value of DBL_MANT_DIG in <cfloat>). That's approximately 15.95 decimal digits (log10(253)); the implementation sets DBL_DIG to 15, not 16, because it has to round down. So you have nearly an extra decimal digit of precision (beyond what's implied by DBL_DIG==15) because of that.
The nextafter() function computes the nearest representable number to a given number; it can be used to show just how precise a given number is.
This program:
#include <cstdio>
#include <cfloat>
#include <cmath>
int main() {
double x = 1.0/7.0;
printf("FLT_RADIX = %d\n", FLT_RADIX);
printf("DBL_DIG = %d\n", DBL_DIG);
printf("DBL_MANT_DIG = %d\n", DBL_MANT_DIG);
printf("%.17g\n%.17g\n%.17g\n", nextafter(x, 0.0), x, nextafter(x, 1.0));
}
gives me this output on my system:
FLT_RADIX = 2
DBL_DIG = 15
DBL_MANT_DIG = 53
0.14285714285714282
0.14285714285714285
0.14285714285714288
(You can replace %.17g by, say, %.64g to see more digits, none of which are significant.)
As you can see, the last displayed decimal digit changes by 3 with each consecutive value. The fact that the last displayed digit of 1.0/7.0 (5) happens to match the mathematical value is largely coincidental; it was a lucky guess. And the correct rounded digit is 6, not 5. Replacing 1.0/7.0 by 1.0/3.0 gives this output:
FLT_RADIX = 2
DBL_DIG = 15
DBL_MANT_DIG = 53
0.33333333333333326
0.33333333333333331
0.33333333333333337
which shows about 16 decimal digits of precision, as you'd expect.
It is actually 53 binary places, which translates to 15 stable decimal places, meaning that if you round a start out with a number with 15 decimal places, convert it to a double, and then round the double back to 15 decimal places you'll get the same number. To uniquely represent a double you need 17 decimal places (meaning that for every number with 17 decimal places, there's a unique closest double) which is why 17 places are showing up, but not all 17-decimal numbers map to different double values (like in the examples in the other answers).
Decimal representation of floating point numbers is kind of strange. If you have a number with 15 decimal places and convert that to a double, then print it out with exactly 15 decimal places, you should get the same number. On the other hand, if you print out an arbitrary double with 15 decimal places and the convert it back to a double, you won't necessarily get the same value back—you need 17 decimal places for that. And neither 15 nor 17 decimal places are enough to accurately display the exact decimal equivalent of an arbitrary double. In general, you need over 100 decimal places to do that precisely.
See the Wikipedia page for double-precision and this article on floating-point precision.
A double holds 53 binary digits accurately, which is ~15.9545898 decimal digits. The debugger can show as many digits as it pleases to be more accurate to the binary value. Or it might take fewer digits and binary, such as 0.1 takes 1 digit in base 10, but infinite in base 2.
This is odd, so I'll show an extreme example. If we make a super simple floating point value that holds only 3 binary digits of accuracy, and no mantissa or sign (so range is 0-0.875), our options are:
binary - decimal
000 - 0.000
001 - 0.125
010 - 0.250
011 - 0.375
100 - 0.500
101 - 0.625
110 - 0.750
111 - 0.875
But if you do the numbers, this format is only accurate to 0.903089987 decimal digits. Not even 1 digit is accurate. As is easy to see, since there's no value that begins with 0.4?? nor 0.9??, and yet to display the full accuracy, we require 3 decimal digits.
tl;dr: The debugger shows you the value of the floating point variable to some arbitrary precision (19 digits in your case), which doesn't necessarily correlate with the accuracy of the floating point format (17 digits in your case).
IEEE 754 floating point is done in binary. There's no exact conversion from a given number of bits to a given number of decimal digits. 3 bits can hold values from 0 to 7, and 4 bits can hold values from 0 to 15. A value from 0 to 9 takes roughly 3.5 bits, but that's not exact either.
An IEEE 754 double precision number occupies 64 bits. Of this, 52 bits are dedicated to the significand (the rest is a sign bit and exponent). Since the significand is (usually) normalized, there's an implied 53rd bit.
Now, given 53 bits and roughly 3.5 bits per digit, simple division gives us 15.1429 digits of precision. But remember, that 3.5 bits per decimal digit is only an approximation, not a perfectly accurate answer.
Many (most?) debuggers actually look at the contents of the entire register. On an x86, that's actually an 80-bit number. The x86 floating point unit will normally be adjusted to carry out calculations to 64-bit precision -- but internally, it actually uses a couple of "guard bits", which basically means internally it does the calculation with a few extra bits of precision so it can round the last one correctly. When the debugger looks at the whole register, it'll usually find at least one extra digit that's reasonably accurate -- though since that digit won't have any guard bits, it may not be rounded correctly.
It is because it's being converted from a binary representation. Just because it has printed all those decimal digits doesn't mean it can represent all decimal values to that precision. Take, for example, this in Python:
>>> 0.14285714285714285
0.14285714285714285
>>> 0.14285714285714286
0.14285714285714285
Notice how I changed the last digit, but it printed out the same number anyway.
In most contexts where double values are used, calculations will have a certain amount of uncertainty. The difference between 1.33333333333333300 and 1.33333333333333399 may be less than the amount of uncertainty that exists in the calculations. Displaying the value of "2/3 + 2/3" as "1.33333333333333" is apt to be more meaningful than displaying it as "1.33333333333333319", since the latter display implies a level of precision that doesn't really exist.
In the debugger, however, it is important to uniquely indicate the value held by a variable, including essentially-meaningless bits of precision. It would be very confusing if a debugger displayed two variables as holding the value "1.333333333333333" when one of them actually held 1.33333333333333319 and the other held 1.33333333333333294 (meaning that, while they looked the same, they weren't equal). The extra precision shown by the debugger isn't apt to represent a numerically-correct calculation result, but indicates how the code will interpret the values held by the variables.

Is there any faster and accurate atof? [duplicate]

Why do some numbers lose accuracy when stored as floating point numbers?
For example, the decimal number 9.2 can be expressed exactly as a ratio of two decimal integers (92/10), both of which can be expressed exactly in binary (0b1011100/0b1010). However, the same ratio stored as a floating point number is never exactly equal to 9.2:
32-bit "single precision" float: 9.19999980926513671875
64-bit "double precision" float: 9.199999999999999289457264239899814128875732421875
How can such an apparently simple number be "too big" to express in 64 bits of memory?
In most programming languages, floating point numbers are represented a lot like scientific notation: with an exponent and a mantissa (also called the significand). A very simple number, say 9.2, is actually this fraction:
5179139571476070 * 2 -49
Where the exponent is -49 and the mantissa is 5179139571476070. The reason it is impossible to represent some decimal numbers this way is that both the exponent and the mantissa must be integers. In other words, all floats must be an integer multiplied by an integer power of 2.
9.2 may be simply 92/10, but 10 cannot be expressed as 2n if n is limited to integer values.
Seeing the Data
First, a few functions to see the components that make a 32- and 64-bit float. Gloss over these if you only care about the output (example in Python):
def float_to_bin_parts(number, bits=64):
if bits == 32: # single precision
int_pack = 'I'
float_pack = 'f'
exponent_bits = 8
mantissa_bits = 23
exponent_bias = 127
elif bits == 64: # double precision. all python floats are this
int_pack = 'Q'
float_pack = 'd'
exponent_bits = 11
mantissa_bits = 52
exponent_bias = 1023
else:
raise ValueError, 'bits argument must be 32 or 64'
bin_iter = iter(bin(struct.unpack(int_pack, struct.pack(float_pack, number))[0])[2:].rjust(bits, '0'))
return [''.join(islice(bin_iter, x)) for x in (1, exponent_bits, mantissa_bits)]
There's a lot of complexity behind that function, and it'd be quite the tangent to explain, but if you're interested, the important resource for our purposes is the struct module.
Python's float is a 64-bit, double-precision number. In other languages such as C, C++, Java and C#, double-precision has a separate type double, which is often implemented as 64 bits.
When we call that function with our example, 9.2, here's what we get:
>>> float_to_bin_parts(9.2)
['0', '10000000010', '0010011001100110011001100110011001100110011001100110']
Interpreting the Data
You'll see I've split the return value into three components. These components are:
Sign
Exponent
Mantissa (also called Significand, or Fraction)
Sign
The sign is stored in the first component as a single bit. It's easy to explain: 0 means the float is a positive number; 1 means it's negative. Because 9.2 is positive, our sign value is 0.
Exponent
The exponent is stored in the middle component as 11 bits. In our case, 0b10000000010. In decimal, that represents the value 1026. A quirk of this component is that you must subtract a number equal to 2(# of bits) - 1 - 1 to get the true exponent; in our case, that means subtracting 0b1111111111 (decimal number 1023) to get the true exponent, 0b00000000011 (decimal number 3).
Mantissa
The mantissa is stored in the third component as 52 bits. However, there's a quirk to this component as well. To understand this quirk, consider a number in scientific notation, like this:
6.0221413x1023
The mantissa would be the 6.0221413. Recall that the mantissa in scientific notation always begins with a single non-zero digit. The same holds true for binary, except that binary only has two digits: 0 and 1. So the binary mantissa always starts with 1! When a float is stored, the 1 at the front of the binary mantissa is omitted to save space; we have to place it back at the front of our third element to get the true mantissa:
1.0010011001100110011001100110011001100110011001100110
This involves more than just a simple addition, because the bits stored in our third component actually represent the fractional part of the mantissa, to the right of the radix point.
When dealing with decimal numbers, we "move the decimal point" by multiplying or dividing by powers of 10. In binary, we can do the same thing by multiplying or dividing by powers of 2. Since our third element has 52 bits, we divide it by 252 to move it 52 places to the right:
0.0010011001100110011001100110011001100110011001100110
In decimal notation, that's the same as dividing 675539944105574 by 4503599627370496 to get 0.1499999999999999. (This is one example of a ratio that can be expressed exactly in binary, but only approximately in decimal; for more detail, see: 675539944105574 / 4503599627370496.)
Now that we've transformed the third component into a fractional number, adding 1 gives the true mantissa.
Recapping the Components
Sign (first component): 0 for positive, 1 for negative
Exponent (middle component): Subtract 2(# of bits) - 1 - 1 to get the true exponent
Mantissa (last component): Divide by 2(# of bits) and add 1 to get the true mantissa
Calculating the Number
Putting all three parts together, we're given this binary number:
1.0010011001100110011001100110011001100110011001100110 x 1011
Which we can then convert from binary to decimal:
1.1499999999999999 x 23 (inexact!)
And multiply to reveal the final representation of the number we started with (9.2) after being stored as a floating point value:
9.1999999999999993
Representing as a Fraction
9.2
Now that we've built the number, it's possible to reconstruct it into a simple fraction:
1.0010011001100110011001100110011001100110011001100110 x 1011
Shift mantissa to a whole number:
10010011001100110011001100110011001100110011001100110 x 1011-110100
Convert to decimal:
5179139571476070 x 23-52
Subtract the exponent:
5179139571476070 x 2-49
Turn negative exponent into division:
5179139571476070 / 249
Multiply exponent:
5179139571476070 / 562949953421312
Which equals:
9.1999999999999993
9.5
>>> float_to_bin_parts(9.5)
['0', '10000000010', '0011000000000000000000000000000000000000000000000000']
Already you can see the mantissa is only 4 digits followed by a whole lot of zeroes. But let's go through the paces.
Assemble the binary scientific notation:
1.0011 x 1011
Shift the decimal point:
10011 x 1011-100
Subtract the exponent:
10011 x 10-1
Binary to decimal:
19 x 2-1
Negative exponent to division:
19 / 21
Multiply exponent:
19 / 2
Equals:
9.5
Further reading
The Floating-Point Guide: What Every Programmer Should Know About Floating-Point Arithmetic, or, Why don’t my numbers add up? (floating-point-gui.de)
What Every Computer Scientist Should Know About Floating-Point Arithmetic (Goldberg 1991)
IEEE Double-precision floating-point format (Wikipedia)
Floating Point Arithmetic: Issues and Limitations (docs.python.org)
Floating Point Binary
This isn't a full answer (mhlester already covered a lot of good ground I won't duplicate), but I would like to stress how much the representation of a number depends on the base you are working in.
Consider the fraction 2/3
In good-ol' base 10, we typically write it out as something like
0.666...
0.666
0.667
When we look at those representations, we tend to associate each of them with the fraction 2/3, even though only the first representation is mathematically equal to the fraction. The second and third representations/approximations have an error on the order of 0.001, which is actually much worse than the error between 9.2 and 9.1999999999999993. In fact, the second representation isn't even rounded correctly! Nevertheless, we don't have a problem with 0.666 as an approximation of the number 2/3, so we shouldn't really have a problem with how 9.2 is approximated in most programs. (Yes, in some programs it matters.)
Number bases
So here's where number bases are crucial. If we were trying to represent 2/3 in base 3, then
(2/3)10 = 0.23
In other words, we have an exact, finite representation for the same number by switching bases! The take-away is that even though you can convert any number to any base, all rational numbers have exact finite representations in some bases but not in others.
To drive this point home, let's look at 1/2. It might surprise you that even though this perfectly simple number has an exact representation in base 10 and 2, it requires a repeating representation in base 3.
(1/2)10 = 0.510 = 0.12 = 0.1111...3
Why are floating point numbers inaccurate?
Because often-times, they are approximating rationals that cannot be represented finitely in base 2 (the digits repeat), and in general they are approximating real (possibly irrational) numbers which may not be representable in finitely many digits in any base.
While all of the other answers are good there is still one thing missing:
It is impossible to represent irrational numbers (e.g. π, sqrt(2), log(3), etc.) precisely!
And that actually is why they are called irrational. No amount of bit storage in the world would be enough to hold even one of them. Only symbolic arithmetic is able to preserve their precision.
Although if you would limit your math needs to rational numbers only the problem of precision becomes manageable. You would need to store a pair of (possibly very big) integers a and b to hold the number represented by the fraction a/b. All your arithmetic would have to be done on fractions just like in highschool math (e.g. a/b * c/d = ac/bd).
But of course you would still run into the same kind of trouble when pi, sqrt, log, sin, etc. are involved.
TL;DR
For hardware accelerated arithmetic only a limited amount of rational numbers can be represented. Every not-representable number is approximated. Some numbers (i.e. irrational) can never be represented no matter the system.
There are infinitely many real numbers (so many that you can't enumerate them), and there are infinitely many rational numbers (it is possible to enumerate them).
The floating-point representation is a finite one (like anything in a computer) so unavoidably many many many numbers are impossible to represent. In particular, 64 bits only allow you to distinguish among only 18,446,744,073,709,551,616 different values (which is nothing compared to infinity). With the standard convention, 9.2 is not one of them. Those that can are of the form m.2^e for some integers m and e.
You might come up with a different numeration system, 10 based for instance, where 9.2 would have an exact representation. But other numbers, say 1/3, would still be impossible to represent.
Also note that double-precision floating-points numbers are extremely accurate. They can represent any number in a very wide range with as much as 15 exact digits. For daily life computations, 4 or 5 digits are more than enough. You will never really need those 15, unless you want to count every millisecond of your lifetime.
Why can we not represent 9.2 in binary floating point?
Floating point numbers are (simplifying slightly) a positional numbering system with a restricted number of digits and a movable radix point.
A fraction can only be expressed exactly using a finite number of digits in a positional numbering system if the prime factors of the denominator (when the fraction is expressed in it's lowest terms) are factors of the base.
The prime factors of 10 are 5 and 2, so in base 10 we can represent any fraction of the form a/(2b5c).
On the other hand the only prime factor of 2 is 2, so in base 2 we can only represent fractions of the form a/(2b)
Why do computers use this representation?
Because it's a simple format to work with and it is sufficiently accurate for most purposes. Basically the same reason scientists use "scientific notation" and round their results to a reasonable number of digits at each step.
It would certainly be possible to define a fraction format, with (for example) a 32-bit numerator and a 32-bit denominator. It would be able to represent numbers that IEEE double precision floating point could not, but equally there would be many numbers that can be represented in double precision floating point that could not be represented in such a fixed-size fraction format.
However the big problem is that such a format is a pain to do calculations on. For two reasons.
If you want to have exactly one representation of each number then after each calculation you need to reduce the fraction to it's lowest terms. That means that for every operation you basically need to do a greatest common divisor calculation.
If after your calculation you end up with an unrepresentable result because the numerator or denominator you need to find the closest representable result. This is non-trivil.
Some Languages do offer fraction types, but usually they do it in combination with arbitary precision, this avoids needing to worry about approximating fractions but it creates it's own problem, when a number passes through a large number of calculation steps the size of the denominator and hence the storage needed for the fraction can explode.
Some languages also offer decimal floating point types, these are mainly used in scenarios where it is imporant that the results the computer gets match pre-existing rounding rules that were written with humans in mind (chiefly financial calculations). These are slightly more difficult to work with than binary floating point, but the biggest problem is that most computers don't offer hardware support for them.

Where's the 24th fraction bit on a single precision float? IEEE 754

I found myself today doing some bit manipulation and I decided to refresh my floating-point knowledge a little!
Things were going great until I saw this:
... 23 fraction bits of the significand appear in the memory format but the total precision is 24 bits
I read it again and again but I still can't figure out where the 24th bit is, I noticed something about a binary point so I assumed that it's a point in the middle between the mantissa and the exponent.
I'm not really sure but I believe he author was talking about this bit:
Binary point?
|
s------e-----|-------------m----------
0 - 01111100 - 01000000000000000000000
^ this
The 24th bit is implicit due to normalization.
The significand is shifted left (and one subtracted from the exponent for each bit shift) until the leading bit of the significand is a 1.
Then, since the leading bit is a 1, only the other 23 bits are actually stored.
There is also the possibility of a denormal number. The exponent is stored as a "bias" format signed number, meaning that it's an unsigned number where the middle of the range is defined to mean 01. So, with 8 bits, it's stored as a number from 0..255, but 0 is interpreted to mean -128, 128 is interpreted to mean 0, and 255 is interpreted as 127 (I may have a fencepost error there, but you get the idea).
If, in the process of normalization, this is decremented to 0 (meaning an actual exponent value of -128), then normalization stops, and the significand is stored as-is. In this case, the implicit bit from normalization it taken to be a 0 instead of a 1.
Most floating point hardware is designed to basically assume numbers will be normalized, so they assume that implicit bit is a 1. During the computation, they check for the possibility of a denormal number, and in that case they do roughly the equivalent of throwing an exception, and re-start the calculation with that taken into account. This is why computation with denormals often gets drastically slower than otherwise.
In case you wonder why it uses this strange format: IEEE floating point (like many others) is designed to ensure that if you treat its bit pattern as an integer of the same size, you can compare them as signed, 2's complement integers and they'll still sort into the correct order as floating point numbers. Since the sign of the number is in the most significant bit (where it is for a 2's complement integer) that's treated as the sign bit. The bits of the exponent are stored as the next most significant bits -- but if we used 2's complement for them, an exponent less than 0 would set the second most significant bit of the number, which would result in what looked like a big number as an integer. By using bias format, a smaller exponent leaves that bit clear, and a larger exponent sets it, so the order as an integer reflects the order as a floating point.
Normally (pardon the pun), the leading bit of a floating point number is always 1; thus, it doesn't need to be stored anywhere. The reason is that, if it weren't 1, that would mean you had chosen the wrong exponent to represent it; you could get more precision by shifting the mantissa bits left and using a smaller exponent.
The one exception is denormal/subnormal numbers, which are represented by all zero bits in the exponent field (the lowest possible exponent). In this case, there is no implicit leading 1 in the mantissa, and you have diminishing precision as the value approaches zero.
For normal floating point numbers, the number stored in the floating point variable is (ignoring sign) 1. mantissa * 2exponent-offset. The leading 1 is not stored in the variable.

Range of representable values of 32-bit, 64-bit and 80-bit float IEEE-754?

In the C++ standard it says of floating literals:
If the scaled value is not in the range of representable values for its type, the program is ill-formed.
The scaled value is the significant part multiplied by 10 ^ exponent part.
Under x86-64:
float is a single-precision IEEE-754
double is a double-precision IEEE-754
long double is an 80-bit extended precision IEEE-754
In this context, what is the range of repsentable values for each of these three types? Where is this documented? or how is it calculated?
If you know the number of exponent bits and mantissa bits, then based on the IEEE-754 format, one can establish that the maximum absolute representable value is:
2^(2^(E-1)-1)) * (1 + (2^M-1)/2^M)
The minimum absolute value (not including zero or denormals) is:
2^(2-2^(E-1))
For single-precision, E is 8, M is 23.
For double-precision, E is 11, M is 52.
For extended-precision, I'm not sure. If you're referring to the 80-bit precision of the x87 FPU, then so far as I can tell, it's not's IEEE-754 compliant...
The answer (if you're on a machine with IEEE floating point) is
in float.h. FLT_MAX, DBL_MAX and LDBL_MAX. On a system
with full IEEE support, something around 3.4e+38, 1.8E+308 and
1.2E4932. (The exact values may vary, and may be expressed
differently, depending on how the compiler does its input and
rounding. g++, for example, defines them to be compiler
built-ins.)
EDIT:
WRT your question (since neither I nor the other responders
actually answered it): the range of representable values is
[-type_MAX...type], where
type is one of FLT, DBL, or LDBL.
I was looking for largest representable number by 64 bits and ending up making my own 500 digit floating point calculator. This is what I come up with if all 64 bits are turned on
18,446,744,073,709,551,615
18 quintillion 446 quadrillion 744 trillion 73 billion 709 million 551 thousand 615

Long Integer and Float

If a Long Integer and a float both take 4 bytes to store in memory then why are their ranges different?
Integers are stored like this:
1 bit for the sign (+/-)
31 bits for the value.
Floats are stored differently, giving greater range at the expense of accuracy:
1 bit for the sign (+/-)
N bits for the mantissa S
M bits for the exponent E
Float is represented in the exponential form: (+/-)S*(base)^E
BTW, "long" isn't always 32 bits. See this article.
Different way to encode your numbers.
Long counts up from 1 to 2^(4*8).
Float uses only 23 of the 32 bits for the "counting". But it adds "range" with an exponent in the other bits. So you have bigger numbers, but they are less accurate (in the lower based parts):
1.2424 * 10^54 (mantisse * exponent) is certainly bigger than 2^32. But you can discern a long 2^31 from a long 2^31-1 whereas you can't discern a float 1.24 * 10^54 and a float 1.24 * 10^54 - 1: the 1 just is lost in this representation as float.
They are not always the same size. But even when they are, their ranges are different because they serve different purposes. One is for integers with no decimal places, and one is for decimals.
This can be explained in terms of why a floating point representation can represent a larger range of numbers than a fixed point representation. This text from the Wikipedia entry:
The advantage of floating-point
representation over fixed-point (and
integer) representation is that it can
support a much wider range of values.
For example, a fixed-point
representation that has seven decimal
digits, with the decimal point assumed
to be positioned after the fifth
digit, can represent the numbers
12345.67, 8765.43, 123.00, and so on, whereas a floating-point
representation (such as the IEEE 754
decimal32 format) with seven decimal
digits could in addition represent
1.234567, 123456.7, 0.00001234567, 1234567000000000, and so on. The
floating-point format needs slightly
more storage (to encode the position
of the radix point), so when stored in
the same space, floating-point numbers
achieve their greater range at the
expense of precision.
Indeed a float takes 4 bytes (32bits), but since it's a float you have to store different things in these 32 bits:
1 bit is used for the sign (+/-)
8 bits are used for the exponent
23 bits are used for the significand (the significant digits)
You can see that the range of a float directly depends on the number of bits allocated to the significand, and the min/max values depend on the numbre of bits allocated for the exponent.
With the upper example:
8 bits for the exponent (= size of a char) gives an exponent range [-128,127]
--> max is about 127*log10(2) = 10^38
Regarding a long integer, you've got 1 bit used for the sign and then 31 bits to represent the integer value leading to a max of 2 147 483 647.
You can have a look at Wikipedia for more precise info:
Wikipedia - Floating point
Their ranges are different because they use different ways of representing numbers.
long (in c) is equivalent to long int. The size of this type varies between processors and compilers, but is often, as you say, 32 bits. At 32 bits, it can represent 232 different values. Since we often want to use negative numbers, computers normally represent integers using a format called "two's complement". This way, we can represent numbers from (-231) and up to (231-1). Counting the number 0, this adds up to 232 numbers.
float (in c) is usually a single presicion IEEE 754 formatted number. At 32 bits, this data type can also take 232 different bit patterns, but they are not used to directly represent whole numbers, like in the long. Instead, they represent a sign, and the mantisse and exponent of a normalized decimal number.
In general: when you have more range of values (float has up to 10^many), you have less precision.
This is what happens here. If you need integers, 32-bit long will give you more.
In a handwavey high level, floating point sacrefices integer precision to extend its range. This is done by combining a base value with a scaling factor. For large values, a float will not be able to precisely represent all integers but for small values it will represent better than integer precision.
No, the size of primitive data types in C is Implementation Defined.
This wiki entry clearly states: The floating-point format needs slightly more storage (to encode the position of the radix point), so when stored in the same space, floating-point numbers achieve their greater range at the expense of precision.