How to render a circular vignette with GLSL - glsl

I’m trying to achieve a circular vignette with GLSL, but the result is elliptical when the texture is rectangular. What is the correct way to make it square regardless of the texture size? The input texture size (resolution) can be both rectangular or square.
I tried a solution using the discard method, but this doesn't suit what I require, as I need to use smoothstep to get a gradient edge.
Current result:
GLSL shader:
varying vec2 v_texcoord;
uniform sampler2D u_texture;
uniform vec2 u_resolution;
vec4 applyVignette(vec4 color)
{
vec2 position = (gl_FragCoord.xy / u_resolution) - vec2(0.5);
float dist = length(position);
float radius = 0.5;
float softness = 0.02;
float vignette = smoothstep(radius, radius - softness, dist);
color.rgb = color.rgb - (1.0 - vignette);
return color;
}
void main()
{
vec4 color = texture2D(u_texture, v_texcoord);
color = applyVignette(color);
gl_FragColor = color;
}

You have to respect the aspect ration when you calculate the distance to the center point of the circular view:
float dist = length(position * vec2(u_resolution.x/u_resolution.y, 1.0));
Note, if you have a rectangular viewport, where the width is greater than the height, then a perfect circle is squeezed at it left and right to an ellipse, when the coordinates are transformed from view space the normalized devices space.
You must counteract this squeezing by scaling up the x axis of the distance vector.

Related

Godot shader swap materials by world position on 3d mesh

I am trying to replicate something similar to this from Unity in Godot Engine with shaders, however, I am not able to find a solution. Calculating the position of the effect is the problem. How can I get the position in Godot, where I don't have access to the worlPos variable used in the video? A full code snippet of the shader would be really appreciated.
Currently, my shader code looks like this. ob_position is the position passed from the node.
shader_type spatial;
uniform vec2 ob_position = vec2(1, 0.68);
uniform float ob_radius = 0.01;
float circle(vec2 position, float radius, float feather)
{
return smoothstep(radius, radius + feather, length(position - vec2(0.5)));
}
void fragment() {
ALBEDO.rgb = vec3(circle(UV * (ob_position), ob_radius, 0.001) );
}
The video says:
Send the sphere position to the shader in script.
We can do that. First define an uniform:
uniform vec3 sphere_position;
And we can set it from code:
material.set_shader_param("sphere_position", global_transform.origin)
Since you need to set this every time the sphere moves, you can use NOTIFICATION_TRANSFORM_CHANGED which you enable by calling set_notify_local_transform(true).
Get the distance between the sphere and World Position.
To do that we need to figure out the world position of the fragment. Let us start by looking at the Fragment Build-ins. We find that:
VERTEX is the position of the fragment in view space.
CAMERA_MATRIX is the transform from view space to world space.
Yes, the naming is confusing.
So we can do this (in fragment):
vec3 pixel_world_pos = (CAMERA_MATRIX * vec4(VERTEX, 1.0)).xyz;
You can use this to debug: ALBEDO.rgb = pixel_world_pos;. In general, output whatever variable you want to visualize for debugging to ALBEDO.
And now the distance is:
float dist = distance(sphere_position, pixel_world_pos);
Control the size by dividing by radius.
While we don't have direct translation for the code in the video… sure, we can divide by radius (dist / radius). Where radius would be a uniform float.
Create a cutoff with Step.
That would be something like this: step(0.5, dist / radius).
Honestly, I would rather do this: step(radius, dist).
Your mileage may vary.
Lerp two different textures over the cutoff.
For that we can use mix. But first, define your textures as uniform sampler2D. Then you can something like this:
float threshold = step(radius, dist);
ALBEDO.rgb = mix(texture(tex1, UV).rgb, texture(tex2, UV).rgb, threshold);
Moving worldspace noise.
Add one more uniform sampler2D and set a NoiseTexture (make sure to set its noise and make seamless to true), and then we can query it with the world coordinates we already have.
float noise_value = texture(noise_texture, pixel_world_pos.xy + vec2(TIME)).r;
Add worldspace to noise.
I'm not sure what they mean. But from the visual, they use the noise to distort the cutoff. I'm not sure if this yields the same result, but it looks good to me:
vec3 pixel_world_pos = (CAMERA_MATRIX * vec4(VERTEX, 1.0)).xyz;
float noise_value = texture(noise_texture, pixel_world_pos.xy + vec2(TIME)).r;
float dist = distance(sphere_position, pixel_world_pos) + noise_value;
float threshold = step(radius, dist);
ALBEDO.rgb = mix(texture(tex1, UV).rgb, texture(tex2, UV).rgb, threshold);
Add a line to Emission (glow).
I don't understand what they did originally, so I came up with my own solution:
EMISSION = vec3(step(dist, edge + radius) * step(radius, dist));
What is going on here is that we will have a white EMISSION when dist < edge + radius and radius < dist. To reiterate, we will have white EMISSION when the distance is greater than the radius (radius < dist) and lesser than the radius plus some edge (dist < edge + radius). The comparisons become step functions, which return 0.0 or 1.0, and the AND operation is a multiplication.
Reveal object by clipping instead of adding a second texture.
I suppose that means there is another version of the shader that either uses discard or ALPHA and it is used for other objects.
This is the shader I wrote to test this:
shader_type spatial;
uniform vec3 sphere_position;
uniform sampler2D noise_texture;
uniform sampler2D tex1;
uniform sampler2D tex2;
uniform float radius;
uniform float edge;
void fragment()
{
vec3 pixel_world_pos = (CAMERA_MATRIX * vec4(VERTEX, 1.0)).xyz;
float noise_value = texture(noise_texture, pixel_world_pos.xy + vec2(TIME)).r;
float dist = distance(sphere_position, pixel_world_pos) + noise_value;
float threshold = step(radius, dist);
ALBEDO.rgb = mix(texture(tex1, UV).rgb, texture(tex2, UV).rgb, threshold);
EMISSION = vec3(step(dist, edge + radius) * step(radius, dist));
}
The answer from Theraot was a lifesaver for me however, I also needed support for multiple positions, using arrays, uniform vec3 sphere_position[];
So I came up with this:
shader_type spatial;
uniform uint ob_position_size;
uniform vec3 sphere_position[2];
uniform sampler2D noise_texture;
uniform sampler2D tex1;
uniform float radius;
uniform float edge;
void fragment()
{
vec3 pixel_world_pos = (INV_VIEW_MATRIX * vec4(VERTEX, 1.0)).xyz;
float noise_value = texture(noise_texture, pixel_world_pos.xy + vec2(TIME)).r;
ALBEDO = texture(SCREEN_TEXTURE, SCREEN_UV).rgb;
for(int i = 0; i < sphere_position.length(); i++) {
float dist = distance(sphere_position[i], pixel_world_pos) + noise_value;
float threshold = step(radius, dist);
ALBEDO.rgb = mix(texture(tex1, UV).rgb, ALBEDO.rgb, threshold);
//EMISSION = vec3(step(dist, edge + radius) * step(radius, dist));
}
}

Resizing window cause my 2D Lighting to stretch

I am trying to implement a simple artificial 2D lighting. I am not using an algorithm like Phong's. However, I am having some difficulty in ensuring that my lighting do not stretch/squeeze whenever the window resize. Any tips and suggestions will be appreciated. I have tried converting my radius into a vec2 so that I can scale them accordingly based on the aspect ratio, however it doesnt work properly. Also, I am aware that my code is not the most efficient, any feedback is also appreciated as I am still learning! :D
I have an orthographic projection matrix transforming the light position so that it will be at the correct spot in the viewport, this fixed the position but not the radius (as I am calculating per fragment). How would I go about transforming the radius based on the aspect ratio?
void LightSystem::Update(const OrthographicCamera& camera)
{
std::vector<LightComponent> lights;
for (auto& entity : m_Entities)
{
auto& light = g_ECSManager.GetComponent<LightComponent>(entity);
auto& trans = g_ECSManager.GetComponent<TransformComponent>(entity);
if (light.lightEnabled)
{
light.pos = trans.Position;
glm::mat4 viewProjMat = camera.GetViewProjectionMatrix();
light.pos = viewProjMat * glm::vec4(light.pos, 1.f);
// Need to store all the light atrributes in an array
lights.emplace_back(light);
}
// Create a function in Render2D.cpp, pass all the arrays as a uniform variable to the shader, call this function here
glm::vec2 res{ camera.GetWidth(), camera.GetHeight() };
Renderer2D::DrawLight(lights, camera, res);
}
}
Here is my shader:
#type fragment
#version 330 core
layout (location = 0) out vec4 color;
#define MAX_LIGHTS 10
uniform struct Light
{
vec4 colour;
vec3 position;
float radius;
float intensity;
} allLights[MAX_LIGHTS];
in vec4 v_Color;
in vec2 v_TexCoord;
in float v_TexIndex;
in float v_TilingFactor;
in vec4 fragmentPosition;
uniform sampler2D u_Textures[32];
uniform vec4 u_ambientColour;
uniform int numLights;
uniform vec2 resolution;
vec4 calculateLight(Light light)
{
float lightDistance = length(distance(fragmentPosition.xy, light.position.xy));
//float ar = resolution.x / resolution.y;
if (lightDistance >= light.radius)
{
return vec4(0, 0, 0, 1); //outside of radius make it black
}
return light.intensity * (1 - lightDistance / light.radius) * light.colour;
}
void main()
{
vec4 texColor = v_Color;
vec4 netLightColour = vec4(0, 0, 0, 1);
if (numLights == 0)
color = texColor;
else
{
for(int i = 0; i < numLights; ++i) //Loop through lights
netLightColour += calculateLight(allLights[i]) + u_ambientColour;
color = texColor * netLightColour;
}
}
You must use an orthographic projection matrix in the vertex shader. Modify the clip space position through the projection matrix.
Alternatively, consider the aspect ratio when calculating the distance to the light:
float aspectRatio = resolution.x/resolution.y;
vec2 pos = fragmentPosition.xy * vec2(aspectRatio, 1.0);
float lightDistance = length(distance(pos.xy, light.position.xy));
I'm going to compile all the answers for my question, as I had done a bad job in asking and everything turned out to be a mess.
As the other answers suggest, first I had to use an orthographic projection matrix to ensure that the light source position was displayed at the correct position in the viewport.
Next, from the way I did my lighting, the projection matrix earlier would not fix the stretch effect as my light wasn't an actual circle object made with actual vertices. I had to turn radius into a vec2 type, representing the radius vectors along x and y axis. This is so that I can then modify the vectors based on the aspect ratio:
if (aspectRatio > 1.0)
light.radius.x /= aspectRatio;
else
light.radius.x /= aspectRatio;
I had posted another question here, to modify my lighting algorithm to support an ellipse shape. This allowed me to then perform the scalings needed to counter the stretching along x/y axis whenever my aspect ratio changed. Thank you all for the answers.

How to handle lightning (ambient, diffuse, specular) for point spheres in openGL

Initial situation
I want to visualize simulation data in openGL.
My data consists of particle positions (x, y, z) where each particle has some properties (like density, temperature, ...) which will be used for coloring. Those (SPH) particles (100k to several millions), grouped together, actually represent planets, in case you wonder. I want to render those particles as small 3D spheres and add ambient, diffuse and specular lighting.
Status quo and questions
In MY case: In which coordinate frame do I do the lightning calculations? Which way is the "best" to pass the various components through the pipeline?
I saw that it is common to do it in view space which is also very intuitive. However: The normals at the different fragment positions are calculated in the fragment shader in clip space coordinates (see appended fragment shader). Can I actually convert them "back" into view space to do the lightning calculations in view space for all the fragments? Would there be any advantage compared to doing it in clip space?
It would be easier to get the normals in view space if I would use meshes for each sphere but I think with several million particles this would decrease performance drastically, so better do it with sphere intersection, would you agree?
PS: I don't need a model matrix since all the particles are already in place.
//VERTEX SHADER
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 2) in float density;
uniform float radius;
uniform vec3 lightPos;
uniform vec3 viewPos;
out vec4 lightDir;
out vec4 viewDir;
out vec4 viewPosition;
out vec4 posClip;
out float vertexColor;
// transformation matrices
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
lightDir = projection * view * vec4(lightPos - position, 1.0f);
viewDir = projection * view * vec4(viewPos - position, 1.0f);
viewPosition = projection * view * vec4(lightPos, 1.0f);
posClip = projection * view * vec4(position, 1.0f);
gl_Position = posClip;
gl_PointSize = radius;
vertexColor = density;
}
I know that projective divion happens for the gl_Position variable, does that actually happen to ALL vec4's which are passed from the vertex to the fragment shader? If not, maybe the calculations in the fragment shader would be wrong?
And the fragment shader where the normals and diffuse/specular lightning calculations in clip space:
//FRAGMENT SHADER
#version 330 core
in float vertexColor;
in vec4 lightDir;
in vec4 viewDir;
in vec4 posClip;
in vec4 viewPosition;
uniform vec3 lightColor;
vec4 colormap(float x); // returns vec4(r, g, b, a)
out vec4 vFragColor;
void main(void)
{
// AMBIENT LIGHT
float ambientStrength = 0.0;
vec3 ambient = ambientStrength * lightColor;
// Normal calculation done in clip space (first from texture (gl_PointCoord 0 to 1) coord to NDC( -1 to 1))
vec3 normal;
normal.xy = gl_PointCoord * 2.0 - vec2(1.0); // transform from 0->1 point primitive coords to NDC -1->1
float mag = dot(normal.xy, normal.xy); // sqrt(x=1) = sqrt(x)
if (mag > 1.0) // discard fragments outside sphere
discard;
normal.z = sqrt(1.0 - mag); // because x^2 + y^2 + z^2 = 1
// DIFFUSE LIGHT
float diff = max(0.0, dot(vec3(lightDir), normal));
vec3 diffuse = diff * lightColor;
// SPECULAR LIGHT
float specularStrength = 0.1;
vec3 viewDir = normalize(vec3(viewPosition) - vec3(posClip));
vec3 reflectDir = reflect(-vec3(lightDir), normal);
float shininess = 64;
float spec = pow(max(dot(vec3(viewDir), vec3(reflectDir)), 0.0), shininess);
vec3 specular = specularStrength * spec * lightColor;
vFragColor = colormap(vertexColor / 8) * vec4(ambient + diffuse + specular, 1);
}
Now this actually "kind of" works but i have the feeling that also the sides of the sphere which do NOT face the light source are being illuminated, which shouldn't happen. How can I fix this?
Some weird effect: In this moment the light source is actually BEHIND the left planet (it just peaks out a little bit at the top left), bit still there are diffuse and specular effects going on. This side should be actually pretty dark! =(
Also at this moment I get some glError: 1282 error in the fragment shader and I don't know where it comes from since the shader program actually compiles and runs, any suggestions? :)
The things that you are drawing aren't actually spheres. They just look like them from afar. This is absolutely ok if you are fine with that. If you need geometrically correct spheres (with correct sizes and with a correct projection), you need to do proper raycasting. This seems to be a comprehensive guide on this topic.
1. What coordinate system?
In the end, it is up to you. The coordinate system just needs to fulfill some requirements. It must be angle-preserving (because lighting is all about angles). And if you need distance-based attenuation, it should also be distance-preserving. The world and the view coordinate systems usually fulfill these requirements. Clip space is not suited for lighting calculations as neither angles nor distances are preserved. Furthermore, gl_PointCoord is in none of the usual coordinate systems. It is its own coordinate system and you should only use it together with other coordinate systems if you know their relation.
2. Meshes or what?
Meshes are absolutely not suited to render spheres. As mentioned above, raycasting or some screen-space approximation are better choices. Here is an example shader that I used in my projects:
#version 330
out vec4 result;
in fData
{
vec4 toPixel; //fragment coordinate in particle coordinates
vec4 cam; //camera position in particle coordinates
vec4 color; //sphere color
float radius; //sphere radius
} frag;
uniform mat4 p; //projection matrix
void main(void)
{
vec3 v = frag.toPixel.xyz - frag.cam.xyz;
vec3 e = frag.cam.xyz;
float ev = dot(e, v);
float vv = dot(v, v);
float ee = dot(e, e);
float rr = frag.radius * frag.radius;
float radicand = ev * ev - vv * (ee - rr);
if(radicand < 0)
discard;
float rt = sqrt(radicand);
float lambda = max(0, (-ev - rt) / vv); //first intersection on the ray
float lambda2 = (-ev + rt) / vv; //second intersection on the ray
if(lambda2 < lambda) //if the first intersection is behind the camera
discard;
vec3 hit = lambda * v; //intersection point
vec3 normal = (frag.cam.xyz + hit) / frag.radius;
vec4 proj = p * vec4(hit, 1); //intersection point in clip space
gl_FragDepth = ((gl_DepthRange.diff * proj.z / proj.w) + gl_DepthRange.near + gl_DepthRange.far) / 2.0;
vec3 vNormalized = -normalize(v);
float nDotL = dot(vNormalized, normal);
vec3 c = frag.color.rgb * nDotL + vec3(0.5, 0.5, 0.5) * pow(nDotL, 120);
result = vec4(c, frag.color.a);
}
3. Perspective division
Perspective division is not applied to your attributes. The GPU does perspective division on the data that you pass via gl_Position on the way to transforming them to screen space. But you will never actually see this perspective-divided position unless you do it yourself.
4. Light in the dark
This might be the result of you mixing different coordinate systems or doing lighting calculations in clip space. Btw, the specular part is usually not multiplied by the material color. This is light that gets reflected directly at the surface. It does not penetrate the surface (which would absorb some colors depending on the material). That's why those highlights are usually white (or whatever light color you have), even on black objects.

OpenGL Computing Normals and TBN Matrix from Depth Buffer (SSAO implementation)

I'm implementing SSAO in OpenGL, following this tutorial: Jhon Chapman SSAO
Basically the technique described uses an Hemispheric kernel which is oriented along the fragment's normal. The view space z position of the sample is then compared to its screen space depth buffer value.
If the value in the depth buffer is higher, it means the sample ended up in a geometry so this fragment should be occluded.
The goal of this technique is to get rid of the classic implementation artifact where objects flat faces are greyed out.
I've have the same implementation with 2 small differencies
I'm not using a Noise texture to rotate my kernel, so I have banding artifacts, that's fine for now
I don't have access to a buffer with Per-pixel normals, so I have to compute my normal and TBN matrix only using the depth buffer.
The algorithm seems to be working fine, I can see the fragments being occluded, BUT I still have my faces greyed out...
IMO it's coming from the way I'm calculating my TBN matrix. The normals look OK but something must be wrong as my kernel doesn't seem to be properly aligned causing samples to end up in the faces.
Screenshots are with a Kernel of 8 samples and a radius of .1. the first is only the result of SSAO pass and the second one is the debug render of the generated normals.
Here is the code for the function that computes the Normal and TBN Matrix
mat3 computeTBNMatrixFromDepth(in sampler2D depthTex, in vec2 uv)
{
// Compute the normal and TBN matrix
float ld = -getLinearDepth(depthTex, uv);
vec3 x = vec3(uv.x, 0., ld);
vec3 y = vec3(0., uv.y, ld);
x = dFdx(x);
y = dFdy(y);
x = normalize(x);
y = normalize(y);
vec3 normal = normalize(cross(x, y));
return mat3(x, y, normal);
}
And the SSAO shader
#include "helper.glsl"
in vec2 vertTexcoord;
uniform sampler2D depthTex;
const int MAX_KERNEL_SIZE = 8;
uniform vec4 gKernel[MAX_KERNEL_SIZE];
// Kernel Radius in view space (meters)
const float KERNEL_RADIUS = .1;
uniform mat4 cameraProjectionMatrix;
uniform mat4 cameraProjectionMatrixInverse;
out vec4 FragColor;
void main()
{
// Get the current depth of the current pixel from the depth buffer (stored in the red channel)
float originDepth = texture(depthTex, vertTexcoord).r;
// Debug linear depth. Depth buffer is in the range [1.0];
float oLinearDepth = getLinearDepth(depthTex, vertTexcoord);
// Compute the view space position of this point from its depth value
vec4 viewport = vec4(0,0,1,1);
vec3 originPosition = getViewSpaceFromWindow(cameraProjectionMatrix, cameraProjectionMatrixInverse, viewport, vertTexcoord, originDepth);
mat3 lookAt = computeTBNMatrixFromDepth(depthTex, vertTexcoord);
vec3 normal = lookAt[2];
float occlusion = 0.;
for (int i=0; i<MAX_KERNEL_SIZE; i++)
{
// We align the Kernel Hemisphere on the fragment normal by multiplying all samples by the TBN
vec3 samplePosition = lookAt * gKernel[i].xyz;
// We want the sample position in View Space and we scale it with the kernel radius
samplePosition = originPosition + samplePosition * KERNEL_RADIUS;
// Now we need to get sample position in screen space
vec4 sampleOffset = vec4(samplePosition.xyz, 1.0);
sampleOffset = cameraProjectionMatrix * sampleOffset;
sampleOffset.xyz /= sampleOffset.w;
// Now to get the depth buffer value at the projected sample position
sampleOffset.xyz = sampleOffset.xyz * 0.5 + 0.5;
// Now can get the linear depth of the sample
float sampleOffsetLinearDepth = -getLinearDepth(depthTex, sampleOffset.xy);
// Now we need to do a range check to make sure that object
// outside of the kernel radius are not taken into account
float rangeCheck = abs(originPosition.z - sampleOffsetLinearDepth) < KERNEL_RADIUS ? 1.0 : 0.0;
// If the fragment depth is in front so it's occluding
occlusion += (sampleOffsetLinearDepth >= samplePosition.z ? 1.0 : 0.0) * rangeCheck;
}
occlusion = 1.0 - (occlusion / MAX_KERNEL_SIZE);
FragColor = vec4(vec3(occlusion), 1.0);
}
Update 1
This variation of the TBN calculation function gives the same results
mat3 computeTBNMatrixFromDepth(in sampler2D depthTex, in vec2 uv)
{
// Compute the normal and TBN matrix
float ld = -getLinearDepth(depthTex, uv);
vec3 a = vec3(uv, ld);
vec3 x = vec3(uv.x + dFdx(uv.x), uv.y, ld + dFdx(ld));
vec3 y = vec3(uv.x, uv.y + dFdy(uv.y), ld + dFdy(ld));
//x = dFdx(x);
//y = dFdy(y);
//x = normalize(x);
//y = normalize(y);
vec3 normal = normalize(cross(x - a, y - a));
vec3 first_axis = cross(normal, vec3(1.0f, 0.0f, 0.0f));
vec3 second_axis = cross(first_axis, normal);
return mat3(normalize(first_axis), normalize(second_axis), normal);
}
I think the problem is probably that you are mixing coordinate systems. You are using texture coordinates in combination with the linear depth. You can imagine two vertical surfaces facing slightly to the left of the screen. Both have the same angle from the vertical plane and should thus have the same normal right?
But let's then imagine that one of these surfaces are much further from the camera. Since fFdx/fFdy functions basically tell you the difference from the neighbor pixel, the surface far away from the camera will have greater linear depth difference over one pixel, than the surface close to the camera. But the uv.x / uv.y derivative will have the same value. That means that you will get different normals depending on the distance from the camera.
The solution is to calculate the view coordinate and use the derivative of that to calculate the normal.
vec3 viewFromDepth(in sampler2D depthTex, in vec2 uv, in vec3 view)
{
float ld = -getLinearDepth(depthTex, uv);
/// I assume ld is negative for fragments in front of the camera
/// not sure how getLinearDepth is implemented
vec3 z_scaled_view = (view / view.z) * ld;
return z_scaled_view;
}
mat3 computeTBNMatrixFromDepth(in sampler2D depthTex, in vec2 uv, in vec3 view)
{
vec3 view = viewFromDepth(depthTex, uv);
vec3 view_normal = normalize(cross(dFdx(view), dFdy(view)));
vec3 first_axis = cross(view_normal, vec3(1.0f, 0.0f, 0.0f));
vec3 second_axis = cross(first_axis, view_normal);
return mat3(view_normal, normalize(first_axis), normalize(second_axis));
}

Uniform point arrays and managing fragment shader coordinates systems

My aim is to pass an array of points to the shader, calculate their distance to the fragment and paint them with a circle colored with a gradient depending of that computation.
For example:
(From a working example I set up on shader toy)
Unfortunately it isn't clear to me how I should calculate and convert the coordinates passed for processing inside the shader.
What I'm currently trying is to pass two array of floats - one for x positions and one for y positions of each point - to the shader though a uniform. Then inside the shader iterate through each point like so:
#ifdef GL_ES
precision mediump float;
precision mediump int;
#endif
uniform float sourceX[100];
uniform float sourceY[100];
uniform vec2 resolution;
in vec4 gl_FragCoord;
varying vec4 vertColor;
varying vec2 center;
varying vec2 pos;
void main()
{
float intensity = 0.0;
for(int i=0; i<100; i++)
{
vec2 source = vec2(sourceX[i],sourceY[i]);
vec2 position = ( gl_FragCoord.xy / resolution.xy );
float d = distance(position, source);
intensity += exp(-0.5*d*d);
}
intensity=3.0*pow(intensity,0.02);
if (intensity<=1.0)
gl_FragColor=vec4(0.0,intensity*0.5,0.0,1.0);
else if (intensity<=2.0)
gl_FragColor=vec4(intensity-1.0, 0.5+(intensity-1.0)*0.5,0.0,1.0);
else
gl_FragColor=vec4(1.0,3.0-intensity,0.0,1.0);
}
But that doesn't work - and I believe it may be because I'm trying to work with the pixel coordinates without properly translating them. Could anyone explain to me how to make this work?
Update:
The current result is:
The sketch's code is:
PShader pointShader;
float[] sourceX;
float[] sourceY;
void setup()
{
size(1024, 1024, P3D);
background(255);
sourceX = new float[100];
sourceY = new float[100];
for (int i = 0; i<100; i++)
{
sourceX[i] = random(0, 1023);
sourceY[i] = random(0, 1023);
}
pointShader = loadShader("pointfrag.glsl", "pointvert.glsl");
shader(pointShader, POINTS);
pointShader.set("sourceX", sourceX);
pointShader.set("sourceY", sourceY);
pointShader.set("resolution", float(width), float(height));
}
void draw()
{
for (int i = 0; i<100; i++) {
strokeWeight(60);
point(sourceX[i], sourceY[i]);
}
}
while the vertex shader is:
#define PROCESSING_POINT_SHADER
uniform mat4 projection;
uniform mat4 transform;
attribute vec4 vertex;
attribute vec4 color;
attribute vec2 offset;
varying vec4 vertColor;
varying vec2 center;
varying vec2 pos;
void main() {
vec4 clip = transform * vertex;
gl_Position = clip + projection * vec4(offset, 0, 0);
vertColor = color;
center = clip.xy;
pos = offset;
}
Update:
Based on the comments it seems you have confused two different approaches:
Draw a single full screen polygon, pass in the points and calculate the final value once per fragment using a loop in the shader.
Draw bounding geometry for each point, calculate the density for just one point in the fragment shader and use additive blending to sum the densities of all points.
The other issue is your points are given in pixels but the code expects a 0 to 1 range, so d is large and the points are black. Fixing this issue as #RetoKoradi describes should address the points being black, but I suspect you'll find ramp clipping issues when many are in close proximity. Passing points into the shader limits scalability and is inefficient unless the points cover the whole viewport.
As below, I think sticking with approach 2 is better. To restructure your code for it, remove the loop, don't pass in the array of points and use center as the point coordinate instead:
//calc center in pixel coordinates
vec2 centerPixels = (center * 0.5 + 0.5) * resolution.xy;
//find the distance in pixels (avoiding aspect ratio issues)
float dPixels = distance(gl_FragCoord.xy, centerPixels);
//scale down to the 0 to 1 range
float d = dPixels / resolution.y;
//write out the intensity
gl_FragColor = vec4(exp(-0.5*d*d));
Draw this to a texture (from comments: opengl-tutorial.org code and this question) with additive blending:
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
Now that texture will contain intensity as it was after your original loop. In another fragment shader during a full screen pass (draw a single triangle that covers the whole viewport), continue with:
uniform sampler2D intensityTex;
...
float intensity = texture2D(intensityTex, gl_FragCoord.xy/resolution.xy).r;
intensity = 3.0*pow(intensity, 0.02);
...
The code you have shown is fine, assuming you're drawing a full screen polygon so the fragment shader runs once for each pixel. Potential issues are:
resolution isn't set correctly
The point coordinates aren't in the range 0 to 1 on the screen.
Although minor, d will be stretched by the aspect ratio, so you might be better scaling the points up to pixel coordinates and diving distance by resolution.y.
This looks pretty similar to creating a density field for 2D metaballs. For performance you're best off limiting the density function for each point so it doesn't go on forever, then spatting discs into a texture using additive blending. This saves processing those pixels a point doesn't affect (just like in deferred shading). The result is the density field, or in your case per-pixel intensity.
These are a little related:
2D OpenGL ES Metaballs on android (no answers yet)
calculate light volume radius from intensity
gl_PointSize Corresponding to World Space Size
It looks like the point center and fragment position are in different coordinate spaces when you subtract them:
vec2 source = vec2(sourceX[i],sourceY[i]);
vec2 position = ( gl_FragCoord.xy / resolution.xy );
float d = distance(position, source);
Based on your explanation and code, source and source are in window coordinates, meaning that they are in units of pixels. gl_FragCoord is in the same coordinate space. And even though you don't show that directly, I assume that resolution is the size of the window in pixels.
This means that:
vec2 position = ( gl_FragCoord.xy / resolution.xy );
calculates the normalized position of the fragment within the window, in the range [0.0, 1.0] for both x and y. But then on the next line:
float d = distance(position, source);
you subtrace source, which is still in window coordinates, from this position in normalized coordinates.
Since it looks like you wanted the distance in normalized coordinates, which makes sense, you'll also need to normalize source:
vec2 source = vec2(sourceX[i],sourceY[i]) / resolution.xy;