Crash on cudaMalloc when allocating 2D array - c++

I am trying to build arrays of histograms of unsigned char corresponding to each pixel in an image for the gPb algorithm implementation. I have a crash on a cudaMalloc call which I cannot solve. I have looked through other similar questions and I tested always if the previous operations returned cudaSuccess or not. Here is my code:
First I allocate this structure in constructor of my class CudaImage:
bool CudaImage::create2DHistoArray()
{
//preparing histograms
m_LastCudaError = cudaMalloc((void**)&m_dHistograms, (m_Height + 2 * m_Scale) * sizeof(unsigned int*));
if (m_LastCudaError != cudaSuccess)
return false;
//set all histograms to nullptr
m_LastCudaError = cudaMemset(m_dHistograms, 0, (m_Height + 2 * m_Scale) * sizeof(unsigned int*));
if (m_LastCudaError != cudaSuccess)
return false;
return true;
}
then at some point I would call a member function to allocate some of m_dHistograms[i] as follows:
bool CudaImage::initializeHistoRange(int start, int stop)
{
for (int i = start; i < stop; ++i) {
m_LastCudaError = cudaMalloc((void**)&m_dHistograms[i], 256 * 2 * m_ArcNo * (m_Width + 2 * m_Scale) * sizeof(unsigned int));
if (m_LastCudaError != cudaSuccess) {
return false;
}
//set all pixels in the gradient images to 0
m_LastCudaError = cudaMemset(m_dHistograms[i], 0, 256 * 2 * m_ArcNo * (m_Width + 2 * m_Scale) * sizeof(unsigned int));
if (m_LastCudaError != cudaSuccess)
return false;
}
return true;
}
The first cudaMalloc in this last function crashes without a single warning. When running with cuda-memcheck I get the following message:
"The application may have hit an error when dereferencing Unified Memory from the host. Please rerun the application under a host debugger to catch such errors."
Can anyone help ? Another question would be if the array allocation was correctly implemented. I do not want to allocate all memory from the beginning because it will be too much so I allocate in constructor (first function) only the pointers to the rows of the array and then in the application I allocate memory when I need it and free what I do not need.

You are getting segfaults because it is illegal to read or modify the value of m_dHistograms[i] in host code, given it is allocated in device memory. What you need to do is something like this:
bool CudaImage::initializeHistoRange(int start, int stop)
{
for (int i = start; i < stop; ++i) {
// Allocated memory
unsigned int* p;
m_LastCudaError = cudaMalloc((void**)&p, 256 * 2 * m_ArcNo * (m_Width + 2 * m_Scale) * sizeof(unsigned int));
if (m_LastCudaError != cudaSuccess) {
return false;
}
//set all pixels in the gradient images to 0
m_LastCudaError = cudaMemset(p, 0, 256 * 2 * m_ArcNo * (m_Width + 2 * m_Scale) * sizeof(unsigned int));
if (m_LastCudaError != cudaSuccess)
return false;
}
// Transfer address of allocation to device
m_LastCudaError = cudaMemcpy(m_dHistograms + i, &p, sizeof(unsigned int *), cudaMemcpyHostToDevice);
if (m_LastCudaError != cudaSuccess)
return false;
}
return true;
}
[disclaimer: never compiled or run, use at your risk]
Here the allocation address is stored in a host variable which is finally copied to the device array after the allocation and memset operations are done. This incurs the penalty of an additional host to device memory transfer per allocation.

The solution that I found is with the help of this stackoverflow answer. The code is as follows:
bool CudaImage::initializeHistoRange(int start, int stop)
{
for (int i = start; i < stop; ++i) {
m_LastCudaError = cudaMalloc((void**)&m_hHistograms[i], 256 * 2 * m_ArcNo * (m_Width + 2 * m_Scale) * sizeof(unsigned int));
if (m_LastCudaError != cudaSuccess) {
return false;
}
cudaMemcpy(m_dHistograms, m_hHistograms, stop * sizeof(unsigned int*), cudaMemcpyHostToDevice);
if (m_LastCudaError != cudaSuccess)
return false;
}
return true;
}
bool CudaImage::create2DHistoArray()
{
m_LastCudaError = cudaMalloc((void**)&m_dHistograms, (m_Height + 2 * m_Scale) * sizeof(unsigned int*));
if (m_LastCudaError != cudaSuccess)
return false;
m_hHistograms = (unsigned int**)malloc((m_Height + 2 * m_Scale) * sizeof(unsigned int*));
return true;
}
That is I am using an additional member in the host member which helps me to create the memory in the device. The code for freeing memory during the algorithm operation is :
void CudaImage::deleteFromHistoMaps(int index) {
//I need some more device memory
if (index + m_Scale + 1 < m_Height + 2 * m_Scale) {
initializeHistoRange(index + m_Scale + 1, index + m_Scale + 2);
}
//device memory is not needed anymore - free it
if (index >= m_Scale + 1) {
cudaFree(m_hHistograms[index - m_Scale - 1]);
m_hHistograms[index - m_Scale - 1] = nullptr;
}
}

Related

CUDA array filtering kernel without a for loop

I have a large array A with size_A rows and 6 columns. I am going to check the 3rd element of each row, and if that is not zero, copy the row into another array B. Can I have the index to the entries of B without using a for loop, please see the below code?
I probably would need to define b_ptr somehow to make it static (similar to the what we have in C), but I think that is not allowed.
__global__ void filtering_kernel(float* A, int size_A, float* B, float* size_B)
{
/*B and size_B are the outputs*/
int b_ptr = 0;
int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x > size_A) return;
for (int i = 0; i < size_A; i++)
{
if (A[x + 3] != 0)
{
B[b_ptr] = A[x + 0];
B[b_ptr + 1] = A[x + 1];
B[b_ptr + 2] = A[x + 2];
B[b_ptr + 3] = A[x + 3];
B[b_ptr + 4] = A[x + 4];
B[b_ptr + 5] = A[x + 5];
b_ptr += 6;
*size_B = *size_B + 1;
}
}
}
The trick is to launch as many threads as there are elements in your array. If we assume tid (renamed from your x) ranges from 0 to size_A * 6, then we can remove the loop entirely. We do need to first determine what rows must be copied, so a shared array filter is introduced. Assuming you can fit int[size_A] into memory for a single block and have as many threads as entries, you can use the following code, with hints for how you might do this if size_A is big enough to need multiple blocks.
__global__ void filtering_kernel(float *A, const int size_A, const int W,
float *B, int *size_B) {
// We use this to store whether a given row is filtered,
// and then scan this array to tell us how densely packed B is.
extern __shared__ int filter[];
// Assuming 1 block
const int tid = threadIdx.x;
const int offset = 0;
// Multiblock difference
// tid = threadIdx.x
// offset = blockIdx.x * blockDim.x;
// Guard to ensure we are not out of range
if (offset + tid >= size_A * W)
return;
const int row = tid / W;
const int col = tid % W;
// NOTE: You have 3 in your sample code, but the third column is 2
const int mid = (W - 1)/2;
// Dedicate one thread per row to check
// whether we should filter
if (tid < size_A) {
// A boolean will be either 1 or 0
// Whatever filter criterion you want.
filter[tid] = A[offset + tid * W + mid] == 0;
}
// We then need to run a scan to get the cumulative sum
// of the filtered with a dedicated thread. If we consider
// good rows (g) and bad rows (b), for gggbbggbbggg we expect
// 1,2,3,3,3,4,5,5,5,6,7,8
for (int i = 1; i < size_A; i <<= 1) {
if (tid < size_A && tid >= i) {
filter[tid] += filter[tid - i];
}
__syncthreads();
}
__syncthreads();
// We should then only copy if the cumulative sum increases
// And handle for the case of the first row
// Note: If you are thread limited, you can do multiple copies here.
if ((row == 0 && filter[row]) || (row > 0 && filter[row] > filter[row - 1])) {
B[offset + W * (filter[row] - 1) + col] = A[tid];
}
// Also set the expected size for B
if (tid == 0) {
*size_B = filter[size_A - 1];
printf("size_B %d\n", *size_B);
// Multiple blocks: size_B[blockIdx.x] = filtered[size_A - 1];
}
// TODO: For multiple blocks, we still need to densely pack B. (see below)
}
Continuing: as is, filtered needs to be shared across the kernel, so this only works within a single block. With multiple blocks, I would filter a portion of B per block (that is, keep the code above, changing where I note), record how much was filtered with size_B now being an array, cumulatively sum size_B, and then in-place copy B to be more dense (or download from device the dense parts from each portion using size_B).
From the comments, the invoking code:
int example(const float *arr, const size_t size_A, const size_t W ) {
float *d_A;
float *d_B;
cudaMalloc((void **)&d_A, size_A * W * sizeof(float));
cudaMalloc((void **)&d_B, size_A * W * sizeof(float));
cudaMemset(d_B, 0, size_A * W * sizeof(float));
int *size_B;
cudaMalloc((void **)&size_B, sizeof(int));
cudaMemset(size_B, 0, sizeof(int));
cudaMemcpy(d_A, arr, size_A * W * sizeof(float), cudaMemcpyHostToDevice);
filtering_kernel<<<1, W * size_A, size_A * sizeof(int)>>>(d_A, size_A, W, d_B,
size_B);
cudaDeviceSynchronize();
printf("Error %s \n", cudaGetLastError());
int result;
cudaMemcpy(&result, size_B, sizeof(int), cudaMemcpyDeviceToHost);
printf("Error %s \n", cudaGetLastError());
return result;
}
Which we can then test using GTEST:
TEST(FILTER, ROW6) {
size_t size_A = 100;
size_t W = 6;
float *arr = (float *)malloc(sizeof(float) * size_A * W); // initialize arr
int expected = 0;
for (int i = 0; i < size_A * W; i++) {
arr[i] = i % 4;
if (i % W == 2 && arr[i] == 0)
expected++;
}
printf("Expected: %d\n", expected);
const int result = drt::example(arr, size_A, W);
ASSERT_EQ(result, expected) << "Filter Kernel does not work.";
}
This problem is complicated and can't be done with CUDA in one step, you can't search for the desired rows and put them in array B hoping that they will be in the correct order, as CUDA kernels don't necessarily check the rows in order. However, there is a multi-step solution that can do the trick. First, you will run a kernel that will locate the zeros within the third column, whose index is 2 not 3 by the way, then mark these rows with value of 1 in an array P. After that, a simple for loop will count these locations and store them in another array Ind. Finally, a second kernel will copy the required rows from A to B.
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <math.h>
#include <stdio.h>
__global__ void get_indeces(float* A, int* P, int size_A);
__global__ void filtering_kernel(float* A, float* B, int* Ind, int size_B);
int main()
{
int i, size_A, size_B;
size_t size;
int* P, * d_P, * Ind, * d_I;
float* A, * d_A, * B, * d_B;
size_A = ..; // specify number of rows of A
A = new float[size_A * 6];
// input values of array A
...
P = new int[size_A];
for (i = 0; i < size_A; i++)
P[i] = 0;
size = (uint64_t)size_A * 6 * sizeof(float);
cudaMalloc(&d_A, size);
cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
size = (uint64_t)size_A * sizeof(int);
cudaMalloc(&d_P, size);
cudaMemcpy(d_P, P, size, cudaMemcpyHostToDevice);
get_indeces<<<(int)ceil(size_A / 1024.0), 1024>>>(d_A, d_P, size_A);
cudaMemcpy(P, d_P, size, cudaMemcpyDeviceToHost);
size_B = 0;
for (i = 0; i < size_A; i++)
if (P[i] == 1)
Ind[size_B++] = i;
Ind = new int[size_A];
size = (uint64_t)size_B * sizeof(int);
cudaMalloc(&d_I, size);
cudaMemcpy(d_I, Ind, size, cudaMemcpyHostToDevice);
B = new float[size_B * 6];
size = (uint64_t)size_B * 6 * sizeof(float);
cudaMalloc(&d_B, size);
dim3 dimBlock(170, 6); // to copy the full row at the same time, 6 * 170 < 1024
dim3 dimGrid((int)ceil(size_B / 170.0), 1);
filtering_kernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_I, size_B);
cudaMemcpy(B, d_B, size, cudaMemcpyDeviceToHost);
}
__global__ void get_indeces(float* A, int* P, int size_A)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x < size_A && A[x * 6 + 2] == 0) // if you want to use return, it should be "if (x >= size_A) return;"
P[x] = 1;
}
__global__ void filtering_kernel(float* A, float* B, int* Ind, int size_B)
{
int i;
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = threadIdx.y;
if (x < size_B)
B[x * 6 + y] = A[Ind[x] * 6 + y];
}

No result obtained from calculation

I am trying to convolve an image using CUDA, but I cannot get a result. cuda-gdb does not work properly on my system so I cannot tell what is happening inside the CUDA kernel. The CUDA kernel I am using is the following:
__global__
void
convolve_component_EXTEND_kern(const JSAMPLE *data, // image data
ssize_t data_width, // image width
ssize_t data_height, // image height
const float *kern, // convolution kernel data
ssize_t kern_w_f, // convolution kernel has a width of 2 * kern_w_f + 1
ssize_t kern_h_f, // convolution_kernel has a height of 2 * kern_h_f + 1
JSAMPLE *res) // array to store the result
{
ssize_t i = ::blockIdx.x * ::blockDim.x + ::threadIdx.x;
ssize_t j = ::blockIdx.y * ::blockDim.y + ::threadIdx.y;
float value = 0;
for (ssize_t m = 0; m < 2 * kern_w_f + 1; m++) {
for (ssize_t n = 0; n < 2 * kern_h_f + 1; n++) {
ssize_t x = i + m - kern_w_f; // column index for this contribution to convolution sum for (i, j)
ssize_t y = j + n - kern_h_f; // row index for ...
x = x < 0 ? 0 : (x >= data_width ? data_width - 1 : x);
y = y < 0 ? 0 : (y >= data_height ? data_height - 1 : y);
value += ((float) data[data_width * y + x]) * kern[(2 * kern_w_f + 1) * n + m];
}
}
res[data_width * j + i] = (JSAMPLE) value;
}
and I am invoking it in this function
void
convolve_component_EXTEND_cuda(const JSAMPLE *data,
ssize_t data_width,
ssize_t data_height,
const float *kern,
ssize_t kern_w_f,
ssize_t kern_h_f,
JSAMPLE *res)
{
JSAMPLE *d_data;
cudaMallocManaged(&d_data,
data_width * data_height * sizeof(JSAMPLE));
cudaMemcpy(d_data,
data,
data_width * data_height * sizeof(JSAMPLE),
cudaMemcpyHostToDevice);
float *d_kern;
cudaMallocManaged(&d_kern,
(2 * kern_w_f + 1) * (2 * kern_h_f + 1) * sizeof(float));
cudaMemcpy(d_kern,
kern,
(2 * kern_w_f + 1) * (2 * kern_h_f + 1) * sizeof(float),
cudaMemcpyHostToDevice);
JSAMPLE *d_res;
cudaMallocManaged(&d_res,
data_width * data_height * sizeof(JSAMPLE));
dim3 threadsPerBlock(16, 16); // can be adjusted to 32, 32 (1024 threads per block is the maximum)
dim3 numBlocks(data_width / threadsPerBlock.x,
data_height / threadsPerBlock.y);
convolve_component_EXTEND_kern<<<numBlocks, threadsPerBlock>>>(d_data,
data_width,
data_height,
d_kern,
kern_w_f,
kern_h_f,
d_res);
cudaDeviceSynchronize();
cudaMemcpy(d_res,
res,
data_width * data_height * sizeof(JSAMPLE),
cudaMemcpyDeviceToHost);
cudaFree(d_data);
cudaFree(d_kern);
cudaFree(d_res);
}
In this context, the image data is contained in the array called data in such a way that the pixel at (i, j) is accessed by indexing into the array at data_width * j + i. the kernel data is in the array called kern, and it has a width of 2 * kern_w_f + 1 and a height of 2 * kern_h_f + 1. The element at (i, j) is accessed by indexing into the kern array at (2 * w_f + 1) * j + i, just like the data array. The array res is used to store the result of the convolution, and is allocated using calloc() before being passed to the function.
When I invoke the second function on an image's data, all the image's pixels are converted to 0 instead of the convolution being applied. Can anyone please point out the problem?
Just after calling the kernel, and performing the convolution you try to copy your data back to the res array.
cudaDeviceSynchronize();
cudaMemcpy(d_res,
res,
data_width * data_height * sizeof(JSAMPLE),
cudaMemcpyDeviceToHost);
this should be
cudaDeviceSynchronize();
cudaMemcpy(res,
d_res,
data_width * data_height * sizeof(JSAMPLE),
cudaMemcpyDeviceToHost);
as the first argument of cudaMemcpy is the destination-pointer.
cudaError_t cudaMemcpy ( void *dst, const void *src, size_t count, enum cudaMemcpyKind kind)

ERROR: an illegal memory access was encountered When I use constant memory

I meet a problem when i used constant memory. It will happen the error:
ERROR: an illegal memory access was encountered
It seem the kernel function doesn't execute.
But if I don't chose the constant memory, everything are ok. So it makes me so confused. I had thought very long time. But I still don't the reason. Can you help me to solve the problem? Thank you very much.
If the variable s is not used constant memory, everything are ok. But if the s is used constant memory, the program will break.
the variable that used constant memory define as followed:
#ifdef USE_CONST_MEM
__constant__ Sphere s[SPHERES];
#else
Sphere *s;
#endif
the kernel function defined as followed:
#ifdef USE_CONST_MEM
__global__ void kernel(unsigned char *ptr) {
printf("ok2");
#else
__global__ void kernel(Sphere *s, unsigned char *ptr) {
#endif
// map from threadIdx/BlockIdx to pixel position
printf("ok2");
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
int offset = x + y * blockDim.x * gridDim.x;
REAL ox = (x - DIM / 2);
REAL oy = (y - DIM / 2);
REAL r = 0, g = 0, b = 0;
REAL maxz = -INF;
__syncthreads();
for (int i = 0; i<SPHERES; i++) {
REAL n;
REAL t = s[i].hit(ox, oy, &n);
if (t > maxz) {
REAL fscale = n;
r = s[i].r * fscale;
g = s[i].g * fscale;
b = s[i].b * fscale;
maxz = t;
printf("r: %.2f g: %.2f, b %.2f\n", r, g, b);
}
}
__syncthreads();
ptr[offset * 4 + 0] = (int)(r * 255);
ptr[offset * 4 + 1] = (int)(g * 255);
ptr[offset * 4 + 2] = (int)(b * 255);
ptr[offset * 4 + 3] = 255;
}
// globals needed by the update routine
struct DataBlock {
unsigned char *dev_bitmap;
CPUAnimBitmap *bitmap;
};
there is the function that call the kernel function.
void generate_frame(DataBlock *d, int ticks) {
//START_GPU
//movin the spheres
kernelMoving << <128, 32 >> >(s, SPHERES);
printf("ok0\n");
// generate a bitmap from our sphere data
dim3 grids(DIM / 16, DIM / 16);
dim3 threads(16, 16);
#ifdef USE_CONST_MEM
Sphere *d_s;
cudaGetSymbolAddress((void **)&d_s, s);
printf("ok0-1\n");
kernel << <grids, threads >> >(s, d->dev_bitmap);
cudaDeviceSynchronize();
cudaError_t error = cudaGetLastError();
if(error!=cudaSuccess)
{
fprintf(stderr,"ERROR: %s\n", cudaGetErrorString(error) );
exit(-1);
}
printf("ok0-1-1\n");
#else
printf("ok0-2\n");
kernel << <grids, threads >> >(s, d->dev_bitmap);
#endif
printf("ok1\n");
//END_GPU
HANDLE_ERROR(cudaMemcpy(d->bitmap->get_ptr(),
d->dev_bitmap,
d->bitmap->image_size(),
cudaMemcpyDeviceToHost));
}
the initialzation code as followed:
#ifdef USE_CONST_MEM
#else
HANDLE_ERROR(cudaMalloc((void**)&s,
sizeof(Sphere) * SPHERES));
#endif
// allocate temp memory, initialize it, copy to constant
// memory on the GPU, then free our temp memory
Sphere *temp_s = (Sphere*)malloc(sizeof(Sphere) * SPHERES);
for (int i = 0; i<SPHERES; i++) {
temp_s[i].r = rnd(1.0f);
temp_s[i].g = rnd(1.0f);
temp_s[i].b = rnd(1.0f);
temp_s[i].x = rnd(1000.0f) - 500;
temp_s[i].y = rnd(1000.0f) - 500;
temp_s[i].z = rnd(1000.0f) - 500;
temp_s[i].radius = rnd(10.0f) + 5;
temp_s[i].dx = STEP_SIZE * ((rand() / (float)RAND_MAX) * 2 - 1);
temp_s[i].dy = STEP_SIZE * ((rand() / (float)RAND_MAX) * 2 - 1);
temp_s[i].dz = STEP_SIZE * ((rand() / (float)RAND_MAX) * 2 - 1);
}
#ifdef USE_CONST_MEM
HANDLE_ERROR(cudaMemcpyToSymbol(s, temp_s,
sizeof(Sphere) * SPHERES));
#else
HANDLE_ERROR(cudaMemcpy(s, temp_s, sizeof(Sphere)*SPHERES, cudaMemcpyHostToDevice));
#endif
free(temp_s);
the version of cuda is 8.0. the system is ubuntu 16.04.
Yeah, I know where I am wrong. When I used constant memory, I also try to change it's value in the function kernel_moving that try to modify the constant value. So the program will break. Now, I change to this, it works.
#ifdef USE_CONST_MEM
//printf("the number of SPHERES is %d\n", SPHERES);
Sphere *temp_s = (Sphere*)malloc(sizeof(Sphere) * SPHERES);
HANDLE_ERROR(cudaMemcpyFromSymbol(temp_s, s, sizeof(Sphere) * SPHERES,0, cudaMemcpyDeviceToHost));
Sphere* dev_temp_s;
cudaMalloc((void**)&dev_temp_s, sizeof(Sphere) * SPHERES);
cudaMemcpy(dev_temp_s, temp_s, sizeof(Sphere) * SPHERES, cudaMemcpyHostToDevice);
kernelMoving << <128, 32 >> >(dev_temp_s, SPHERES);
cudaMemcpy(temp_s, dev_temp_s, sizeof(Sphere) * SPHERES, cudaMemcpyDeviceToHost);
HANDLE_ERROR(cudaMemcpyToSymbol(s, temp_s, sizeof(Sphere) * SPHERES));
free(temp_s);
cudaFree(dev_temp_s);
#else
kernelMoving << <128, 32 >> >(s, SPHERES);
#endif

cudaErrorIllegalAdress on cudaMemcpy

I am new to cuda and trying to write a little code which should generate random points on a sphere. Here is the code.
__global__
void setup_kernel(curandStateMRG32k3a *state)
{
int id = threadIdx.x + blockIdx.x * blockDim.x;
curand_init(0, id, 0, &state[id]);
}
__global__
void computeRandomVectors(float* x, float* y, float* z, unsigned int numberOfElements,curandStateMRG32k3a *state)
{
float a,b;
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;
curandStateMRG32k3a localState = state[i];
if(i < numberOfElements)
{
a = curand_uniform(&localState);
b = curand_uniform(&localState);
while(a * a + b * b > 1.0f)
{
a = curand_uniform(&localState) * 2.0f - 1.0f;
b = curand_uniform(&localState) * 2.0f - 1.0f;
}
x[i] = 2.0f * a * sqrtf(1.0f - a * a - b * b);
y[i] = 2.0f * b * sqrtf(1.0f - a * a - b * b);
z[i] = 1.0f - 2.0f * (a * a + b * b);
}
}
void generatePointsOnASphere(thrust::host_vector<float>& h_x, thrust::host_vector<float>& h_y, thrust::host_vector<float>& h_z)
{
if(h_x.size() != h_y.size() && h_x.size() != h_z.size())
{
std::cout << "The three component vectors have unmatching size()" << std::endl;
return;
}
size_t size = h_x.size() * sizeof(float);
float* h_p_x = (float*) calloc(h_x.size(),sizeof(float));
float* h_p_y = (float*) calloc(h_x.size(),sizeof(float));
float* h_p_z = (float*) calloc(h_x.size(),sizeof(float));
if(h_p_x==NULL || h_p_y==NULL || h_p_z==NULL)
{
std::cout << "Host memory allocation failure" << std::endl;
return;
}
float* d_p_x;
float* d_p_y;
float* d_p_z;
if(cudaMalloc((void **)&d_p_x,size) != cudaSuccess ||
cudaMalloc((void **)&d_p_y,size) != cudaSuccess ||
cudaMalloc((void **)&d_p_z,size) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Device memory allocation failure" << std::endl;
return;
}
curandStateMRG32k3a *devStates;
if(cudaMalloc((void **)&devStates, h_x.size() * sizeof(curandStateMRG32k3a)) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Random generator states memory allocation failure" << std::endl;
return;
}
int threads = 256;
dim3 grid = size / threads;
setup_kernel<<<grid,threads>>>(devStates);
if(cudaMemcpy(d_p_x,h_p_x,size,cudaMemcpyHostToDevice) != cudaSuccess ||
cudaMemcpy(d_p_y,h_p_y,size,cudaMemcpyHostToDevice) != cudaSuccess ||
cudaMemcpy(d_p_z,h_p_z,size,cudaMemcpyHostToDevice) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Host to Device memory copy failure" << std::endl;
}
computeRandomVectors<<< grid, threads >>>(d_p_x,d_p_y,d_p_z,size / sizeof(float), devStates);
if(cudaMemcpy(h_p_x,d_p_x,size,cudaMemcpyDeviceToHost) != cudaSuccess ||
cudaMemcpy(h_p_y,d_p_y,size,cudaMemcpyDeviceToHost) != cudaSuccess ||
cudaMemcpy(h_p_z,d_p_z,size,cudaMemcpyDeviceToHost) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Device to Host memory copy failure" << std::endl;
}
for(size_t i = 0; i < h_x.size(); ++i)
{
h_x[i] = h_p_x[i];
h_y[i] = h_p_y[i];
h_z[i] = h_p_z[i];
}
free (h_p_x);
free (h_p_y);
free (h_p_z);
cudaFree (devStates);
cudaFree (d_p_x);
cudaFree (d_p_y);
cudaFree (d_p_z);
cudaDeviceReset();
}
This code works if the number of elements in the vectors is less than 4000 (I tried 1K,2K,3K and 4K). Than it gives me cuda Error Illegal Address in the first cudaMemcpy. I don't think I run out of memory, I am working with gtx 980 (4GB of global memory). Any idea how to fix this?
EDIT: The code after the suggested modifications is the following:
__global__
void setup_kernel(curandStateMRG32k3a *state, unsigned int numberOfElements)
{
int id = threadIdx.x + blockIdx.x * blockDim.x;
if(id < numberOfElements) curand_init(0, id, 0, &state[id]);
}
__global__
void computeRandomVectors(float* x, float* y, float* z, unsigned int numberOfElements,curandStateMRG32k3a *state)
{
float a,b;
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;
curandStateMRG32k3a localState = state[i];
if(i < numberOfElements)
{
a = curand_uniform(&localState);
b = curand_uniform(&localState);
while(a * a + b * b > 1.0f)
{
a = curand_uniform(&localState) * 2.0f - 1.0f;
b = curand_uniform(&localState) * 2.0f - 1.0f;
}
x[i] = 2.0f * a * sqrtf(1.0f - a * a - b * b);
y[i] = 2.0f * b * sqrtf(1.0f - a * a - b * b);
z[i] = 1.0f - 2.0f * (a * a + b * b);
}
}
void generatePointsOnASphere(thrust::host_vector<float>& h_x, thrust::host_vector<float>& h_y, thrust::host_vector<float>& h_z)
{
if(h_x.size() != h_y.size() && h_x.size() != h_z.size())
{
std::cout << "The three component vectors have unmatching size()" << std::endl;
return;
}
size_t size = h_x.size() * sizeof(float);
float* h_p_x = (float*) calloc(h_x.size(),sizeof(float));
float* h_p_y = (float*) calloc(h_x.size(),sizeof(float));
float* h_p_z = (float*) calloc(h_x.size(),sizeof(float));
if(h_p_x==NULL || h_p_y==NULL || h_p_z==NULL)
{
std::cout << "Host memory allocation failure" << std::endl;
return;
}
float* d_p_x;
float* d_p_y;
float* d_p_z;
if(cudaMalloc((void **)&d_p_x,size) != cudaSuccess ||
cudaMalloc((void **)&d_p_y,size) != cudaSuccess ||
cudaMalloc((void **)&d_p_z,size) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Device memory allocation failure" << std::endl;
return;
}
curandStateMRG32k3a *devStates;
if(cudaMalloc((void **)&devStates, h_x.size() * sizeof(curandStateMRG32k3a)) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Random generator states memory allocation failure" << std::endl;
return;
}
if(cudaMemcpy(d_p_x,h_p_x,size,cudaMemcpyHostToDevice) != cudaSuccess ||
cudaMemcpy(d_p_y,h_p_y,size,cudaMemcpyHostToDevice) != cudaSuccess ||
cudaMemcpy(d_p_z,h_p_z,size,cudaMemcpyHostToDevice) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Host to Device memory copy failure" << std::endl;
}
int threads = 512;
dim3 grid = (h_x.size() + threads - 1) / threads;
setup_kernel<<<grid,threads>>>(devStates, size / sizeof(float));
computeRandomVectors<<< grid, threads >>>(d_p_x,d_p_y,d_p_z,size / sizeof(float), devStates);
cudaDeviceSynchronize();
if(cudaMemcpy(h_p_x,d_p_x,size,cudaMemcpyDeviceToHost) != cudaSuccess ||
cudaMemcpy(h_p_y,d_p_y,size,cudaMemcpyDeviceToHost) != cudaSuccess ||
cudaMemcpy(h_p_z,d_p_z,size,cudaMemcpyDeviceToHost) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Device to Host memory copy failure" << std::endl;
}
for(size_t i = 0; i < h_x.size(); ++i)
{
h_x[i] = h_p_x[i];
h_y[i] = h_p_y[i];
h_z[i] = h_p_z[i];
}
free (h_p_x);
free (h_p_y);
free (h_p_z);
cudaFree (devStates);
cudaFree (d_p_x);
cudaFree (d_p_y);
cudaFree (d_p_z);
cudaDeviceReset();
}
I feel sorry for keeping posting here but I think by understanding what are my mistakes now I think I might get a better understanding of cuda.
So, now I am getting errorIllegalAdress on cudaMemcpy device->host when h_x.size() is 20k. I still do not understand how the code works for small numbers but not for big ones.
The problem is here:
size_t size = h_x.size() * sizeof(float);
...
int threads = 256;
dim3 grid = size / threads;
Your size variable is scaled by the number of bytes. So that is not the correct variable to use for the grid size. You should compute the grid size like this:
dim3 grid = h_x.size() / threads;
or similar. Also note that this construct won't properly initialize all curand state unless the vector length (h_x.size()) is evenly divisible by threads i.e. 256. The method to address this would be to include a thread check in your setup_kernel similar to the one in your other kernel:
__global__
void setup_kernel(curandStateMRG32k3a *state, int size)
{
int id = threadIdx.x + blockIdx.x * blockDim.x;
if (id < size)
curand_init(0, id, 0, &state[id]);
}
and launch enough threads to cover the vector size:
dim3 grid = (h_x.size()+threads-1) / threads;

Bad data coming from cudaMemcpy2D

If this sort of question has been asked I apologize, link me to the thread please!
Anyhow I am new to CUDA (I'm coming from OpenCL) and wanted to try generating an image with it. The relevant CUDA code is:
__global__
void mandlebrot(uint8_t *pixels, size_t pitch, unsigned long width, unsigned long height) {
unsigned block_size = blockDim.x;
uint2 location = {blockIdx.x*block_size, blockIdx.y*block_size};
ulong2 pixel_location = {threadIdx.x, threadIdx.y};
ulong2 real_location = {location.x + pixel_location.x, location.y + pixel_location.y};
if (real_location.x >= width || real_location.y >= height)
return;
uint8_t *row = (uint8_t *)((char *)pixels + real_location.y * pitch);
row[real_location.x * 4+0] = 0;
row[real_location.x * 4+1] = 255;
row[real_location.x * 4+2] = 0;
row[real_location.x * 4+3] = 255;
}
cudaError_t err = cudaSuccess;
#define CUDA_ERR(e) \
if ((err = e) != cudaSuccess) { \
fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n", cudaGetErrorString(err)); \
exit(-1); \
}
int main(void) {
ulong2 dims = {1000, 1000};
unsigned long block_size = 500;
dim3 threads_per_block(block_size, block_size);
dim3 remainders(dims.x % threads_per_block.x, dims.y % threads_per_block.y);
dim3 blocks(dims.x / threads_per_block.x + (remainders.x == 0 ? 0 : 1), dims.y / threads_per_block.y + (remainders.y == 0 ? 0 : 1));
size_t pitch;
uint8_t *pixels, *h_pixels = NULL;
CUDA_ERR(cudaMallocPitch(&pixels, &pitch, dims.x * 4 * sizeof(uint8_t), dims.y));
mandlebrot<<<blocks, threads_per_block>>>(pixels, pitch, dims.x, dims.y);
h_pixels = (uint8_t *)malloc(dims.x * 4 * sizeof(uint8_t) * dims.y);
memset(h_pixels, 0, dims.x * 4 * sizeof(uint8_t) * dims.y);
CUDA_ERR(cudaMemcpy2D(h_pixels, dims.x * 4 * sizeof(uint8_t), pixels, pitch, dims.x, dims.y, cudaMemcpyDeviceToHost));
save_png("out.png", h_pixels, dims.x, dims.y);
CUDA_ERR(cudaFree(pixels));
free(h_pixels);
CUDA_ERR(cudaDeviceReset());
puts("Success");
return 0;
}
The save_png function is a usual utility function I created for taking a block of data and saving it to a png:
void save_png(const char *filename, uint8_t *buffer, unsigned long width, unsigned long height) {
png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if (!png_ptr) {
std::cerr << "Failed to create png write struct" << std::endl;
return;
}
png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr) {
std::cerr << "Failed to create info_ptr" << std::endl;
png_destroy_write_struct(&png_ptr, NULL);
return;
}
FILE *fp = fopen(filename, "wb");
if (!fp) {
std::cerr << "Failed to open " << filename << " for writing" << std::endl;
png_destroy_write_struct(&png_ptr, &info_ptr);
return;
}
if (setjmp(png_jmpbuf(png_ptr))) {
png_destroy_write_struct(&png_ptr, &info_ptr);
std::cerr << "Error from libpng!" << std::endl;
return;
}
png_init_io(png_ptr, fp);
png_set_IHDR(png_ptr, info_ptr, width, height, 8, PNG_COLOR_TYPE_RGBA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
png_write_info(png_ptr, info_ptr);
png_byte *row_pnts[height];
size_t i;
for (i = 0; i < height; i++) {
row_pnts[i] = buffer + width * 4 * i;
}
png_write_image(png_ptr, row_pnts);
png_write_end(png_ptr, info_ptr);
png_destroy_write_struct(&png_ptr, &info_ptr);
fclose(fp);
}
Anyways the image that's generated is a weird whiteish strip that's speckled with random colored pixels which can be seen here.
Is there something glaring I did wrong? I tried to follow the introduction documentation on the CUDA site. Otherwise can anyone help me out to fix this? Here I'm simply trying to fill the pixels buffer with green pixels.
I am using a MBP retina with an NVIDIA GeForce GT 650M discrete graphics card. I can run and paste the output to print_devices from the cuda sample code if need be.
EDIT: Note no errors or warnings during compilation with the following makefile:
all:
nvcc -c mandlebrot.cu -o mandlebrot.cu.o
nvcc mandlebrot.cu.o -o mandlebrot -lpng
and no errors at runtime.
It's better if you provide a complete code that someone can copy, paste, compile, and run, without adding anything or changing anything, Stripping off the include headers isn't helpful, in my opinion, and making your test code dependent on a png library that others may not have is also not productive, if you want help.
Your error checking on kernel launches is broken. You may want to review proper cuda error checking. If you had proper error checking, or ran your code with cuda-memcheck, you would discover an error 9 on the kernel launch. This is an invalid configuration. If you print out your blocks and threads_per_block variables, you'll see something like this:
blocks: 2, 2
threads: 500, 500
You are in fact setting threads per block to 500,500 here:
unsigned long block_size = 500;
dim3 threads_per_block(block_size, block_size);
That is illegal, as you are requesting 500x500 threads per block (i.e. 250000 threads) which exceeds the maximum limit of 1024 threads per block.
So your kernel is not running at all and you're getting garbage.
You can fix this error pretty simply by changing your block_size definition:
unsigned long block_size = 16;
After that there is still an issue, as you've misinterpreted the parameters for cudaMemcpy2D.:
CUDA_ERR(cudaMemcpy2D(h_pixels, dims.x * 4 * sizeof(uint8_t), pixels, pitch, dims.x, dims.y, cudaMemcpyDeviceToHost));
The documentation states for the 5th parameter:
width - Width of matrix transfer (columns in bytes)
but you've passed the width in elements (groups of 4 bytes) rather than bytes.
This will fix that:
CUDA_ERR(cudaMemcpy2D(h_pixels, dims.x * 4 * sizeof(uint8_t), pixels, pitch, dims.x*4, dims.y, cudaMemcpyDeviceToHost));
With the above changes, I was able to get good results with a test version of your code:
#include <stdio.h>
#include <stdint.h>
__global__
void mandlebrot(uint8_t *pixels, size_t pitch, unsigned long width, unsigned long height) {
unsigned block_size = blockDim.x;
uint2 location = {blockIdx.x*block_size, blockIdx.y*block_size};
ulong2 pixel_location = {threadIdx.x, threadIdx.y};
ulong2 real_location = {location.x + pixel_location.x, location.y + pixel_location.y};
if (real_location.x >= width || real_location.y >= height)
return;
uint8_t *row = (uint8_t *)((char *)pixels + real_location.y * pitch);
row[real_location.x * 4+0] = 0;
row[real_location.x * 4+1] = 255;
row[real_location.x * 4+2] = 0;
row[real_location.x * 4+3] = 255;
}
cudaError_t err = cudaSuccess;
#define CUDA_ERR(e) \
if ((err = e) != cudaSuccess) { \
fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n", cudaGetErrorString(err)); \
exit(-1); \
}
int main(void) {
ulong2 dims = {1000, 1000};
dim3 threads_per_block(16, 16);
dim3 remainders(dims.x % threads_per_block.x, dims.y % threads_per_block.y);
dim3 blocks(dims.x / threads_per_block.x + (remainders.x == 0 ? 0 : 1), dims.y / threads_per_block.y + (remainders.y == 0 ? 0 : 1));
size_t pitch;
uint8_t *pixels, *h_pixels = NULL;
CUDA_ERR(cudaMallocPitch(&pixels, &pitch, dims.x * 4 * sizeof(uint8_t), dims.y));
printf("blocks: %u, %u\n", blocks.x, blocks.y);
printf("threads: %u, %u\n", threads_per_block.x, threads_per_block.y);
mandlebrot<<<blocks, threads_per_block>>>(pixels, pitch, dims.x, dims.y);
h_pixels = (uint8_t *)malloc(dims.x * 4 * sizeof(uint8_t) * dims.y);
memset(h_pixels, 0, dims.x * 4 * sizeof(uint8_t) * dims.y);
CUDA_ERR(cudaMemcpy2D(h_pixels, dims.x * 4 * sizeof(uint8_t), pixels, pitch, dims.x*4, dims.y, cudaMemcpyDeviceToHost));
// save_png("out.png", h_pixels, dims.x, dims.y);
for (int row = 0; row < dims.y; row++)
for (int col = 0; col < dims.x; col++){
if (h_pixels[(row*dims.x*4) + col*4 ] != 0) {printf("mismatch 0 at %u,%u: was: %u should be: %u\n", row,col, h_pixels[(row*dims.x)+col*4], 0); return 1;}
if (h_pixels[(row*dims.x*4) + col*4 +1] != 255) {printf("mismatch 1 at %u,%u: was: %u should be: %u\n", row,col, h_pixels[(row*dims.x)+col*4 +1], 255); return 1;}
if (h_pixels[(row*dims.x*4) + col*4 +2] != 0) {printf("mismatch 2: was: %u should be: %u\n", h_pixels[(row*dims.x)+col*4 +2], 0); return 1;}
if (h_pixels[(row*dims.x*4) + col*4 +3] != 255) {printf("mismatch 3: was: %u should be: %u\n", h_pixels[(row*dims.x)+col*4 +3 ], 255); return 1;}
}
CUDA_ERR(cudaFree(pixels));
free(h_pixels);
CUDA_ERR(cudaDeviceReset());
puts("Success");
return 0;
}
Note the above code is a complete code you can copy, paste, compile and run.