How do I use std::is_pod in a template argument? - c++

I'm trying to get one set of behavior when something is a pod, and something else when it's not through template meta programming. I've written the below code, but I get a compilation error. I want to get:
yep
nope
but I get the following compiler error:
error C2993: 'std::is_pod<_Ty>': illegal type for non-type template parameter '__formal'
Using this code
#include <iostream>
#include <type_traits>
struct A
{
int b;
};
struct B
{
private:
int b;
public:
int c;
};
template <class Z, std::is_pod<Z>>
void x()
{
std::cout << "yep" << std::endl;
}
template <class Z>
void x()
{
std::cout << "nope" << std::endl;
}
int main()
{
x<A>();
x<B>();
return 0;
}
Any advice?

You need to use std::enable_if to use the value from std::is_pod in a SFINAE context. That would look like
// only enable this template if Z is a pod type
template <class Z, std::enable_if_t<std::is_pod_v<Z>, bool> = true>
void x()
{
std::cout << "yep" << std::endl;
}
// only enable this template if Z is not a pod type
template <class Z, std::enable_if_t<!std::is_pod_v<Z>, bool> = true>
void x()
{
std::cout << "nope" << std::endl;
}
Do note that std::is_pod is deprecated in C++17 and has been removed from C++20.

With c++17, you might use if constexpr (even if simple if is enough in your case as both branches are valid)
template <class Z>
void x()
{
if constexpr (std::is_pod_v<Z>) {
std::cout << "yep" << std::endl;
} else {
std::cout << "nope" << std::endl;
}
}

template <class Z,
std::enable_if_t<std::is_pod<Z>{}, bool> =true
>
void x()
{
std::cout << "yep" << std::endl;
}
this conditionally creates a non-type template parameter of type bool, and assigns it true.
If is_pod<Z>{} is false, it generates a SFINAE failure.
You'll have to implement the inverse condition in the other x.
An alternative is tag dispatching:
namespace impl {
template <class Z>
void x(std::true_type /* is pod */ )
{
std::cout << "yep" << std::endl;
}
template <class Z>
void x(std::false_type /* is pod */ )
{
std::cout << "nope" << std::endl;
}
}
template<class Z>
void x() {
impl::x<Z>( std::is_pod<Z>{} );
}
where we use usual overload resolution to dispatch between the two bodies. I, personally, find this the most sane.

If you can use C++20, here's a solution that uses requires.
template <class Z>
requires std::is_standard_layout_v<Z> && std::is_trivial_v<Z>
void x()
{
std::cout << "yep" << std::endl;
}

Related

How to pass reference of noncopyable type to SFINAE "catch-all" overload function?

I want to handle noncopyable type by reference when SFINAE get unkown input, my code below can't work, is there a better way?
#include <iostream>
#include <functional>
template<typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
void data_type(T const& t) {
std::cout << "integer" << std::endl;
}
void data_type(...) {
std::cout << "catch unknown" << std::endl;
}
int main() {
struct noncopyable_type {
int i;
noncopyable_type() {}
noncopyable_type(const noncopyable_type&) = delete;
};
int i;
noncopyable_type s;
// first try
data_type(i); // ok
data_type(s); // error: call to deleted constructor
// try again
data_type(std::cref(i)); // ok, but the type is std::reference_wrapper, not integer
data_type(std::cref(s)); // ok
}
There are probably many ways, this is the first one that came to mind. Live demo
#include <iostream>
#include <functional>
template <typename T,
typename = typename std::enable_if<std::is_integral<T>::value>::type>
void data_type(T const& t) {
std::cout << "integer" << std::endl;
}
template <typename ... T,
typename = typename std::enable_if<sizeof...(T)==1>::type>
void data_type(T const&...) {
std::cout << "unknown" << std::endl;
}
int main() {
struct noncopyable_type {
noncopyable_type() {}
noncopyable_type(const noncopyable_type&) = delete;
};
int i;
noncopyable_type s;
// first try
data_type(i); // ok
data_type(s); // ok
}
In C++17 I would just use if constexpr.
We rarely need to use the ... trick anymore. With concepts, we can get the overload resolution behaviour we need without having to play tricks with the parameter declaration clause:
template <typename T>
requires std::integral<T>
void data_type(T const& t) {
std::cout << "integer" << std::endl;
}
template <typename T>
void data_type(T const& t) {
std::cout << "unknown" << std::endl;
}
The first overload is more constrained than the second one, so the second one will only be used when the first one is not applicable due to its constraint not being satisfied.
Note that the first overload may equivalently be written like so:
template <std::integral T>
void data_type(T const& t) {
std::cout << "integer" << std::endl;
}
It's very unclear to me what the actual problem you're trying to solve is, but there's a few possibly better ways to approach this.
With if constexpr
template <typename T>
void data_type(T const&) {
if constexpr (std::is_integral_v<T>) {
std::cout << "integral\n";
} else {
std::cout << "unknown\n";
}
}
If (as I suspect) your goal is to not bind a reference to integral types (for whatever reason) you can get fancier with C++20 concepts
template <std::integral T>
void data_type(T) {
std::cout << "integral\n";
}
template <typename T> requires (!std::integral<T>)
void data_type(T const&) {
std::cout << "unknown\n";
}

C++ specialise function on enum

Is it possible to specialise a template function on an enum?
I've seen noted here a template function can be disabled if it isn't an enum, but is this possible whilst still allowing other types?
My example below shows specialisations for int, float, and enum (it doesn't compile because it tries to overload the enum version rather than specialising it). I feel I'm missing something obvious.
Note that I'm looking to specialise on any enum, not just a named one (EAnEnum in the example)
#include <iostream>
enum class EAnEnum
{
Alpha,
Beta,
};
template<typename T>
void MyFunc();
template<>
void MyFunc<int>()
{
std::cout << "Int" << std::endl;
}
template<>
void MyFunc<float>()
{
std::cout << "Float" << std::endl;
}
// MyFunc<Enum>
template<typename T>
typename std::enable_if<std::is_enum<T>::value, void>::type MyFunc()
{
std::cout << "Enum" << std::endl;
}
int main()
{
MyFunc<EAnEnum>();
return 0;
}
You cannot partially specialize a function, but you can use tag dispatching instead.
It follows a minimal, working example based on the OP's question:
#include <iostream>
#include<type_traits>
enum class EAnEnum
{
Alpha,
Beta,
};
template<typename>
struct tag {};
void MyFunc(tag<int>)
{
std::cout << "Int" << std::endl;
}
void MyFunc(tag<float>)
{
std::cout << "Float" << std::endl;
}
void MyFunc(tag<EAnEnum>)
{
std::cout << "Enum" << std::endl;
}
template<typename T>
void MyFunc() {
MyFunc(tag<std::decay_t<T>>{});
}
int main()
{
MyFunc<EAnEnum>();
return 0;
}
You can easily add a parameter pack to be forwarded to the right MyFunc and still use this technique to solve your problem.
Of course, you can now specialize for any enum.
You can also provide a fallback MyFunc as:
template<typename T>
void MyFunc(tag<T>)
{
std::cout << "Fallback" << std::endl;
}
If you want a fallback for all the possible enum types, you can now rely on SFINAE, for these are different overloaded functions:
template<typename T>
std::enable_if_t<std::is_enum<T>::value>
MyFunc(tag<T>)
{
std::cout << "Fallback for enums only" << std::endl;
}
Note that you should not use directly the implications of MyFunc that accept a tag specialization as an entry point.
Those are meant as internal functions.
Use instead the generic one, as shown in the example.
You cannot partially specialize a function template, but can you just let it forward to a class template.
Since your function doesn't have arguments that's particularly easy:
#include <iostream>
#include <type_traits>
namespace impl {
using namespace std;
template< class Type, bool is_enum_ = is_enum<Type>::value >
struct Foo;
template< class Type >
struct Foo<Type, true>
{ void func() { cout << "Enum" << endl; } };
template<>
struct Foo<int>
{ void func() { cout << "Int" << endl; } };
template<>
struct Foo<float>
{ void func() { cout << "Float" << endl; } };
} // namespace impl
template< class Type >
void foo()
{ impl::Foo<Type>().func(); }
auto main()
-> int
{
enum class An_enum
{
alpha, beta,
};
foo<An_enum>();
foo<int>();
foo<float>();
#ifdef TEST
foo<char>(); //! Doesn't compile.
#endif
}
With arguments you can use “perfect forwarding” (which isn't all that perfect, really, but usually good enough) via std::forward.

What's the right way to fix this template resolution ambiguity?

Suppose I've written:
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>>
void foo() { std::cout << "T is integral." << std::endl; }
template <typename T>
void foo() { std::cout << "Any T." << std::endl; }
int main() { foo<short>(); }
When I compile this, I get an error about the ambiguity of the call (and no error if, say, I replace short with float). How should I fix this code so that I get the upper version for integral types and lower version otherwise?
Bonus points if your suggestion scales to the case of multiple specialized versions of foo() in addition to the general one.
I like Xeo's approach for this problem. Let's do some tag dispatch with a fallback. Create a chooser struct that inherits from itself all the way down:
template <int I>
struct choice : choice<I + 1> { };
template <> struct choice<10> { }; // just stop somewhere
So choice<x> is convertible to choice<y> for x < y, which means that choice<0> is the best choice. Now, you need a last case:
struct otherwise{ otherwise(...) { } };
With that machinery, we can forward our main function template with an extra argument:
template <class T> void foo() { foo_impl<T>(choice<0>{}); }
And then make your top choice integral and your worst-case option... anything:
template <class T, class = std::enable_if_t<std::is_integral<T>::value>>
void foo_impl(choice<0> ) {
std::cout << "T is integral." << std::endl;
}
template <typename T>
void foo_impl(otherwise ) {
std::cout << "Any T." << std::endl;
}
This makes it very easy to add more options in the middle. Just add an overload for choice<1> or choice<2> or whatever. No need for disjoint conditions either. The preferential overload resolution for choice<x> takes care of that.
Even better if you additionally pass in the T as an argument, because overloading is way better than specializing:
template <class T> struct tag {};
template <class T> void foo() { foo_impl(tag<T>{}, choice<0>{}); }
And then you can go wild:
// special 1st choice for just int
void foo_impl(tag<int>, choice<0> );
// backup 1st choice for any integral
template <class T, class = std::enable_if_t<std::is_integral<T>::value>>
void foo_impl(tag<T>, choice<0> );
// 2nd option for floats
template <class T, class = std::enable_if_t<std::is_floating_point<T>::value>>
void foo_impl(tag<T>, choice<1> );
// 3rd option for some other type trait
template <class T, class = std::enable_if_t<whatever<T>::value>>
void foo_impl(tag<T>, choice<2> );
// fallback
template <class T>
void foo_impl(tag<T>, otherwise );
One more option using tag dispatch (C++11):
#include <iostream>
void foo_impl(std::false_type) {
std::cout << "Any T." << std::endl;
}
void foo_impl(std::true_type) {
std::cout << "T is integral." << std::endl;
}
template <typename T>
void foo() {
foo_impl(std::is_integral<typename std::remove_reference<T>::type>());
//foo_impl(std::is_integral<typename std::remove_reference_t<T>>()); // C++14
}
int main() {
foo<short>(); // --> T is integral.
foo<short&>(); // --> T is integral.
foo<float>(); // --> Any T.
}
Borrowed from Scott Meyers Effective Modern C++ item 27.
One way:
template <typename T, typename std::enable_if_t<std::is_integral<T>::value>* = nullptr>
void foo() { std::cout << "T is integral." << std::endl; }
template <typename T, typename std::enable_if_t<not std::is_integral<T>::value>* = nullptr>
void foo() { std::cout << "Any T." << std::endl; }
Another way is to defer to a template function object:
template<class T, typename = void>
struct foo_impl
{
void operator()() const {
std::cout << "Any T." << std::endl;
}
};
template<class T>
struct foo_impl<T, std::enable_if_t<std::is_integral<T>::value>>
{
void operator()() const {
std::cout << "T is integral." << std::endl;
}
};
template<class T>
void foo() {
return foo_impl<T>()();
}
One way to do this is:
template <typename T>
std::enable_if_t<std::is_integral<T>::value, void> foo () {
std::cout << "integral version" << std::endl;
}
template <typename T>
std::enable_if_t<!std::is_integral<T>::value, void> foo () {
std::cout << "general version" << std::endl;
}
with usage:
foo<int> ();
foo<double> ();
struct X {};
foo<X> ();
output is:
integral version
general version
general version
AFAIK, sfinae is applicable to function params so try to add parameter of dependent type with default value
template <typename T>
void foo(typename std::enable_if_t<std::is_integral<T>::value>* = 0)
{ std::cout << "T is integral." << std::endl; }
template <typename T>
void foo(typename std::enable_if_t<!std::is_integral<T>::value>* = 0)
{ std::cout << "Any T." << std::endl; }

variadic template unpacking arguments to typename

I want to unpack the parameter pack in func (see line A), but it doesnt work. How can I unpack inside func< > or modify Line A only?
#include <iostream>
using namespace std;
void func()
{
cerr << "EMPTY" << endl;
}
template <class A, class ...B> void func()
{
cerr << "A: " << endl;
func<B... >(); // line A
}
int main(void)
{
func<int,int>();
return 0;
}
An expected output :
A:
A:
edited:
all of answers are very good. thanks alot
Sometimes it's easier to unpack everything at once, instead of recursively. If you simply want a parameter pack for_each, you can use a variant of the braced-init-list expansion trick (Live demo at Coliru):
template <class A>
void process_one_type() {
cerr << typeid(A).name() << ' ';
}
template <class ...B> void func()
{
int _[] = {0, (process_one_type<B>(), 0)...};
(void)_;
cerr << '\n';
}
By using func<B... >(); you are implying that func is a function template, but your previously defined func() is not.
You need to define a func() template that accepts zero template arguments. Here's a working example (on g++ 4.8.1):
#include <iostream>
using namespace std;
void func()
{
cerr << "EMPTY" << endl;
}
template <class ... B>
typename std::enable_if<sizeof...(B) == 0>::type func()
{
}
template <class A, class ...B> void func()
{
cerr << "A: " << endl;
func<B... >(); // line A
}
int main(void)
{
func(); // This outputs EMPTY
func<int,int>(); // This will not output EMPTY
return 0;
}
Try this:
template <class A> void func()
{
cerr << "A: " << endl;
}
template <class A, class B, class ...C> void func()
{
cerr << "A: " << endl;
func<B, C...>(); // line A
}
Consider what the invocation of the recursive call func<B...>(); looks like when B... is empty. It's calling func<>(); but the definition of your attempted base case func() is not a template function, ie. you can't call it via func<>();
Since we don't have partial specialization for function templates yet, (hopefully it will be supported soon) one way to do it is to use a class template to do the partial specialization and use the function to simply delegate the work to the class template.
#include <iostream>
/* Forward declaration. */
template <typename... T>
struct FuncImpl;
/* Base case. */
template <>
struct FuncImpl<> {
void operator()() const {
std::cout << "Base case" << std::endl;
}
}; // FuncImpl<>
/* Recursive case. */
template <typename First, typename... Rest>
struct FuncImpl<First, Rest...> {
void operator()() const {
std::cout << "Recursive case" << std::endl;
FuncImpl<Rest...>()();
}
}; // FuncImpl<First, Rest...>
/* Delegate function. */
template <typename... T>
void Func() {
FuncImpl<T...>()();
}
int main() {
Func<>();
Func<int, double>();
}
Personally I think this solution is cleaner than other solutions such as tagged dispatching or SFINAE, despite the cruft around operator()s.

partial specialization of function templates

In the below code snippet,
template<typename T1>
void func(T1& t)
{
cout << "all" << endl;
}
template<typename T2>
void func(T2 &t)
{
cout << "float" << endl;
}
// I do not want this
// template<> void func(float &t)
int main()
{
int i; float f;
func(i); // should print "all"
func(f); // should print "float"
return 0;
}
I would like to have the templates modified which by passing any type other than float will print "all" and passing float will print "float". I do not want template specialization, instead have partial specialization which will act accordingly based on input type. How should i go about it. Thanks in advance.
Well the scenario, i'm currently facing is like,
I need to have the following defined,
template<typename T1>
void func(T1 &t)
{
cout << "t1" << endl;
}
template<typename T2>
void func(T2 &t)
{
cout << "t2" << endl;
}
The following calls should print "t2"
func(int) // print "t2"
func(float) // print "t2"
func(string) // print "t2"
The following calls should print "t1"
func(char) // print "t1"
func(xyz) // print "t1"
...
func(abc) // print "t1"
some kind of grouping like the above where few should call the partial specialization implementation and others should call the default implementation.
You can combine function overloading with templates. So:
#include <iostream>
template<typename T>
void func(T& t)
{
std::cout << "all" << std::endl;
}
void func(float& f)
{
std::cout << "float" << std::endl;
}
int main()
{
int i; float f;
func(i); // prints "all"
func(f); // prints "float"
return 0;
}
Write a type traits class for your condition:
template<class T>
struct IsIntFloatOrString {
enum { value = boost::is_same<T, int>::value
or boost::is_same<T, float>::value
or boost::is_same<T, string>::value };
};
Use boost::enable_if and disable_if:
template<typename T1>
typename boost::enable_if<IsIntFloatOrString<T1> >::type
func(T1 &t) {
cout << "t1" << endl;
}
template<typename T2>
typename boost::disable_if<IsIntFloatOrString<T2> >::type
func(T2 &t) {
cout << "t2" << endl;
}
You cannot partially specialise functions in C++.
Perhaps this is not the terminology you mean. You can use templates like boost::is_same<T1, T2> to perform conditional logic based on the given template parameter. You can also use T in any place where you'd use any other type, such as in typeid(T).name():
template <typename T>
void foo(T&) {
if (boost::is_same<T, int>::value)
std::cout << "int lol";
else
std::cout << typeid(T).name();
}
(Although I'd not recommend using typeid().name() as its value is not specified by the standard and can vary from the type written in your code, to a mangled symbol, or the lyrics to Pokerface.)
Addendum Like other answerers, I would personally choose template specialisation itself or just plain ol' function overloading. I don't know why you're averse to them, but that is what they are there for.
As Tomalak already said in his answer you can not partially specialize a template function, but if you change your function to be a static member function in a template class, you could do it.
However, a better approach would be function overloading.
This is how to make it work without ugly syntax a and !b and !c for enable_if in case of arbitrary number of conditions.
If we know that partial specialization don't work work function but work with classes, let's use classes! We should hide it from people, but we can use them!
OK, code:
#include <type_traits>
#include <iostream>
template <typename T>
class is_int_or_float : public std::integral_constant<bool, std::is_same<T, int>::value || std::is_same<T, float>::value> {
};
template<typename T, typename Enable = void> //(2)
struct Helper {
static void go(const T&) {
std::cout << "all"<< std::endl;
}
};
template<typename T>
struct Helper<T, typename std::enable_if<is_int_or_float<T>::value>::type> { // (3)
static void go(const T&) {
std::cout << "int or float" << std::endl;
}
};
template<typename T>
struct Helper<T, typename std::enable_if<std::is_pointer<T>::value>::type> { // (3)
static void go(const T&) {
std::cout << "pointer" << std::endl;
}
};
template<typename T>
void func(const T& arg) {
Helper<T>::go(arg); // (1)
}
int main() {
char c;
int i;
float f;
int* p;
func(c);
func(i);
func(f);
func(p);
}
(1) First of all just for every type call helper. No specialization for functions.
(2) Here we add one dummy argument. We don't have to specify it on calling because it's default to void
(3) In 3 we just give void, when we allow T and anything else (or SFINAE as in our case). One important thing is that we shouldn't allow some T twice or more.
Notes:
We can also change default type to std::true_type, after that we will be able to get rid of std::enable_if (std::enable_if<some_trait<T>::value> will be change to just some_trait<T>::type). I'm not sure which
This code uses type traits from C++11. If you don't have c++11 support you may write your own traits or use type traits from boost
Live example