converting offset notation to pointer arithmetic in 2d arrays c++ - c++

So I am attempting to complete an assignment using 2d pointer arrays. I was going through the process when I realized that was one of the requirements was that I was supposed to use pointer arithmetic, but instead I have been using offset notation. So my question for you guys is what is the best method of converting my offset notation into pointer arithmetic without completely rewriting the program???   Also when   transversing through my 2d array what parameters do I call for my outofbounds function in order for it to properly work? Any suggestions would be greatly appreciated and thank you in advance.
//move through string by parsing to insert each char into array element position
void rules(char** boardArr,int &rows, fstream inFile, string &line, int &cols)
{
char* pos;
char ncount;
for(int i = 0; i < rows; i++) //rows
{
getline(inFile, line);
for(int j = 0; j < cols; j++) //cols
{
*(*(boardArr + i )+ j) == pos;//parsing string into bArr
//neighbor check nested for organism
pos = *(*(boardArr + i)+ j);//position of index within
if(*(*(boardArr + i+1)+ j)=='*')//checking pos to the right of pos index
{
//outofbounds()
ncount++;
}
if(*(*(boardArr + i-1)+ j)=='*')//checking pos to the left of pos index
{
//outofbounds()
ncount++;
}
if(*(*(boardArr + i)+ j+1)=='*')//checking pos to the above of pos index
{
//outofbounds()
ncount++;
}
if(*(*(boardArr + i+1)+ j+1)=='*')//checking pos to the above and to the right of pos index
{
//outofbounds()
ncount++;
}
if(*(*(boardArr + i-1)+ j+1)=='*')//checking pos above and to the left of pos index
{
//outofbounds()
ncount++;
}
if(*(*(boardArr + i-1)+ j-1)=='*')//checking pos below and to the left of pos index
{
//outofbounds()
ncount++;
}
if(*(*(boardArr + i-1)+ j)=='*')//checking pos below of pos index
{
//outofbounds()
ncount++;
}
if(*(*(boardArr + i-1)+ j+1)=='*')//checking pos below and to the right of pos index
{
//outofbounds()
ncount++;
}
//row[i, row[i]-1])
//cout<<*(*(boardArr + i)+ j);//assigning position to check for neighbors
}
}
//how to move through 2d array pointer arithmetic style
//boardArr[rows][cols] == *(*(boardArr + rows)+ cols)
//keep relationship between the numbers
//*(())
//If a cell contains an organism and has fewer than 2 neighbors, the organism dies of loneliness.
//A neighbor is an organism in one of the 8 spots (or fewer if on the edge) around a cell
//If a cell contains an organism and has more than 3 neighbors, it dies from overcrowding.
// If an empty location has exactly three neighbors, an organism is born in that location.
//returns nothing
}
bool outofbounds( int &rows, int &cols, int i, int j)
{
if((i >0 && i< rows) && (j < cols && j > 0))
{
return true;
}
else
return false;
}

There are no reasons to use pointer arithmetics for such simple operations.
Just use arr[i][j] to read/write data.
Also you should check for bounds before any read/write operations to the memory. It is dangerous and may crash your program.
Here is my version of How I'll implement such stuff.
#include <iostream>
/* it is good practice to move functions with special context to classes */
class SafeCharMatrix
{
private:
/* your board */
/* `char const* const*` provides that nobody can change data */
char const* const* _ptr;
int _rows;
int _cols;
public:
SafeCharMatrix(char const* const* ptr, int rows, int cols) :
_ptr(ptr), _rows(rows), _cols(cols)
{}
/* valid check bounds algorithm */
bool CheckBounds(int x, int y) const
{
if (x < 0 || x >= _cols)
return false;
if (y < 0 || y >= _rows)
return false;
return true;
}
bool CheckCharSafe(int x, int y, char c) const
{
/* check bounds before read/write acces to memory */
if (!CheckBounds(x, y))
return false;
return _ptr[x][y] == c;
}
int CountNeighborsSafe(int x, int y, char c) const
{
int count = 0;
count += CheckCharSafe(x - 1, y - 1, c) ? 1 : 0;
count += CheckCharSafe(x - 1, y , c) ? 1 : 0;
count += CheckCharSafe(x - 1, y + 1, c) ? 1 : 0;
count += CheckCharSafe(x , y - 1, c) ? 1 : 0;
/* ignore center (x, y) */
count += CheckCharSafe(x , y + 1, c) ? 1 : 0;
count += CheckCharSafe(x + 1, y - 1, c) ? 1 : 0;
count += CheckCharSafe(x + 1, y , c) ? 1 : 0;
count += CheckCharSafe(x + 1, y + 1, c) ? 1 : 0;
return count;
}
};
/* fill you board before this */
void rules(char const* const* boardArr, int rows, int cols)
{
SafeCharMatrix matrix(boardArr, rows, cols);
for (int i = 0; i < rows; ++i) /* y axis */
{
for (int j = 0; j < cols; ++j) /* x axis */
{
int countOfNeighbors = matrix.CountNeighborsSafe(j, i, '*');
/* do whatever you want */
std::cout
<< "x: " << j << ", "
<< "y: " << i << ", "
<< "count: " << countOfNeighbors << "\n";
}
}
}
/* just example of how it can works */
int main()
{
char r1[3] = { 0 , 0 , '*'};
char r2[3] = { 0 , 0 , 0 };
char r3[3] = { '*', 0 , 0 };
char* m[3];
m[0] = r1;
m[1] = r2;
m[2] = r3;
rules(m, 3, 3);
}
Edit:
Don't pass simple arguments like int numbers by reference: int &row. They are to small and compiler can pack them in just one processor register.

Related

Translate 2D Sequence in Array; C++

I want to implement a function that is able to translate(rotate) the sequence of a 2d array to the desired destination index. A, B, and C represents the length of the sequence. Source is the beginning of the sequence to be rotated. Source in the example below would be A. Dst is the index of the beginning of the target moving. Input/Output example: Before:
double A[][2] = { {0,0}, {1,1}, {2,2}, {3,3}, {4,4}, {5,5}, {6,6}, {7,7} };
^dst A B C
Calling function translate(A, 8, 5, 3, 1);
{ {0,0}, {5,5}, {6,6}, {7,7}, {1,1}, {2,2}, {3,3}, {4,4} };
A B C
When I run my code, the final index doesn't make it to the output array. What am I missing on the conditions?
/*
A-list of locations; 2d array
n- number of cities
src-index of the beginning of the sequence to be moved
len- length of sequence to translate
dst-index of the beginning of the target of moving
*/
void translate ( double A[][2], int n, int src, int len, int dst ) {
vector<vector<int>> variable;
variable.resize(n);
//to move sequence
for(int i = 0; i <= n - 1; i++) {
int source_index = (src + i)%(n - 1);
//cout << source_index << endl;
int destination_index = (dst - 1 + i)%(n - 1) + 1;
vector<int> variable2;
variable2.push_back(A[source_index][0]);
variable2.push_back(A[source_index][1]);
variable.at(destination_index) = variable2;
}
//get vector into array
for(int i = 1; i < n; i++){
A[i][0] = variable[i][0];
A[i][1] = variable[i][1];
}
}
My output:
(0, 0),(5, 5),(6, 6),(0, 0),(1, 1),(2, 2),(3, 3),(4, 4)
After working through it, I think I finally got it.
void translate ( double A[][2], int n, int src, int len, int dst ) {
vector<vector<int>> variable;
variable.resize(n);
//to move sequence
for(int i = 0; i <= n - 1; i++) {
int source_index = (src - 1 + i)%(n - 1) + 1;
//cout << source_index << endl;
int destination_index = (dst - 1 + i)%(n - 1) + 1;
vector<int> variable2;
variable2.push_back(A[source_index][0]);
variable2.push_back(A[source_index][1]);
variable.at(destination_index) = variable2;
}
//get vector into array
for(int i = 1; i < n; i++){
A[i][0] = variable[i][0];
A[i][1] = variable[i][1];
}
}

Fill Matrix in Spiral Form from center

I recently finished making an algorithm for a project I'm working on.
Briefly, a part of my project needs to fill a matrix, the requirements of how to do it are these:
- Fill the matrix in form of spiral, from the center.
- The size of the matrix must be dynamic, so the spiral can be large or small.
- Every two times a cell of the matrix is filled, //DO STUFF must be executed.
In the end, the code that I made works, it was my best effort and I am not able to optimize it more, it bothers me a bit having had to use so many ifs, and I was wondering if someone could take a look at my code to see if it is possible to optimize it further or some constructive comment (it works well, but it would be great if it was faster, since this algorithm will be executed several times in my project). Also so that other people can use it!
#include <stdio.h>
typedef unsigned short u16_t;
const u16_t size = 7; //<-- CHANGE HERE!!! just odd numbers and bigger than 3
const u16_t maxTimes = 2;
u16_t array_cont[size][size] = { 0 };
u16_t counter = 3, curr = 0;
u16_t endColumn = (size - 1) / 2, endRow = endColumn;
u16_t startColumn = endColumn + 1, startRow = endColumn + 1;
u16_t posLoop = 2, buffer = startColumn, i = 0;
void fillArray() {
if (curr < maxTimes) {
if (posLoop == 0) { //Top
for (i = buffer; i <= startColumn && curr < maxTimes; i++, curr++)
array_cont[endRow][i] = counter++;
if (curr == maxTimes) {
if (i <= startColumn) {
buffer = i;
} else {
buffer = endRow;
startColumn++;
posLoop++;
}
} else {
buffer = endRow;
startColumn++;
posLoop++;
fillArray();
}
} else if (posLoop == 1) { //Right
for (i = buffer; i <= startRow && curr < maxTimes; i++, curr++)
array_cont[i][startColumn] = counter++;
if (curr == maxTimes) {
if (i <= startRow) {
buffer = i;
} else {
buffer = startColumn;
startRow++;
posLoop++;
}
} else {
buffer = startColumn;
startRow++;
posLoop++;
fillArray();
}
} else if (posLoop == 2) { //Bottom
for (i = buffer; i >= endColumn && curr < maxTimes; i--, curr++)
array_cont[startRow][i] = counter++;
if (curr == maxTimes) {
if (i >= endColumn) {
buffer = i;
} else {
buffer = startRow;
endColumn--;
posLoop++;
}
} else {
buffer = startRow;
endColumn--;
posLoop++;
fillArray();
}
} else if (posLoop == 3) { //Left
for (i = buffer; i >= endRow && curr < maxTimes; i--, curr++)
array_cont[i][endColumn] = counter++;
if (curr == maxTimes) {
if (i >= endRow) {
buffer = i;
} else {
buffer = endColumn;
endRow--;
posLoop = 0;
}
} else {
buffer = endColumn;
endRow--;
posLoop = 0;
fillArray();
}
}
}
}
int main(void) {
array_cont[endColumn][endColumn] = 1;
array_cont[endColumn][endColumn + 1] = 2;
//DO STUFF
u16_t max = ((size * size) - 1) / maxTimes;
for (u16_t j = 0; j < max; j++) {
fillArray();
curr = 0;
//DO STUFF
}
//Demostration
for (u16_t x = 0; x < size; x++) {
for (u16_t y = 0; y < size; y++)
printf("%-4d ", array_cont[x][y]);
printf("\n");
}
return 0;
}
Notice that the numbers along the diagonal (1, 9, 25, 49) are the squares of the odd numbers. That's an important clue, since it suggests that the 1 in the center of the matrix should be treated as the end of a spiral.
From the end of each spiral, the x,y coordinates should be adjusted up and to the right by 1. Then the next layer of the spiral can be constructed by moving down, left, up, and right by the same amount.
For example, starting from the position of the 1, move up and to the right (to the position of the 9), and then form a loop with the following procedure:
move down, and place the 2
move down, and place the 3
move left, and place the 4
move left, and place the 5
etc.
Thus the code looks something like this:
int size = 7;
int matrix[size][size];
int dy[] = { 1, 0, -1, 0 };
int dx[] = { 0, -1, 0, 1 };
int directionCount = 4;
int ringCount = (size - 1) / 2;
int y = ringCount;
int x = ringCount;
int repeatCount = 0;
int value = 1;
matrix[y][x] = value++;
for (int ring = 0; ring < ringCount; ring++)
{
y--;
x++;
repeatCount += 2;
for (int direction = 0; direction < directionCount; direction++)
for (int repeat = 0; repeat < repeatCount; repeat++)
{
y += dy[direction];
x += dx[direction];
matrix[y][x] = value++;
}
}
I saw already many approaches for doing a spiral. All a basically drawing it, by following a path.
BUT, you can also come up with an analytical calculation formula for a spiral.
So, no recursion or iterative solution by following a path or such. We can directly calculate the indices in the matrix, if we have the running number.
I will start with the spiral in mathematical positive direction (counter clockwise) in a cartesian coordinate system. We will concentrate on X and Y coordinates.
I made a short Excel and derived some formulas from that. Here is a short picture:
From the requirements we know that the matrix will be quadratic. That makes things easier. A little bit trickier is, to get the matrix data symmetrical. But with some simple formulas, derived from the prictures, this is not really a problem.
And then we can calculate x and y coordinates with some simple statements. See the below example program with long variable names for better understanding. The code is made using some step by step approach to illustrate the implementation. Of course it can be made more compact easily. Anyway. Let's have a look.
#include <iostream>
#include <cmath>
#include <iomanip>
int main() {
// Show some example values
for (long step{}; step < 81; ++step) {
// Calculate result
const long roundedSquareRoot = std::lround(std::sqrt(step));
const long roundedSquare = roundedSquareRoot * roundedSquareRoot;
const long distance = std::abs(roundedSquare - step) - roundedSquareRoot;
const long rsrIsOdd = (roundedSquareRoot % 2);
const long x = (distance + roundedSquare - step - rsrIsOdd) / (rsrIsOdd ? -2 : 2);
const long y = (-distance + roundedSquare - step - rsrIsOdd) / (rsrIsOdd ? -2 : 2);
// Show ouput
std::cout << "Step:" << std::setw(4) << step << std::setw(3) << x << ' ' << std::setw(3) << y << '\n';
}
}
So, you see that we really have an analytical solution. Given any number we can calculate the x and y coordinate using a formula. Cool.
Getting indices in a matrix is just adding some offset.
With that gained know how, we can now easily calculate the complete matrix. And, since there is no runtime activity needed at all, we can let the compiler do the work. We will simply use constexpr functions for everything.
Then the compiler will create this matrix at compile time. At runtime, nothing will happen.
Please see a very compact solution:
#include <iostream>
#include <iomanip>
#include <array>
constexpr size_t MatrixSize = 15u;
using MyType = long;
static_assert(MatrixSize > 0 && MatrixSize%2, "Matrix size must be odd and > 0");
constexpr MyType MatrixHalf = MatrixSize / 2;
using Matrix = std::array<std::array<MyType, MatrixSize>, MatrixSize >;
// Some constexpr simple mathematical functions ------------------------------------------------------------------------------
// No need for <cmath>
constexpr MyType myAbs(MyType v) { return v < 0 ? -v : v; }
constexpr double mySqrtRecursive(double x, double c, double p) {return c == p? c: mySqrtRecursive(x, 0.5 * (c + x / c), c); }
constexpr MyType mySqrt(MyType x) {return (MyType)(mySqrtRecursive((double)x,(double)x,0.0)+0.5); }
// Main constexpr function will fill the matrix with a spiral pattern during compile time -------------------------------------
constexpr Matrix fillMatrix() {
Matrix matrix{};
for (int i{}; i < (MatrixSize * MatrixSize); ++i) {
const MyType rsr{ mySqrt(i) }, rs{ rsr * rsr }, d{ myAbs(rs - i) - rsr }, o{ rsr % 2 };
const size_t col{ (size_t)(MatrixHalf +((d + rs - i - o) / (o ? -2 : 2)))};
const size_t row{ (size_t)(MatrixHalf -((-d + rs - i - o) / (o ? -2 : 2)))};
matrix[row][col] = i;
}
return matrix;
}
// This is a compile time constant!
constexpr Matrix matrix = fillMatrix();
// All the above has been done during compile time! -----------------------------------------
int main() {
// Nothing to do. All has beend done at compile time already!
// The matrix is already filled with a spiral pattern
// Just output
for (const auto& row : matrix) {
for (const auto& col : row) std::cout << std::setw(5) << col << ' '; std::cout << '\n';
}
}
Different coordinate systems or other spiral direction can be adapted easily.
Happy coding.

Sparse matrix compressed on rows in C++

I have to implement the CSR matrix data structure in C++ using 3 dynamic arrays (indexing starts at 0) and I've got stuck. So I have to implement 2 functions:
1) modify(int i, int j, TElem e) - modifies the value of (i,j) to e or adds if (if it does not exist) or deletes it if e is null.
2) element(int i, int j) const - returns the value found on (i,j)
I wanted to test my code in the next way:
Matrix m(4,4); m.print(); It will print:
Lines: 0 0 0 0 0
Columns:
Values:
(And this is fine)
Now if I want to modify: m.modify(1,1,5); //The element (1,1) will be set to 5
The output of m.print(); will be:
Lines: 0 1 1 1 1
Columns: 1
Values: 5 (which again is fine)
And now if I want to print m.element(1, 1) it will return 0 and m.element(0, 1) will return 5.
This is my implementation of element(int i, int j) :
int currCol;
for (int pos = this->lines[i]; pos < this->lines[i+1]; pos++) {
currCol = this->columns[pos];
if (currCol == j)
return this->values[pos];
else if (currCol > j)
break;
}
return NULL_TELEM;
The constructor looks like this:
Matrix::Matrix(int nrLines, int nrCols) {
if (nrLines <= 0 || nrCols <= 0)
throw exception();
this->nr_lines = nrLines;
this->nr_columns = nrCols;
this->values = new TElem[100];
this->values_capacity = 1;
this->values_size = 0;
this->lines = new int[nrLines + 1];
this->columns = new TElem[100];
this->columns_capacity = 1;
this->columns_size = 0;
for (int i = 0; i <= nrLines; i++)
this->lines[i] = NULL_TELEM;
}
This is the "modify" method:
TElem Matrix::modify(int i, int j, TElem e) {
if (i < 0 || j < 0 || i >= this->nr_lines || j >= nr_columns)
throw exception();
int pos = this->lines[i];
int currCol = 0;
for (; pos < this->lines[i + 1]; i++) {
currCol = this->columns[pos];
if (currCol >= j)
break;
}
if (currCol != j) {
if (!(e == 0))
add(pos, i, j, e);
}
else if (e == 0)
remove(pos, i);
else
this->values[pos] = e;
return NULL_TELEM;
}
And this is the inserting method:
void Matrix::add(int index, int line, int column, TElem value)
{
this->columns_size++;
this->values_size++;
for (int i = this->columns_size; i >= index + 1; i--) {
this->columns[i] = this->columns[i - 1];
this->values[i] = this->values[i - 1];
}
this->columns[index] = column;
this->values[index] = value;
for (int i = line; i <= this->nr_lines; i++) //changed to i = line + 1;
this->lines[i]++;
}
Can somebody help me, please? I can't figure out why this happens and I really need to finish this implementation these days.
It just can't pass the next test. And if I want to print the elements i have (4,0)=0 (4,1)=0 ... (4,8)=0 and (4,9)=3. Now this looks pretty weird why it happens.
void testModify() {
cout << "Test modify" << endl;
Matrix m(10, 10);
for (int j = 0; j < m.nrColumns(); j++)
m.modify(4, j, 3);
for (int i = 0; i < m.nrLines(); i++)
for (int j = 0; j < m.nrColumns(); j++)
if (i == 4)
assert(m.element(i, j) == 3);
//cout << i << " " << j << ":" << m.element(i, j)<<'\n';
else
assert(m.element(i, j) == NULL_TELEM);
}
When you call modify(1, 1, 5) with an empty matrix (all zeros), that results in a call to add(0, 1, 1, 5). That increments columns_size and values_size (both to 1), the for loop body will not execute, you update columns[0] to 1 and values[0] to 5, then increment all the lines values starting at element lines[1], setting them all to 1 (lines[0] will still be 0). But lines[1] should indicate the element we just added, so it should be 0, since the value is found using columns[0].
The for loop at the end of add should start at element line + 1.

How to solve another version of Kakuro

The problem is, in a table of (h+1)*(w+1),the first row contains w values: a[1] ... a[w] which fill in the 2rd ... (w+1)th column. The first column contains h values: b[1] ... b[h] which fill in the 2rd ... (h+1)th row. sum(a[i]) is equal to sum(b[i]).
The question is to give one possible solution: result, so that sum(result[i][K]) for a certain K, is equal to a[i] with result[i][K] != result[j][K] (i != j and 0 < i < h+1). And the same rule for rows. PS: All the integers are positive.
For example:
a[] = {10, 3, 3}, b[] = {9, 7}
// 10 3 3
// 9 6 2 1
// 7 4 1 2
result = {6, 2, 1;
4, 1, 2}
It is like Kakuro but not the same. I cannot figure out which algorithm to apply, if anyone knows how to solve it, please give me some help. Thanks a lot.
You can always solve your problem with backtracking. Basic idea here: from top-to-bottom and left-to-right try a valid value in the partially filled table, backtrack when this value doesn't lead to a solution.
Minimal example in C++ with annotated solve:
#include <algorithm>
#include <iostream>
#include <iterator>
#include <memory>
class Problem {
public:
template<class AIter, class BIter>
Problem(AIter abegin, AIter aend, BIter bbegin, BIter bend)
: m_width(std::distance(abegin, aend))
, m_height(std::distance(bbegin, bend))
, m_table(new int[(m_width + 1) * (m_height + 1)])
{
std::fill(m_table.get(), m_table.get() + (m_width + 1) * (m_height + 1), 0);
for(size_t i = 0; i < m_width; ++i)
m_table[i + 1] = *abegin++;
for(size_t j = 0; j < m_height; ++j)
m_table[(j + 1) * (m_width + 1)] = *bbegin++;
}
bool Solve() { return solve(0, 0); }
int operator()(size_t i, size_t j) const;
private:
int a(size_t i) const { return m_table[i + 1]; }
int b(size_t j) const { return m_table[(j + 1) * (m_width + 1)]; }
int get(size_t i, size_t j) const { return m_table[(j + 1) * (m_width + 1) + i + 1]; }
void set(size_t i, size_t j, int value) { m_table[(j + 1) * (m_width + 1) + i + 1] = value; }
int colSum(size_t i) const;
int rowSum(size_t j) const;
bool solve(size_t i, size_t j);
size_t m_width, m_height;
std::unique_ptr<int[]> m_table; // (width + 1) x (height + 1)
};
int Problem::colSum(size_t i) const {
int sum = 0;
for(size_t j = 0; j < m_height; ++j)
sum += get(i, j);
return sum;
}
int Problem::rowSum(size_t j) const {
int sum = 0;
for(size_t i = 0; i < m_width; ++i)
sum += get(i, j);
return sum;
}
// solves column-wise using backtracking
bool Problem::solve(size_t i, size_t j) {
size_t width = m_width, height = m_height;
// past last column?
if(i >= width) {
// found solution
return true;
}
// remainder in column and row
int remColSum = a(i) - colSum(i);
int remRowSum = b(j) - rowSum(j);
// early break
if(remColSum <= 0 || remRowSum <= 0)
return false;
// starting at the minimal required value (1 or remColSum if on last row)
int startValue = j + 1 < height ? 1 : remColSum;
// remaining row sum cannot support the starting value
if(remRowSum < startValue)
return false;
// end value minimum remaining sum
int endValue = remColSum < remRowSum ? remColSum : remRowSum;
// on last element must equal starting value
if(i + 1 == width && j + 1 == height && startValue != endValue)
return false;
// column-wise i.e. next cell is (i, j + 1) wrapped
int nextI = i + (j + 1) / height;
int nextJ = (j + 1) % height;
for(int value = startValue; value <= endValue; ++value) {
bool valid = true;
// check row up to i
for(size_t u = 0; u < i && valid; ++u)
valid = (get(u, j) != value);
// check column up to j
for(size_t v = 0; v < j && valid; ++v)
valid = (get(i, v) != value);
if(!valid) {
// value is invalid in partially filled table
continue;
}
// value produces a valid, partially filled table, now try recursing
set(i, j, value);
// upon first solution break
if(solve(nextI, nextJ))
return true;
}
// upon failure backtrack
set(i, j, 0);
return false;
}
int Problem::operator()(size_t i, size_t j) const {
return get(i, j);
}
int main() {
int a[] = { 10, 3, 3 };
int b[] = { 9, 7 };
size_t width = sizeof(a) / sizeof(*a);
size_t height = sizeof(b) / sizeof(*b);
Problem problem(a, a + width, b, b + height);
if(!problem.Solve()) {
std::cout << "No solution" << std::endl;
}
for(size_t j = 0; j < height; ++j) {
if(j == 0) {
std::cout << " ";
for(size_t i = 0; i < width; ++i)
std::cout << " " << a[i];
std::cout << std::endl;
}
std::cout << b[j];
for(size_t i = 0; i < width; ++i) {
int value = problem(i, j);
if(value == 0)
std::cout << " ";
else
std::cout << " " << value;
}
std::cout << std::endl;
}
return 0;
}

Loop through 2D array diagonally with random board size

I was wondering how I can loop through a two dimentional array if the size of the array is random, e.g 6x6 or 10x10 etc. The idea is to search for four of the same kind of characters, 'x' or 'o'. This is typically needed for a board game.
int main() {
int array_size = 5; // Size of array
int array_height = array_size;
bool turn = true; // true = player 1, false = player 2
bool there_is_a_winner = false;
char** p_connect_four = new char*[array_size];
for (int i = 0; i < array_size; i++) // Initialise the 2D array
{ // At the same time set a value "_" as blank field
p_connect_four[i] = new char[array_size];
for (int j = 0; j < array_size; j++) {
p_connect_four[i][j] = '_';
}
}
}
This is what I have so far, checking from [3][0] to [0][3]. But this requires me to add 2 more for loops to check [4][0] to [0][4] and [4][1] to [1][4] IF the size of the board was 5x5.
for (int i = 3, j = 0; i > 0 && j < array_size; i--, j++ ) {// CHECK DOWN up right from 3,0 -> 0,3
if (p_connect_four[i][j] == p_connect_four[i - 1][j + 1] && p_connect_four[i][j] != '_' ) {
check_diagonalRight++;
if (check_diagonalRight == 3) {
there_is_a_winner = true;
break;
}
}
else {
check_diagonalRight = 0;
}
}
if (there_is_a_winner) { // Break while loop of game.
break;
}
Obviously I want to check the whole board diagonally to the right regardless of the size of the board. Is there any other way than having 3 separate for loops for checking
[3][0] -> [0][3] , [4][0] -> [0][4] and [4][1]-> [1][4] ?
for (i = array_size - 1, j = array_size - 2;
i < array_size && i >= 0, j < array_size && j >= 0; j--)
{ // starts from [4][3] and loops to the left if arraysize = 5x5
// but works on any size
int k = i, l = j;
for (k, l; k < array_size && k > 0, l < array_size && l > 0; k--, l++)
{ // checks diagonally to the right
if (check_diagonalRight == 3)
{
there_is_a_winner = true;
break;
}
if (p_connect_four[k][l] == p_connect_four[k - 1][l + 1] &&
p_connect_four[k][l] != '_')
{ //check up one square and right one square
check_diagonalRight++;
}
else
{
check_diagonalRight = 0;
// if its not equal, reset counter.
}
}
if (there_is_a_winner)
{
break; // break for loop
}
}
if (there_is_a_winner)
{
break; // break while loop of game
}
This checks up and right no matter the size, implement it for the other angles as well and it will work for any board size. You could potentially check right and left diagonal at once with nested loops.
This will work perfectly fine for your program! I hope so!
int arraySize = 8;
for(int i=0, j=0; i<arraySize && j<arraySize; i++, j++)
{
if((i == 0 && j == 0) || (i == arraySize - 1 && j == arraySize - 1))
{
continue;
}
else
{
int k = i;
int l = j;
//This Loop will check from central line (principal diagonal) to up right side (like slash sign / (representing direction))
for(k, l; k>0 && l < arraySize - 1; k--, l++)
{
//Here check your condition and increment to your variable. like:
if (p_connect_four[k][l] == p_connect_four[k - 1][l + 1] && p_connect_four[k][l] != '_' )
{
check_diagonalRight++;
}
}
//You can break the loop here if check_diagonalRight != k then break
k = i;
l = j;
//This Loop will check from central line (principal diagonal) to down left side (like slash sign / (representing direction))
for(k, l; k<arraySize - 1 && l > 0; k++, l--)
{
//Here check your condition and increment to your variable. like:
if (p_connect_four[k][l] == p_connect_four[k + 1][l - 1] && p_connect_four[k][l] != '_' )
{
check_diagonalRight++;
}
}
if(check_diagonalRight == i+j+1)
{
there_is_a_winner = true;
break;
}
}
}
I suggest to surround your board with extra special cases to avoid to check the bound.
To test each direction I suggest to use an array of offset to apply.
Following may help:
#include <vector>
using board_t = std::vector<std::vector<char>>;
constexpr const std::size_t MaxAlignment = 4;
enum Case {
Empty = '_',
X = 'X',
O = 'O',
Bound = '.'
};
enum class AlignmentResult { X, O, None };
// Create a new board, valid index would be [1; size] because of surrounding.
board_t new_board(std::size_t size)
{
// Create an empty board
board_t board(size + 2, std::vector<char>(size + 2, Case::Empty));
// Add special surround.
for (std::size_t i = 0; i != size + 2; ++i) {
board[0][i] = Case::Bound;
board[size + 1][i] = Case::Bound;
board[i][0] = Case::Bound;
board[i][size + 1] = Case::Bound;
}
return board_t;
}
// Test a winner from position in given direction.
AlignmentResult test(
const board_t& board,
std::size_t x, std::size_t y,
int offset_x, int offset_y)
{
if (board[x][y] == Case::Empty) {
return AlignmentResult::None;
}
for (std::size_t i = 1; i != MaxAlignment; ++i) {
// Following condition fails when going 'out of bound' thanks to Case::Bound,
// else you have also to check size...
if (board[x][y] != board[x + i * offset_x][y + i * offset_y]) {
return AlignmentResult::None;
}
}
if (board[x][y] == Case::X) {
return AlignmentResult::X;
} else {
return AlignmentResult::O;
}
}
// Test a winner on all the board
AlignmentResult test(const board_t& board)
{
// offset for direction. Use only 4 direction because of the symmetry.
const int offsets_x[] = {1, 1, 1, 0};
const int offsets_y[] = {-1, 0, 1, 1};
const std::size_t size = board.size() - 1;
for (std::size_t x = 1; x != size; ++x) {
for (std::size_t y = 1; y != size; ++y) {
for (std::size_t dir = 0; dir != 4; ++dir) { // for each directions
auto res = test(board, x, y, offsets_x[dir], offsets_y[y]);
if (res != AlignmentResult::None) {
return res;
}
}
}
}
return AlignmentResult::None;
}