I've a dataframe which looks like this:
wave mean median mad
0 4050.32 -0.016182 -0.011940 0.008885
1 4208.98 0.023707 0.007189 0.032585
2 4508.28 3.662293 0.001414 7.193139
3 4531.62 -15.459313 -0.001523 30.408377
4 4551.65 0.009028 0.007581 0.005247
5 4554.46 0.001861 0.010692 0.027969
6 6828.60 -10.604568 -0.000590 21.084799
7 6839.84 -0.003466 -0.001870 0.010169
8 6842.04 -32.751551 -0.002514 65.118329
9 6842.69 18.293519 -0.002158 36.385884
10 6843.66 0.006386 -0.002468 0.034995
11 6855.72 0.020803 0.000886 0.040529
As it's clearly evident in the above table that some of the values in the column mad and median are very big(outliers). So i want to remove the rows which have these very big values.
For example in row3 the value of mad is 30.408377 which very big so i want to drop this row. I know that i can use one line
to remove these values from the columns but it doesn't removes the complete row
df[np.abs(df.mad-df.mad.mean()) <= (3*df.mad.std())]
But i want to remove the complete row.
How can i do that?
Predicates like what you've given will remove entire rows. But none of your data is outside of 3 standard deviations. If you tone it down to just one standard deviation, rows are removed with your example data.
Here's an example using your data:
import pandas as pd
import numpy as np
columns = ["wave", "mean", "median", "mad"]
data = [
[4050.32, -0.016182, -0.011940, 0.008885],
[4208.98, 0.023707, 0.007189, 0.032585],
[4508.28, 3.662293, 0.001414, 7.193139],
[4531.62, -15.459313, -0.001523, 30.408377],
[4551.65, 0.009028, 0.007581, 0.005247],
[4554.46, 0.001861, 0.010692, 0.027969],
[6828.60, -10.604568, -0.000590, 21.084799],
[6839.84, -0.003466, -0.001870, 0.010169],
[6842.04, -32.751551, -0.002514, 65.118329],
[6842.69, 18.293519, -0.002158, 36.385884],
[6843.66, 0.006386, -0.002468, 0.034995],
[6855.72, 0.020803, 0.000886, 0.040529],
]
df = pd.DataFrame(np.array(data), columns=columns)
print("ORIGINAL: ")
print(df)
print()
res = df[np.abs(df['mad']-df['mad'].mean()) <= (df['mad'].std())]
print("REMOVED: ")
print(res)
this outputs:
ORIGINAL:
wave mean median mad
0 4050.32 -0.016182 -0.011940 0.008885
1 4208.98 0.023707 0.007189 0.032585
2 4508.28 3.662293 0.001414 7.193139
3 4531.62 -15.459313 -0.001523 30.408377
4 4551.65 0.009028 0.007581 0.005247
5 4554.46 0.001861 0.010692 0.027969
6 6828.60 -10.604568 -0.000590 21.084799
7 6839.84 -0.003466 -0.001870 0.010169
8 6842.04 -32.751551 -0.002514 65.118329
9 6842.69 18.293519 -0.002158 36.385884
10 6843.66 0.006386 -0.002468 0.034995
11 6855.72 0.020803 0.000886 0.040529
REMOVED:
wave mean median mad
0 4050.32 -0.016182 -0.011940 0.008885
1 4208.98 0.023707 0.007189 0.032585
2 4508.28 3.662293 0.001414 7.193139
3 4531.62 -15.459313 -0.001523 30.408377
4 4551.65 0.009028 0.007581 0.005247
5 4554.46 0.001861 0.010692 0.027969
6 6828.60 -10.604568 -0.000590 21.084799
7 6839.84 -0.003466 -0.001870 0.010169
10 6843.66 0.006386 -0.002468 0.034995
11 6855.72 0.020803 0.000886 0.040529
Observe that rows indexed 8 and 9 are now gone.
Be sure you're reassigning the output of df[np.abs(df['mad']-df['mad'].mean()) <= (df['mad'].std())] as shown above. The operation is not done in place.
Doing df[np.abs(df.mad-df.mad.mean()) <= (3*df.mad.std())] will not change the dataframe.
But assign it back to df, so that:
df = df[np.abs(df.mad-df.mad.mean()) <= (3*df.mad.std())]
Related
I'm new to pandas and am trying to create a pivot table from a numpy array.
variable npArray is just that, a numpy array:
>>> npArray
array([(1, 3), (4, 3), (1, 3), ..., (1, 4), (1, 12), (1, 12)],
dtype=[('MATERIAL', '<i4'), ('DIVISION', '<i4')])
I'd to count occurrences of each material by division, with division being rows and material being columns. Example:
What I have:
#numpy array to pandas data frame
pandaDf = pandas.DataFrame (npArray)
#pivot table - guessing here
pandas.pivot_table (pandaDf, index = "DIVISION",
columns = "MATERIAL",
aggfunc = numpy.sum) #<--- want count, not sum
Results:
Empty DataFrame
Columns: []
Index: []
Sample of pandaDf:
>>> print pandaDf
MATERIAL DIVISION
0 1 3
1 4 3
2 1 3
3 1 3
4 1 3
5 1 3
6 1 3
7 1 3
8 1 3
9 1 3
10 1 3
11 1 3
12 4 3
... ... ...
3845291 1 4
3845292 1 4
3845293 1 4
3845294 1 12
3845295 1 12
[3845296 rows x 2 columns]
Any help would be appreciated.
Something similar has already been asked: https://stackoverflow.com/a/12862196/9754169
Bottom line, just do aggfunc=lambda x: len(x)
#GerardoFlores is correct. Another solution I found was adding a column for frequency.
#numpy array to pandas data frame
pandaDf = pandas.DataFrame (npArray)
print "adding frequency column"
pandaDf ["FREQ"] = 1
#pivot table
pivot = pandas.pivot_table (pandaDf, values = "FREQ",
index = "DIVISION", columns = "MATERIAL",
aggfunc = "count")
I want to count areas of interest in my dataframe column 'which_AOI' (ranging from 0 -9). I would like to have a new column with the results added to a dataframe depending on a variable 'marker' (ranging from 0 - x) which tells me when one 'picture' is done and the next begins (one marker can go on for a variable length of rows). This is my code so far but it seems to be stuck and runs on without giving output. I tried reconstructing it from the beginning once but as soon as i get to 'if df.marker == num' it doesn't stop. What am I missing?
(example dataframe below)
## AOI count of spec. type function (in progress):
import numpy as np
import pandas as pd
path_i = "/Users/Desktop/Pilot/results/gazedata_filename.csv"
df = pd.read_csv(path_i, sep =",")
#create a new dataframe for AOIs:
d = {'marker': []}
df_aoi = pd.DataFrame(data=d)
### Creating an Aoi list
item = df.which_AOI
aoi = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] #list for search
aoi_array = [0, 0 , 0, 0, 0, 0, 0, 0, 0, 0] #list for filling
num = 0
for i in range (0, len (df.marker)): #loop through the dataframe
if df.marker == num: ## if marker = num its one picture
for index, item in enumerate(aoi): #look for item (being a number in which_AOI) in aoi list
if (item == aoi[index]):
aoi_array[index] += 1
print (aoi)
print (aoi_array)
se = pd.Series(aoi_array) # make list into a series to attach to dataframe
df_aoi['new_col'] = se.values #add list to dataframe
aoi_array.clear() #clears list before next picture
else:
num +=1
index pos_time pos_x pos_y pup_time pup_diameter marker which_AOI fixation Picname shock
1 16300 168.608779907227 -136.360855102539 16300 2.935715675354 0 7 18 5 save
2 16318 144.97673034668 -157.495513916016 16318 3.08838820457459 0 8 33 5 save
3 16351 152.92560577392598 -156.64172363281298 16351 3.0895299911499 0 7 17 5 save
4 16368 152.132453918457 -157.989685058594 16368 3.111008644104 0 7 18 5 save
5 16386 151.59835815429702 -157.55587768554702 16386 3.09514689445496 0 7 18 5 save
6 16404 150.88092803955098 -152.69479370117202 16404 3.10009074211121 1 7 37 5 save
7 16441 152.76554107666 -142.06188964843798 16441 3.0821495056152304 1 7 33 5 save
Not 100% clear based on your question but it sounds like you want to count the number of rows for each which_AOI value in each marker.
You can accomplish this using groupby
df_aoi = df.groupby(['marker','which_AOI']).size().unstack('which_AOI',fill_value=0)
In:
pos_time pos_x pos_y pup_time pup_diameter marker \
0 16300 168.608780 -136.360855 16300 2.935716 0
1 16318 144.976730 -157.495514 16318 3.088388 0
2 16351 152.925606 -156.641724 16351 3.089530 0
3 16368 152.132454 -157.989685 16368 3.111009 0
4 16386 151.598358 -157.555878 16386 3.095147 0
5 16404 150.880928 -152.694794 16404 3.100091 1
6 16441 152.765541 -142.061890 16441 3.082150 1
which_AOI fixation Picname shock
0 7 18 5 save
1 8 33 5 save
2 7 17 5 save
3 7 18 5 save
4 7 18 5 save
5 7 37 5 save
6 7 33 5 save
Out:
which_AOI 7 8
marker
0 4 1
1 2 0
A dataframe stores some values in columns, passing those values to a function I get another dataframe. I'd like to concatenate the returned dataframe's columns to the original dataframe.
I tried to do something like
i = pd.concat([i, i[['cid', 'id']].apply(lambda x: xy(*x), axis=1)], axis=1)
but it did not work with error:
ValueError: cannot copy sequence with size 2 to array axis with dimension 1
So I did like this:
def xy(x, y):
return pd.DataFrame({'x': [x*2], 'y': [y*2]})
df1 = pd.DataFrame({'cid': [4, 4], 'id': [6, 10]})
print('df1:\n{}'.format(df1))
df2 = pd.DataFrame()
for _, row in df1.iterrows():
nr = xy(row['cid'], row['id'])
nr['cid'] = row['cid']
nr['id'] = row['id']
df2 = df2.append(nr, ignore_index=True)
print('df2:\n{}'.format(df2))
Output:
df1:
cid id
0 4 6
1 4 10
df2:
x y cid id
0 8 12 4 6
1 8 20 4 10
The code does not look nice and should work slowly.
Is there pandas/pythonic way to do it properly and fast working?
python 2.7
Option 0
Most directly with pd.DataFrame.assign. Not very generalizable.
df1.assign(x=df1.cid * 2, y=df1.id * 2)
cid id x y
0 4 6 8 12
1 4 10 8 20
Option 1
Use pd.DataFrame.join to add new columns
This shows how to adjoin new columns after having used apply with a lambda
df1.join(df1.apply(lambda x: pd.Series(x.values * 2, ['x', 'y']), 1))
cid id x y
0 4 6 8 12
1 4 10 8 20
Option 2
Use pd.DataFrame.assign to add new columns
This shows how to adjoin new columns after having used apply with a lambda
df1.assign(**df1.apply(lambda x: pd.Series(x.values * 2, ['x', 'y']), 1))
cid id x y
0 4 6 8 12
1 4 10 8 20
Option 3
However, if your function really is just multiplying by 2
df1.join(df1.mul(2).rename(columns=dict(cid='x', id='y')))
Or
df1.assign(**df1.mul(2).rename(columns=dict(cid='x', id='y')))
I used the below code:
import pandas as pd
pandas_bigram = pd.DataFrame(bigram_data)
print pandas_bigram
I got output as below
0
0 ashoka -**0
1 - wikipedia,**1
2 wikipedia, the**2
3 the free**2
4 free encyclopedia**2
5 encyclopedia ashoka**1
6 ashoka from**2
7 from wikipedia,**1
8 wikipedia, the**2
9 the free**2
10 free encyclopedia**2
My question is How to split this data frame. So, that i will get data in two rows. the data here is separated by "**".
import pandas as pd
df= [" ashoka -**0","- wikipedia,**1","wikipedia, the**2"]
df=pd.DataFrame(df)
print(df)
0
0 ashoka -**0
1 - wikipedia,**1
2 wikipedia, the**2
Use split function: The method split() returns a list of all the words in the string, using str as the separator (splits on all whitespace if left unspecified), optionally limiting the number of splits to num.
df1 = pd.DataFrame(df[0].str.split('*',1).tolist(),
columns = ['0','1'])
print(df1)
0 1
0 ashoka - *0
1 - wikipedia, *1
2 wikipedia, the *2
import pandas as pd
from numpy.random import randn
oldn = pd.DataFrame(randn(10, 4), columns=['A', 'B', 'C', 'D'])
I want to make a new DataFrame that is 0..9 rows long, and has one column "avg", whose value for row N = average(old[N]['A'], old[N]['B']..old[N]['D'])
I'm not very familiar with pandas, so all my ideas how to do this are gross for- loops and things. What is the efficient way to create and populate the new table?
Call mean on your df and pass param axis=1 to calculate the mean row-wise, you can then pass this as data to the DataFrame ctor:
In [128]:
new_df = pd.DataFrame(data = oldn.mean(axis=1), columns=['avg'])
new_df
Out[128]:
avg
0 0.541550
1 0.525518
2 -0.492634
3 0.163784
4 0.012363
5 0.514676
6 -0.468888
7 0.334473
8 0.669139
9 0.736748
If you want average for specific columns use the following. Else you can use the answer provided by #EdChum
oldn['Avg'] = oldn.apply(lambda v: ((v['A']+v['B']+v['C']+v['D']) / 4.), axis=1)
or
old['Avg'] = oldn.apply(lambda v: ((v[['A','B','C','D']]).sum() / 4.), axis=1)
print oldn
A B C D Avg
0 -0.201468 -0.832845 0.100299 0.044853 -0.222290
1 1.510688 -0.955329 0.239836 0.767431 0.390657
2 0.780910 0.335267 0.423232 -0.678401 0.215252
3 0.780518 2.876386 -0.797032 -0.523407 0.584116
4 0.438313 -1.952162 0.909568 -0.465147 -0.267357
5 0.145152 -0.836300 0.352706 -0.794815 -0.283314
6 -0.375432 -1.354249 0.920052 -1.002142 -0.452943
7 0.663149 -0.064227 0.321164 0.779981 0.425017
8 -1.279022 -2.206743 0.534943 0.794929 -0.538973
9 -0.339976 0.636516 -0.530445 -0.832413 -0.266579