Non Blocking socket in C++ - Resource temporarily unavailable error - c++

I am currently working in a server program in linux, which has to connect to a single client and has to listen to it for commands. Once it receives certain command I have to send some values in return to the client. The values are generated in the main function and the server program is run in a thread.
So, in this case I thought I have to implement non-blocking socket. But I am getting Resource temporarily unavailable error. If any anyone point me in a direction for further research it will would helpful , as I am stuck in this implementation for a long time.
Here is the while loop code,
void server::serve() {
struct sockaddr_in clientAddress;
socklen_t sin_size;
sin_size = sizeof(struct sockaddr_in);
if(client = accept(sockId,(struct sockaddr *)&clientAddress,&sin_size) == -1){
perror("accept");
}
fcntl(sockId,F_SETFL,O_NONBLOCK);
fcntl(client,F_SETFL,O_NONBLOCK);
while (1) {
if(client = accept(sockId,(struct sockaddr *)&clientAddress,&sin_size) == -1){
perror("accept");
}
cout <<"client "<<client<<endl;
fcntl(client,F_SETFL,O_NONBLOCK);
getMessage(client);
if(transmitFlag != -1)
sendRequest(client);
}
closeSocket();
}

Related

Directed UDP to IP address that doesn't exist

I am experiencing slowdowns when attempting to send a UDP message to an IP address that is non-existent. We read a list of IP/ports out of a configuration file and expect that those combinations will exist. In some situations, the remote machine may not be online yet and the IP will not exist on the network. In this case, i would prefer that we do not attempt to send the data.
I'm looking for suggestions on a good way to determine that the IP doesn't exist in order to skip sending the data. I do not want to completely remove it from the list because there is the chance that the machine may come online and i'd like to continue sending data.
Relevant code:
int SendData(const char *data, int size, bool openIfClosed)
{
std::lock_guard<std::mutex> lock(sendMutex);
//if the socket was not already opened, close it after i do my send
bool closeAfterSend = mySocket == INVALID_SOCKET ? true : false;
if (!OpenSocket(openIfClosed))
return 0;
sockaddr_in address;
address.sin_family = AF_INET;
address.sin_port = htons(remotePort);
address.sin_addr.s_addr = remoteIPAddress.GetIPAddressAsULong();
//check if remote address exists prior to send?
int bytesSent = sendto(mySocket, data,
size, 0, (struct sockaddr *)&address, sizeof(address));
if (bytesSent == size)
numMsgsOut++;
else
{
//fail
}
if (closeAfterSend && openIfClosed)
{
closesocket(mySocket);
mySocket = INVALID_SOCKET;
}
return bytesSent;
}

multiclent server connected but not receiving messages properly

I have to create a basic p2p connection with c++ sockets, which means each user has a server for listening onto connections and and a client for connecting, right?
For now I'm trying to create a master client which has a dedicated server and is a client too.
This means creating the server and client in the same program and I have used fork() which creates a child process of the server and the parent is the client. Now, fork works fine and I'm using select() to check sockets for reading data and i have modeled the server on this http://beej.us/guide/bgnet/output/html/multipage/advanced.html#select
Now when I run the program, the master client is able to connect to its own dedicated server, but the messages don't always get received by the server. Sometimes, it receives it, sometimes it doesn't. Any idea why?
Also, when a second client gets connected to the master client, and it doesn't have it's own server for now, the server shows that it gets a new connection, but when I write the message and send it, it doesn't receive any message from the second client, but it receives a message from the master client sometimes and not always.
EDIT: Added cout.flush
EDIT: I think forking the process causes some delay when a client and server run on the same program.
UPDATE: Added the new server code which causes a delay by one message (in response to the comments)
Here's the code.
SERVER CODE
while (1) {
unsigned int s;
readsocks = socks;
if (select(maxsock + 1, &readsocks, NULL, NULL, NULL) == -1) {
perror("select");
return ;
}
for (s = 0; s <= maxsock; s++) {
if (FD_ISSET(s, &readsocks)) {
//printf("socket %d was ready\n", s);
if (s == sock) {
/* New connection */
cout<<"\n New Connection";
cout.flush();
int newsock;
struct sockaddr_in their_addr;
socklen_t size = sizeof(their_addr);
newsock = accept(sock, (struct sockaddr*)&their_addr, &size);
if (newsock == -1) {
perror("accept");
}
else {
printf("Got a connection from %s on port %d\n",
inet_ntoa(their_addr.sin_addr), htons(their_addr.sin_port));
FD_SET(newsock, &socks);
if (newsock > maxsock) {
maxsock = newsock;
}
}
}
else {
/* Handle read or disconnection */
handle(s, &socks);
}
}
}
}
void handle(int newsock, fd_set *set)
{
char buf[256];
bzero(buf, 256);
/* send(), recv(), close() */
if(read(newsock, buf, 256)<=0){
cout<<"\n No data";
FD_CLR(newsock, set);
cout.flush();
}
else {
string temp(buf);
cout<<"\n Server: "<<temp;
cout.flush();
}
/* Call FD_CLR(newsock, set) on disconnection */
}

How to continuously accept multiple messages from different clients using sockets?

Firstly I'm coding in c++ and running in Linux/CentOS 6.4
So after a really long time and reading a lot of different books on sockets, I finally have at least my client and my server partially working.
First I want to continuously accept messages from different clients, I have already setup the client, and it finally successfully compiled at least. Now I need to set up my server so that I can properly test.
What I'm doing is implementing the dining philosopher problem with sockets, with each client/philosopher representing a different process. I was going to go through this whole thing, where the server was going to keep track of everything, like the states of all the client. That was too difficult, I have now just created the client just to send their status to the server and the server prints it out.
I was thinking of putting a do/while loop to continuously accept messages, but not sure what I should use to stop the loop. Note that I will have a while loop set up in my client, which is signaled to stop after an elapsed amount of time. It should then close that particular client. I do have a signal in my serve, but I am not sure it works.
#include "helper.h"
char buffer[4096];
void sigchld_handler(int signo)
{
while (waitpid(-1, NULL, WNOHANG) > 0);
}
void client(int &newsock, int nread)
{
do
{
int nread = recv(newsock, buffer,sizeof(buffer), 0);
puts(buffer);
}while(nread!=0);
}
int main(int argc, char *argv[])
{
struct sockaddr_in sAddr, cli_addr;
socklen_t client_len;
int listensock;
int newsock;
int result;
int nread=1;
pid_t childid; ;
int status;
if((listensock = socket(AF_INET, SOCK_STREAM, 0))<0)
{
perror("Problem in creating socket");
exit(2);
}
sAddr.sin_family = AF_INET;
sAddr.sin_port = htons(3333);
sAddr.sin_addr.s_addr = htonl(INADDR_ANY);
bind(listensock, (struct sockaddr *) &sAddr, sizeof(sAddr));
if (result < 0) {
perror("exserver2");
return 0;
}
result = listen(listensock, 5);
if (result < 0) {
perror("exserver2");
return 0;
}
signal(SIGCHLD, sigchld_handler);
while (1) {
client_len = sizeof(cli_addr);
newsock = accept(listensock,(struct sockaddr *)&cli_addr, &client_len);
if ((childid = fork()) == 0) {
printf("child process %i created.\n", getpid());
close(listensock);
client(newsock, nread);
}
if(status<0)
{
printf("%s\n" "Read error");
exit(1);
}
close(newsock);
}
}
You need a multiplexing syscall like poll(2) (or the old, nearly obsolete, select(2)syscall). You may want to use some (or implement your own) event loop. See this & that answer. Read about the C10K problem.
Every server needs an event loop.
Read Advanced Linux Programming (or some Posix network programming book).
You may want to simply run your server program under tcpserver (see http://cr.yp.to/ucspi-tcp.html). This will spawn a new instance of your program each time a client connects to your program (on the port that you specify). This way, you can focus on the core logic of your program, and let tcpserver handle all of the heavy lifting as far as the socket programming, etc. tcpserver will pass input from the client to your program's stdin, and output from your programs stdout will be sent back to the client.

Client connects to server but server does not think client has connected in C++

I have a C++ program, using mpi, that follows a typical client server model. Each mpi instance of the client connects to a corresponding mpi instance of the server. This has worked relatively well until I have had to do some testing with added latency (1 second of added latency to be precise).
Problem:
Sometimes one of the server processes do not think the client has connected but the client thinks it has connected. i.e. After using gdb, the server is waiting at accept() but the client has continued on past connect(). Thus, it appears the client thinks it has connected when the server does not think it has connected.
My best guess is that I need to set an sock-option somewhere, however talking to fellow programmers and googling has not yielded any helpful results.
EDIT:
There are two sets of MPI processes (so two different calls to mpirun), the accept() and connect() calls are for the sockets, which are between the two sets of MPI processes. It is openmpi.
The code (from someone else's code, actually) [reduced]:
Client (connect code): (m_socket is the actual socket)
if (-1 == m_socket)
{
perror("cannot create socket");
exit(EXIT_FAILURE);
}
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
res = inet_pton(AF_INET, host_ip, &addr.sin_addr);
if (0 > res)
{
perror("error: first parameter is not a valid address family");
close(m_socket);
exit(EXIT_FAILURE);
}
else if (0 == res)
{
perror("error: second parameter does not contain valid IP address");
close(m_socket);
exit(EXIT_FAILURE);
}
//backoff
for (int sec = 1; sec < 20000; sec++ )
{
int ret;
if (0 == (ret = connect(m_socket, (struct sockaddr *)&addr, sizeof(addr))))
{
return;
}
sleep(1);
close(m_socket);
m_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
}
perror("connect failed");
close(m_socket);
exit(EXIT_FAILURE);
Server: (m_socket is the actual socket)
int socket = ::accept(m_socket, NULL, NULL);
if(socket < 0)
{
fprintf(stderr, "accept() failed: %s\n", strerror(errno));
close(m_socket);
exit(EXIT_FAILURE);
}
It looks like you're trying to do your connect/accept manually rather than with MPI. You might take a look at the example on Deino (http://mpi.deino.net/mpi_functions/MPI_Comm_accept.html) if you're trying to use MPI for your connections.
Alternatively, you might just need to look at a more general tutorial (some available here: http://www.mcs.anl.gov/research/projects/mpi/tutorial/) of MPI to get a feel for how communication works. Most of the time and application doesn't use Connect/Accept to communicate, but uses MPI Communicators to set up communication mechanisms between processes. It's a different model (SPMD as opposed to MPMD).

C++: Linux: TCP/IP program crashes when calling write()

I have a loop which keeps writing data to a client through TCP/IP. The connection is opened as follows:
newsockfd = accept(sockfd,
(struct sockaddr *) &cli_addr,
&clilen);
The following line is executed continuously in a loop (with sleep of 0.1 sec) in order to write the data to the client:
n = write(newsockfd,data.c_str(),data.length()+1); //+1 to include NULL in null terminated string
if(n>=0)
{
cout<<"success"<<endl;
}
else
{
cout<<"Fail"<<endl;
close(newsockfd);
newsockfd = -1;
}
I want the server to become reading for receiving a new connections if the connection is broken for any reason. So if writing fails, I get ready again to accept a new connection with the first command.
My problem is the following: the method succeeds for the first time, so if the connection is broken from the client, write() returns a negative number and I know immediately that the connection has a problem, so I close it and expect a new one. The server receives the new connection, but at the next time when using write(), the program crashes immediately.
Why does this happen? Please help, I'm new in TCP/IP stuff.
Please ask for more information if you require it.
Requested from helpers:
Stack trace:
Error: signal 13:
/mnt/hgfs/Dropbox/common_src/LinuxTCP/Server/ServerLinux-build-desktop-Qt_4_8_1_in_PATH__System__Release/ServerLinux[0x402155]
/lib/x86_64-linux-gnu/libc.so.6(+0x364a0)[0x7ffc57ac04a0]
/lib/x86_64-linux-gnu/libpthread.so.0(write+0x10)[0x7ffc5836dcb0]
/mnt/hgfs/Dropbox/common_src/LinuxTCP/Server/ServerLinux-build-desktop-Qt_4_8_1_in_PATH__System__Release/ServerLinux[0x4023b6]
/mnt/hgfs/Dropbox/common_src/LinuxTCP/Server/ServerLinux-build-desktop-Qt_4_8_1_in_PATH__System__Release/ServerLinux[0x401b54]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xed)[0x7ffc57aab76d]
/mnt/hgfs/Dropbox/common_src/LinuxTCP/Server/ServerLinux-build-desktop-Qt_4_8_1_in_PATH__System__Release/ServerLinux[0x402081]
Variable definitions: it's a class:
Body:
int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;
Constructor starts the stuff:
LinuxTCPServer::LinuxTCPServer(int port, bool nonblocking)
{
if(nonblocking)
sockfd = socket(AF_INET, SOCK_NONBLOCK | SOCK_STREAM, 0);
else
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
error("ERROR opening socket");
bzero((char *) &serv_addr, sizeof(serv_addr));
portno = port;
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);
if (bind(sockfd, (struct sockaddr *) &serv_addr,
sizeof(serv_addr)) < 0)
error("ERROR on binding");
listen(sockfd,5);
clilen = sizeof(cli_addr);
}
Assuming Linux >= 2.2, replace this:
n = write(newsockfd,data.c_str(),data.length()+1);
with this:
n = send(newsockfd, data.c_str(), data.length()+1, MSG_NOSIGNAL);
send(2) will then return -1 with errno set to EPIPE, rather than generating a fatal SIGPIPE. Alternatively, ignore SIGPIPE.
When you receive the SIGPIPE, the connection behind newsockfd has been broken. We don't have enough code to reproduce the problem, client and server, so it's rather moot to say what might actually be wrong. However, converting SIGPIPEs to EPIPEs will at least give your server a chance to handle the broken connection.
Your stack trace indicates that the program is crashing with signal 13, which means you have a broken pipe.
That would indicate that your connection is broken, but you are still trying to write to it. See this thread for why that might causes the broken pipe error: What causes the Broken Pipe Error?
Now, on how to solve the issue, I suspect you're not actually getting a proper connection setup on your 'accept' call. Make sure you check the status of your 'accept' call before calling write.
The problems that are causing your accept call to fail are likely on the other side of the connection I think.