Initially my algorithm involved testing every number from 1->n of an nxn sudoku but since it couldn't solve 16x16 sudokus (had the algorithm running for 3 hours with no luck) I thought it would be better to choose numbers in a cell based on the most valid and least used number on the board. I think I've figured out most of it, e.g. I made a 2D vector called usage (first column is number and second is usage) which I sort every time I make a change on the board. Right now I can solve an easy 9x9 and an empty 16x16 but I'm having no luck elsewhere. Wondering if somebody could help me spot where my logic is lacking.
//I used stack <pair<int, int>> to store the most recent row and column we've placed a value in. The first int is the row and the second is the column.
#include <stack>
#include <vector>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
using namespace std;
bool isRowValid(vector <vector <int>> &sudoku, int row, int possval);
bool isColumnValid(vector <vector <int>> &sudoku, int column, int possval);
int assignBlock9x9(int pos);
int assignBlock16x16(int pos);
int assignBlock25x25(int pos);
bool isBlockValid(vector <vector <int>> &sudoku, int row, int column, int possval);
bool isValidSingle(vector <vector <int>> &sudoku, int row, int column, int possval);
bool isRowValid2(vector <vector <int>> &sudoku, int row, int possval);
bool isColumnValid2(vector <vector <int>>& sudoku, int column, int possval);
bool isBlockValid2(vector <vector <int>>& sudoku, int row, int column, int possval);
bool isValidSingle2(vector <vector <int>>& sudoku, int row, int column, int possval);
int solve(vector <vector <int>>& sudoku);
vector <vector<int>> Usage(vector <vector <int>>& sudoku);
bool sortcol(const vector<int>& v1, const vector<int>& v2);
bool sortcol2(const vector<int>& v1, const vector<int>& v2);
void printSudoku(vector <vector <int>>& sudokusudoku);
void printUsage(vector<vector<int>>& usage);
/* easy sudoku (9x9_1.txt) - actually solves
0 4 0 0 0 0 1 7 9
0 0 2 0 0 8 0 5 4
0 0 6 0 0 5 0 0 8
0 8 0 0 7 0 9 1 0
0 5 0 0 9 0 0 3 0
0 1 9 0 6 0 0 4 0
3 0 0 4 0 0 7 0 0
5 7 0 1 0 0 2 0 0
9 2 8 0 0 0 0 6 0*/
/*solution
8 4 5 6 3 2 1 7 9
7 3 2 9 1 8 6 5 4
1 9 6 7 4 5 3 2 8
6 8 3 5 7 4 9 1 2
4 5 7 2 9 1 8 3 6
2 1 9 8 6 3 5 4 7
3 6 1 4 2 9 7 8 5
5 7 4 1 8 6 2 9 3
9 2 8 3 5 7 4 6 1*/
/*medium sudoku (9x9_2.txt) - can't solve
0 9 0 3 8 4 0 0 0
0 0 2 0 7 0 0 0 0
0 0 0 0 0 0 0 7 1
5 0 0 0 0 3 2 4 0
0 3 0 0 0 0 0 0 0
0 0 1 0 0 5 0 9 0
0 0 0 8 0 0 0 0 0
7 0 6 5 2 0 0 0 0
0 0 0 0 0 6 4 0 0*/
/*solution
1 9 7 3 8 4 5 6 2
8 5 2 6 7 1 9 3 4
4 6 3 9 5 2 8 7 1
5 8 9 7 1 3 2 4 6
6 3 4 2 9 8 7 1 5
2 7 1 4 6 5 3 9 8
3 1 5 8 4 7 6 2 9
7 4 6 5 2 9 1 8 3
9 2 8 1 3 6 4 5 7*/
/* hard sudoku (9x9_3.txt) - can't solve
7 9 0 0 0 0 0 0 3
0 0 0 0 0 0 0 6 0
8 0 1 0 0 4 0 0 2
0 0 5 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0
0 4 0 0 0 6 2 0 9
2 0 0 0 3 0 0 0 6
0 3 0 6 0 5 4 2 1
0 0 0 0 0 0 0 0 0*/
/*solution
7 9 2 5 6 8 1 4 3
4 5 3 2 1 9 8 6 7
8 6 1 3 7 4 9 5 2
6 2 5 8 9 3 7 1 4
3 7 9 1 4 2 6 8 5
1 4 8 7 5 6 2 3 9
2 8 4 9 3 1 5 7 6
9 3 7 6 8 5 4 2 1
5 1 6 4 2 7 3 9 8*/
/* no solution sudoku (9x9_4.txt) - can't solve
0 0 0 0 0 0 0 0 7
7 2 0 3 0 9 0 0 1
0 0 8 7 0 5 0 6 0
5 0 2 8 9 0 0 0 0
0 4 0 5 0 1 0 9 0
0 0 0 0 6 3 7 0 5
0 3 0 9 0 6 1 7 0
2 0 0 1 0 7 0 5 3
9 0 0 0 0 0 0 0 0
*/
int main()
{
fstream MySudoku("9x9_1.txt");
vector <vector <int>> sudoku;
//input from text file
if (MySudoku.is_open()) {
string row;
while (getline(MySudoku, row)) {
stringstream rowelement (row);
string num;
vector <int> row;
while (getline(rowelement, num, ' ')) {
if ((int)num[0] >= 65) {
row.push_back((int)num[0] - 55);
}
else {
row.push_back((int)num[0] - 48);
}
}
sudoku.push_back(row);
rowelement.clear();
//cout << row;
//cout << endl;
}
MySudoku.close();
}
//input from testing bot
/*string row;
int i = 0;
int rowsize = 9;
while (i < rowsize) {
getline(cin, row);
stringstream rowelement(row);
string num;
vector <int> row;
rowsize = 0;
while (getline(rowelement, num, ' ')) {
if ((int)num[0] >= 65) {
row.push_back((int)num[0] - 55);
}
else {
row.push_back((int)num[0] - 48);
//cout << 500 + (int)num[0] - 48;
}
++rowsize;
}
//cout << rowsize;
sudoku.push_back(row);
rowelement.clear();
++i;
}
*/
//solving and printing out the resulting sudoku if possible
int solved = solve(sudoku);
if (solved == 1) {
printSudoku(sudoku);
}
else {
cout << "No Solution";
}
}
void printSudoku(vector <vector <int>>& sudoku) {
for (unsigned int i = 0; i < sudoku.size(); i++) {
for (unsigned int j = 0; j < sudoku.size(); j++) {
if (sudoku[i][j] >= 10) {
if (j == sudoku.size() - 1) {
cout << (char)(sudoku[i][j] + 55);
}
else {
cout << (char)(sudoku[i][j] + 55) << " ";
}
}
else {
if (j == sudoku.size() - 1) {
cout << sudoku[i][j];
}
else {
cout << sudoku[i][j] << " ";
}
}
}
cout << endl;
}
}
void printUsage(vector<vector<int>> &usage) {
for (vector <int> usagerow : usage) {
cout << usagerow[0] << " : " << usagerow[1] << " ";
}
cout << endl << endl;
}
int solve(vector <vector <int>>& sudoku) {
stack <pair<int, int>> solution;
vector <vector <int>> usage = Usage(sudoku);
//printUsage(usage);
///////////initializes solution
int breaker = 0;
//pushes value on empty cell
for (unsigned int row = 0; row < sudoku.size(); row++) {
if (breaker == 2002) {
break;
}
for (unsigned int column = 0; column < sudoku.size(); column++) {
if (breaker == 2002) {
break;
}
if (sudoku[row][column] == 0) {
//choose option based on usage and then change usage list
int vectorpos = 0;
while (!isValidSingle(sudoku, row, column, usage[vectorpos][0]) && vectorpos != sudoku.size() - 1) {
++vectorpos;
}
//cout << usage[vectorpos][0] << " was pushed at " << row << column << endl;
sudoku[row][column] = usage[vectorpos][0];
usage[vectorpos][1] = usage[vectorpos][1] + 1;
sort(usage.begin(), usage.begin() + usage.size(), sortcol);
sort(usage.begin(), usage.begin() + usage.size(), sortcol2);
solution.push(make_pair(row, column));
breaker = 2002;
break;
}
}
}
//printSudoku(sudoku);
//just prints out the usage vector {not useful}
//printUsage(usage);
/////actual solution
bool solved = false;
while (!solved) {
//cout << "top of stack is " << solution.top().first << solution.top().second << endl;
int lastrow = solution.top().first;
int lastcolumn = solution.top().second;
//checks if sudoku is in invalid state
if (!isValidSingle2(sudoku, lastrow, lastcolumn, sudoku[lastrow][lastcolumn])) {
//copy of usage vector to allow us to see if we're at the last option for the cell
vector <vector <int>> usagefuture = usage;
for (vector<int> &usagerowdec : usagefuture) {
if (sudoku[solution.top().first][solution.top().second] == usagerowdec[0]) {
usagerowdec[1] = usagerowdec[1] - 1;
sort(usagefuture.begin(), usagefuture.begin() + usagefuture.size(), sortcol);
sort(usagefuture.begin(), usagefuture.begin() + usagefuture.size(), sortcol2);
break;
}
}
//cout << "future -> "; printUsage(usagefuture);
//keeps popping last decision until sudoku no longer in invalid state
while (sudoku[solution.top().first][solution.top().second] == usagefuture[sudoku.size()-1][0]) {
//looks for where the last entered value occurs in the usage vector
int val = sudoku[solution.top().first][solution.top().second];
for (vector <int> usagerowdec : usage) {
if (usagerowdec[0]==val) {
//sets cell to 0 and pops
sudoku[solution.top().first][solution.top().second] = 0;
//cout << usagerowdec[0] << " was set back to 0" /*<< solution.top().first << solution.top().first*/ << endl;
solution.pop();
//cout << "top of stack is now " << solution.top().first << solution.top().second << endl;
//permanently changes the usage vector
usage = usagefuture;
sort(usage.begin(), usage.begin() + usage.size(), sortcol);
sort(usage.begin(), usage.begin() + usage.size(), sortcol2);
break;
}
}
if (solution.size() == 0) {
return 0;
}
//copy of usage vector to allow us to see if we're at the last option for the cell
usagefuture = usage;
for (vector<int>& usagerowdec : usagefuture) {
if (sudoku[solution.top().first][solution.top().second] == usagerowdec[0]) {
usagerowdec[1] = usagerowdec[1] - 1;
sort(usagefuture.begin(), usagefuture.begin() + usagefuture.size(), sortcol);
sort(usagefuture.begin(), usagefuture.begin() + usagefuture.size(), sortcol2);
break;
}
}
//cout << "future -> "; printUsage(usagefuture);
}
if (solution.size() == 0) {
return 0;
}
else {
int row = solution.top().first;
int column = solution.top().second;
//printUsage(usage);
//decrements usage vector at value we're changing
for (vector<int>& usagerowdec : usage) {
if (sudoku[row][column] == usagerowdec[0]) {
usagerowdec[1] = usagerowdec[1] - 1;
sort(usage.begin(), usage.begin() + usage.size(), sortcol);
sort(usage.begin(), usage.begin() + usage.size(), sortcol2);
break;
}
}
//printSudoku(sudoku);
//finds which value we're on in the usage vector
int vectorpos = 0;
for (int i = 0; i < usage.size(); i++) {
if (sudoku[row][column] == usage[i][0]) {
vectorpos = i;
break;
}
}
//sees what next value we can set it to. If nothing it becomes the last possible value
while (!isValidSingle(sudoku, row, column, usage[vectorpos][0]) && vectorpos != sudoku.size() - 1) {
vectorpos++;
}
//cout << "vectorpos is " << vectorpos << ": ";
//completes the change
//cout << sudoku[row][column] << " was changed to " << usage[vectorpos][0] << " at " << row << column << endl;
sudoku[row][column] = usage[vectorpos][0];
usage[vectorpos][1] = usage[vectorpos][1] + 1;
sort(usage.begin(), usage.begin() + usage.size(), sortcol);
sort(usage.begin(), usage.begin() + usage.size(), sortcol2);
}
}
//if sudoku in valid state
else {
int breaker = 0;
//looks for empty cell to push to
for (unsigned int row = 0; row < sudoku.size(); row++) {
if (breaker == 2002) {
break;
}
for (unsigned int column = 0; column < sudoku.size(); column++) {
if (breaker == 2002) {
break;
}
if (sudoku[row][column] == 0) {
//choose option based on usage and then change usage list, worst case is the last value like with the change
int vectorpos = 0;
while (!isValidSingle(sudoku, row, column, usage[vectorpos][0]) && vectorpos != sudoku.size() - 1) {
++vectorpos;
}
//cout << usage[vectorpos][0] << " was pushed at " << row << column << endl;
sudoku[row][column] = usage[vectorpos][0];
usage[vectorpos][1] = usage[vectorpos][1] + 1;
sort(usage.begin(), usage.begin() + usage.size(), sortcol);
sort(usage.begin(), usage.begin() + usage.size(), sortcol2);
solution.push(make_pair(row, column));
breaker = 2002;
break;
}
}
}
}
//checks if we're at the end
if (solution.top().first == sudoku.size() - 1 && solution.top().second == sudoku.size() - 1){
solved = true;
}
//printSudoku(sudoku);
//prints out usage vector {not useful}
//printUsage(usage);
}
return 1;
}
bool isRowValid(vector <vector <int>> &sudoku, int row, int possval) {
for (unsigned int i = 0; i < sudoku.size(); i++) {
if (possval == sudoku[row][i]) {
return false;
}
}
return true;
}
bool isColumnValid(vector <vector <int>> &sudoku, int column, int possval) {
for (unsigned int j = 0; j < sudoku.size(); j++) {
if (possval == sudoku[j][column]) {
return false;
}
}
return true;
}
int assignBlock9x9(int pos) {
if (0 <= pos && pos <= 2) {
return 0;
}
else if (3 <= pos && pos <= 5) {
return 3;
}
else {
return 6;
}
}
int assignBlock16x16(int pos) {
if (0 <= pos && pos <= 3) {
return 0;
}
else if (4 <= pos && pos <= 7) {
return 4;
}
else if (8 <= pos && pos <= 11){
return 8;
}
else {
return 12;
}
}
int assignBlock25x25(int pos) {
if (0 <= pos && pos <= 4) {
return 0;
}
else if (5 <= pos && pos <= 9) {
return 5;
}
else if(10 <= pos && pos <= 14){
return 10;
}
else if (15 <= pos && pos <= 19) {
return 15;
}
else {
return 20;
}
}
bool isBlockValid(vector <vector <int>> &sudoku, int row, int column, int possval) {
//if 9x9
if (sudoku.size() == 9) {
int startrow = assignBlock9x9(row);
int startcolumn = assignBlock9x9(column);
for (int i = startrow; i <= startrow + 2; i++) {
for (int j = startcolumn; j <= startcolumn + 2; j++) {
if (possval == sudoku[i][j]) {
return false;
}
}
}
}
//if 16x16
else if (sudoku.size()==16) {
int startrow = assignBlock16x16(row);
int startcolumn = assignBlock16x16(column);
for (int i = startrow; i <= startrow + 3; i++) {
for (int j = startcolumn; j <= startcolumn + 3; j++) {
if (possval == sudoku[i][j]) {
return false;
}
}
}
}
//if 25x25
else {
int startrow = assignBlock25x25(row);
int startcolumn = assignBlock25x25(column);
for (int i = startrow; i <= startrow + 4; i++) {
for (int j = startcolumn; j <= startcolumn + 4; j++) {
if (possval == sudoku[i][j]) {
return false;
}
}
}
}
return true;
}
bool isValidSingle(vector <vector <int>> &sudoku, int row, int column, int possval) {
if (isRowValid(sudoku, row, possval) && isColumnValid(sudoku, column, possval) && isBlockValid(sudoku, row, column, possval)) {
return true;
}
return false;
}
bool isRowValid2(vector <vector <int>> &sudoku, int row, int possval) {
int samecount = 0;
for (unsigned int i = 0; i < sudoku.size(); i++) {
if (sudoku[row][i] == possval) {
++samecount;
}
if (samecount == 2) {
return false;
}
}
return true;
}
bool isColumnValid2(vector <vector <int>> &sudoku, int column, int possval) {
int samecount = 0;
for (unsigned int j = 0; j < sudoku.size(); j++) {
if (sudoku[j][column] == possval) {
++samecount;
}
if (samecount == 2) {
return false;
}
}
return true;
}
bool isBlockValid2(vector <vector <int>>& sudoku, int row, int column, int possval) {
int samecount = 0;
//if 9x9
if (sudoku.size() == 9) {
int startrow = assignBlock9x9(row);
int startcolumn = assignBlock9x9(column);
for (int i = startrow; i <= startrow + 2; i++) {
for (int j = startcolumn; j <= startcolumn + 2; j++) {
if (possval == sudoku[i][j]) {
++samecount;
}
if (samecount == 2) {
return false;
}
}
}
}
//if 16x16
else if (sudoku.size() == 16) {
int startrow = assignBlock16x16(row);
int startcolumn = assignBlock16x16(column);
for (int i = startrow; i <= startrow + 3; i++) {
for (int j = startcolumn; j <= startcolumn + 3; j++) {
if (possval == sudoku[i][j]) {
++samecount;
}
if (samecount == 2) {
return false;
}
}
}
}
//if 25x25
else {
int startrow = assignBlock25x25(row);
int startcolumn = assignBlock25x25(column);
for (int i = startrow; i <= startrow + 4; i++) {
for (int j = startcolumn; j <= startcolumn + 4; j++) {
if (possval == sudoku[i][j]) {
++samecount;
}
if (samecount == 2) {
return false;
}
}
}
}
return true;
}
bool isValidSingle2(vector <vector <int>> &sudoku, int row, int column, int possval) {
if (isRowValid2(sudoku, row, possval) && isColumnValid2(sudoku, column, possval) && isBlockValid2(sudoku, row, column, possval)) {
return true;
}
return false;
}
bool sortcol(const vector<int>& v1, const vector<int>& v2) {
return v1[1] < v2[1];
}
bool sortcol2(const vector<int>& v1, const vector<int>& v2) {
return v1[0] < v2[0] && v1[1] == v2[1];
}
vector <vector <int>> Usage(vector <vector <int>> &sudoku) {
vector <int> usage;
vector <vector <int>> usage2;
for (unsigned int i = 0; i < sudoku.size(); i++) {
usage.push_back(0);
}
for (unsigned int row = 0; row < sudoku.size(); row++) {
for (unsigned int column = 0; column < sudoku.size(); column++) {
if (sudoku[row][column] == 0) {
continue;
}
usage[sudoku[row][column] -1] = usage[sudoku[row][column] - 1] + 1;
}
}
for (unsigned int i = 1; i <= sudoku.size(); i++) {
usage2.push_back({(int) i, usage[i - 1] });
}
sort(usage2.begin(), usage2.begin() + usage2.size(), sortcol);
sort(usage2.begin(), usage2.begin() + usage2.size(), sortcol2);
return usage2;
}
There is a problem where I need to fill an array with zeros, with the following assumptions:
in the array there can only be 0 and 1
we can only change 0 to 1 and 1 to 0
when we meet 1 in array, we have to change it to 0, such that its neighbours are also changed, for instance, for the array like the one below:
1 0 1
1 1 1
0 1 0
When we change element at (1,1), we then got the array like this:
1 1 1
0 0 0
0 0 0
We can't change the first row
We can only change the elements that are in the array
The final result is the number of times we have to change 1 to 0 to zero out the array
1) First example, array is like this one below:
0 1 0
1 1 1
0 1 0
the answer is 1.
2) Second example, array is like this one below:
0 1 0 0 0 0 0 0
1 1 1 0 1 0 1 0
0 0 1 1 0 1 1 1
1 1 0 1 1 1 0 0
1 0 1 1 1 0 1 0
0 1 0 1 0 1 0 0
The answer is 10.
There also can be situations that its impossible to zero out the array, then the answer should be "impossible".
Somehow I can't get this working: for the first example, I got the right answer (1) but for the second example, program says impossible instead of 10.
Any ideas what's wrong in my code?
#include <iostream>
using namespace std;
int main(int argc, char **argv)
{
int n,m;
cin >> n >> m;
bool tab[n][m];
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
cin >> tab[i][j];
int counter = 0;
for(int i=0; i<n-1; i++)
{
for(int j=0; j<m-1; j++)
{
if(tab[i][j] == 1 && i > 0 && j > 0)
{
tab[i-1][j] = !tab[i-1][j];
tab[i+1][j] = !tab[i+1][j];
tab[i][j+1] = !tab[i][j+1];
tab[i][j-1] = !tab[i][j-1];
tab[i][j] = !tab[i][j];
counter ++;
}
}
}
bool impossible = 0;
for(int i=0; i<n; i++)
{
for(int j=0; j<m; j++)
{
if(tab[i][j] == 1)
{
cout << "impossible\n";
impossible = 1;
break;
}
}
if(impossible)
break;
}
if(!impossible)
cout << counter << "\n";
return 0;
}
I believe that the reason your program was returning impossible in the 6x8 matrix is because you have been traversing in a left to right / top to bottom fashion, replacing every instance of 1 you encountered with 0. Although this might have seemed as the right solution, all it did was scatter the 1s and 0s around the matrix by modifying it's neighboring values. I think that the way to approach this problem is to start from bottom to top/ right to left and push the 1s towards the first row. In a way cornering (trapping) them until they can get eliminated.
Anyway, here's my solution to this problem. I'm not entirely sure if this is what you were going after, but I think it does the job for the three matrices you provided. The code is not very sophisticated and it would be nice to test it with some harder problems to see if it truly works.
#include <iostream>
static unsigned counter = 0;
template<std::size_t M, std::size_t N>
void print( const bool (&mat) [M][N] )
{
for (std::size_t i = 0; i < M; ++i)
{
for (std::size_t j = 0; j < N; ++j)
std::cout<< mat[i][j] << " ";
std::cout<<std::endl;
}
std::cout<<std::endl;
}
template<std::size_t M, std::size_t N>
void flipNeighbours( bool (&mat) [M][N], unsigned i, unsigned j )
{
mat[i][j-1] = !(mat[i][j-1]);
mat[i][j+1] = !(mat[i][j+1]);
mat[i-1][j] = !(mat[i-1][j]);
mat[i+1][j] = !(mat[i+1][j]);
mat[i][j] = !(mat[i][j]);
++counter;
}
template<std::size_t M, std::size_t N>
bool checkCornersForOnes( const bool (&mat) [M][N] )
{
return (mat[0][0] || mat[0][N-1] || mat[M-1][0] || mat[M-1][N-1]);
}
template<std::size_t M, std::size_t N>
bool isBottomTrue( bool (&mat) [M][N], unsigned i, unsigned j )
{
return (mat[i+1][j]);
}
template<std::size_t M, std::size_t N>
bool traverse( bool (&mat) [M][N] )
{
if (checkCornersForOnes(mat))
{
std::cout<< "-Found 1s in the matrix corners." <<std::endl;
return false;
}
for (std::size_t i = M-2; i > 0; --i)
for (std::size_t j = N-2; j > 0; --j)
if (isBottomTrue(mat,i,j))
flipNeighbours(mat,i,j);
std::size_t count_after_traversing = 0;
for (std::size_t i = 0; i < M; ++i)
for (std::size_t j = 0; j < N; ++j)
count_after_traversing += mat[i][j];
if (count_after_traversing > 0)
{
std::cout<< "-Found <"<<count_after_traversing<< "> 1s in the matrix." <<std::endl;
return false;
}
return true;
}
#define MATRIX matrix4
int main()
{
bool matrix1[3][3] = {{1,0,1},
{1,1,1},
{0,1,0}};
bool matrix2[3][3] = {{0,1,0},
{1,1,1},
{0,1,0}};
bool matrix3[5][4] = {{0,1,0,0},
{1,0,1,0},
{1,1,0,1},
{1,1,1,0},
{0,1,1,0}};
bool matrix4[6][8] = {{0,1,0,0,0,0,0,0},
{1,1,1,0,1,0,1,0},
{0,0,1,1,0,1,1,1},
{1,1,0,1,1,1,0,0},
{1,0,1,1,1,0,1,0},
{0,1,0,1,0,1,0,0}};
std::cout<< "-Problem-" <<std::endl;
print(MATRIX);
if (traverse( MATRIX ) )
{
std::cout<< "-Answer-"<<std::endl;
print(MATRIX);
std::cout<< "Num of flips = "<<counter <<std::endl;
}
else
{
std::cout<< "-The Solution is impossible-"<<std::endl;
print(MATRIX);
}
}
Output for matrix1:
-Problem-
1 0 1
1 1 1
0 1 0
-Found 1s in the matrix corners.
-The Solution is impossible-
1 0 1
1 1 1
0 1 0
Output for matrix2:
-Problem-
0 1 0
1 1 1
0 1 0
-Answer-
0 0 0
0 0 0
0 0 0
Num of flips = 1
Output for matrix3:
-Problem-
0 1 0 0
1 0 1 0
1 1 0 1
1 1 1 0
0 1 1 0
-Found <6> 1s in the matrix.
-The Solution is impossible-
0 1 1 0
1 0 1 1
0 0 0 0
0 0 0 1
0 0 0 0
Output for matrix4 (which addresses your original question):
-Problem-
0 1 0 0 0 0 0 0
1 1 1 0 1 0 1 0
0 0 1 1 0 1 1 1
1 1 0 1 1 1 0 0
1 0 1 1 1 0 1 0
0 1 0 1 0 1 0 0
-Answer-
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Num of flips = 10
Ok, here comes my somewhat different attempt.
Idea
Note: I assume here that "We can't change the first row" means "We can't change the outmost row".
Some terminology:
With toggling a bit I mean changing it's value from 0 to 1 or 1 to 0.
With flipping a bit I mean toggling said bit and the 4 bits around it.
The act of toggling a bit is commutative. That is, it does not matter in what order we toggle it—the end result will always be the same (this is a trivial statement). This means that flipping is also a commutative action, and we are free to flip bits in any order we like.
The only way to toggle a value on the edge of the matrix is by flipping the bit right next to it an uneven amount of times. As we're looking for the lowest possible flips, we want to flip it a maximum of 1 time. So, in a scenario like the on below, x will need to be flipped exactly once, and y will need to be flipped exactly 0 times.
. .
1 x
0 y
. ,
From this we can draw two conclusions:
A corner of the matrix can never be toggled—if a 1 on the corner is found it is not possible with any number of flips to make the matrix zero. Your first example can thus be discarded without even flipping a single bit.
A bit next to a corner must have the same same value as the bit on the other side. This matrix that you posted in a comment can thus as well be discarded without flipping a single bit (bottom right corner).
Two examples of the conditions above:
0 1 .
0 x .
. . .
Not possible, as x needs to be flipped exactly once and exactly zero times.
0 1 .
1 x .
. . .
Possible, x needs to be flipped exactly once.
Algorithm
We can now make an recursive argument, and I propose the following:
We are given an m by n matrix.
Check the corner conditions above as stated above (i.e. corner != 1, bits next to corner has to be the same value). If either criteria are violated, return impossible.
Go around the edge of the matrix. If a 1 is encountered, flip the closest bit inside, and add 1 to the counter.
Restart now from #1 with a m - 2 by n - 2 matrix (top and bot row removed, left and right column) if either dimension is > 2, otherwise print the counter and quit.
Implementation
Initially I had thought this would turn out nice and pretty, but truth be told it is a little more cumbersome than I originally thought it would be as we have to keep track of a lot of indices. Please ask questions if you're wondering about the implementation, but it is in essence a pure translation of the steps above.
#include <iostream>
#include <vector>
using Matrix = std::vector<std::vector<int>>;
void flip_bit(Matrix& mat, int i, int j, int& counter)
{
mat[i][j] = !mat[i][j];
mat[i - 1][j] = !mat[i - 1][j];
mat[i + 1][j] = !mat[i + 1][j];
mat[i][j - 1] = !mat[i][j - 1];
mat[i][j + 1] = !mat[i][j + 1];
++counter;
}
int flip(Matrix& mat, int n, int m, int p = 0, int counter = 0)
{
// I use p for 'padding', i.e. 0 means the full array, 1 means the outmost edge taken away, 2 the 2 most outmost edges, etc.
// max indices of the sub-array
int np = n - p - 1;
int mp = m - p - 1;
// Checking corners
if (mat[p][p] || mat[np][p] || mat[p][mp] || mat[np][mp] || // condition #1
(mat[p + 1][p] != mat[p][p + 1]) || (mat[np - 1][p] != mat[np][p + 1]) || // condition #2
(mat[p + 1][mp] != mat[p][mp - 1]) || (mat[np - 1][mp] != mat[np][mp - 1]))
return -1;
// We walk over all edge values that are *not* corners and
// flipping the bit that are *inside* the current bit if it's 1
for (int j = p + 1; j < mp; ++j) {
if (mat[p][j]) flip_bit(mat, p + 1, j, counter);
if (mat[np][j]) flip_bit(mat, np - 1, j, counter);
}
for (int i = p + 1; i < np; ++i) {
if (mat[i][p]) flip_bit(mat, i, p + 1, counter);
if (mat[i][mp]) flip_bit(mat, i, mp - 1, counter);
}
// Finished or flip the next sub-array?
if (np == 1 || mp == 1)
return counter;
else
return flip(mat, n, m, p + 1, counter);
}
int main()
{
int n, m;
std::cin >> n >> m;
Matrix mat(n, std::vector<int>(m, 0));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
std::cin >> mat[i][j];
}
}
int counter = flip(mat, n, m);
if (counter < 0)
std::cout << "impossible" << std::endl;
else
std::cout << counter << std::endl;
}
Output
3 3
1 0 1
1 1 1
0 1 0
impossible
3 3
0 1 0
1 1 1
0 1 0
1
6 8
0 1 0 0 0 0 0 0
1 1 1 0 1 0 1 0
0 0 1 1 0 1 1 1
1 1 0 1 1 1 0 0
1 0 1 1 1 0 1 0
0 1 0 1 0 1 0 0
10
4 6
0 1 0 0
1 0 1 0
1 1 0 1
1 1 1 0
1 1 1 0
impossible
If tab[0][j] is 1, you have to toggle tab[1][j] to clear it. You then cannot toggle row 1 without unclearing row 0. So it seems like a reduction step. You repeat the step until there is one row left. If that last row is not clear by luck, my intuition is that it's the "impossible" case.
#include <memory>
template <typename Elem>
class Arr_2d
{
public:
Arr_2d(unsigned r, unsigned c)
: rows_(r), columns_(c), data(new Elem[rows_ * columns_]) { }
Elem * operator [] (unsigned row_idx)
{ return(data.get() + (row_idx * columns_)); }
unsigned rows() const { return(rows_); }
unsigned columns() const { return(columns_); }
private:
const unsigned rows_, columns_;
std::unique_ptr<Elem []> data;
};
inline void toggle_one(bool &b) { b = !b; }
void toggle(Arr_2d<bool> &tab, unsigned row, unsigned column)
{
toggle_one(tab[row][column]);
if (column > 0)
toggle_one(tab[row][column - 1]);
if (row > 0)
toggle_one(tab[row - 1][column]);
if (column < (tab.columns() - 1))
toggle_one(tab[row][column + 1]);
if (row < (tab.rows() - 1))
toggle_one(tab[row + 1][column]);
}
int solve(Arr_2d<bool> &tab)
{
int count = 0;
unsigned i = 0;
for ( ; i < (tab.rows() - 1); ++i)
for (unsigned j = 0; j < tab.columns(); ++j)
if (tab[i][j])
{
toggle(tab, i + 1, j);
++count;
}
for (unsigned j = 0; j < tab.columns(); ++j)
if (tab[i][j])
// Impossible.
return(-count);
return(count);
}
unsigned ex1[] = {
0, 1, 0,
1, 1, 1,
0, 1, 0
};
unsigned ex2[] = {
0, 1, 0, 0, 0, 0, 0, 0,
1, 1, 1, 0, 1, 0, 1, 0,
0, 0, 1, 1, 0, 1, 1, 1,
1, 1, 0, 1, 1, 1, 0, 0,
1, 0, 1, 1, 1, 0, 1, 0,
0, 1, 0, 1, 0, 1, 0, 0
};
Arr_2d<bool> load(unsigned rows, unsigned columns, const unsigned *data)
{
Arr_2d<bool> res(rows, columns);
for (unsigned i = 0; i < rows; ++i)
for (unsigned j = 0; j < columns; ++j)
res[i][j] = !!*(data++);
return(res);
}
#include <iostream>
int main()
{
{
Arr_2d<bool> tab = load(3, 3, ex1);
std::cout << solve(tab) << '\n';
}
{
Arr_2d<bool> tab = load(6, 8, ex2);
std::cout << solve(tab) << '\n';
}
return(0);
}
The problem is stated like this:
y
yxy If you flip x, then you have to flip all the ys
y
But it's easy if you think about it like this:
x
yyy If you flip x, then you have to flip all the ys
y
It's the same thing, but now the solution is obvious -- You must flip all the 1s in row 0, which will flip some bits in rows 1 and 2, then you must flip all the 1s in row 1, etc, until you get to the end.
If this is indeed the Lights Out game, then there are plenty of resources that detail how to solve the game. It is also quite likely that this is a duplicate of Lights out game algorithm, as has already been mentioned by other posters.
Let's see if we can't solve the first sample puzzle provided, however, and at least present a concrete description of an algorithm.
The initial puzzle appears to be solvable:
1 0 1
1 1 1
0 1 0
The trick is that you can clear 1's in the top row by changing the values in the row underneath them. I'll provide coordinates by row and column, using a 1-based offset, meaning that the top left value is (1, 1) and the bottom right value is (3, 3).
Change (2, 1), then (2, 3), then (3, 2). I'll show the intermediate states of the board with the * for the cell being changed in the next step.
1 0 1 (2,1) 0 0 1 (2,3) 0 0 0 (3, 2) 0 0 0
* 1 1 ------> 0 0 * ------> 0 1 0 ------> 0 0 0
0 1 0 1 1 0 1 * 1 0 0 0
This board can be solved, and the number of moves appears to be 3.
The pseudo-algorithm is as follows:
flipCount = 0
for each row _below_ the top row:
for each element in the current row:
if the element in the row above is 1, toggle the element in this row:
increment flipCount
if the board is clear, output flipCount
if the board isnt clear, output "Impossible"
I hope this helps; I can elaborate further if required but this is the core of the standard lights out solution. BTW, it is related to Gaussian Elimination; linear algebra crops up in some odd situations :)
Finally, in terms of what is wrong with your code, it appears to be the following loop:
for(int i=0; i<n-1; i++)
{
for(int j=0; j<m-1; j++)
{
if(tab[i][j] == 1 && i > 0 && j > 0)
{
tab[i-1][j] = !tab[i-1][j];
tab[i+1][j] = !tab[i+1][j];
tab[i][j+1] = !tab[i][j+1];
tab[i][j-1] = !tab[i][j-1];
tab[i][j] = !tab[i][j];
counter ++;
}
}
}
Several issues occur to me, but first assumptions again:
i refers to the ith row and there are n rows
j refers to the jth column and there are m columns
I'm now referring to indices that start from 0 instead of 1
If this is the case, then the following is observed:
You could run your for i loop from 1 instead of 0, which means you no longer have to check whether i > 0 in the if statement
You should drop the for j > 0 in the if statement; that check means that you can't flip anything in the first column
You need to change the n-1 in the for i loop as you need to run this for the final row
You need to change the m-1 in the for j loop as you need to run this for the final column (see point 2 also)
You need to check the cell in the row above the current row, so you you should be checking tab[i-1][j] == 1
Now you need to add bounds tests for j-1, j+1 and i+1 to avoid reading outside valid ranges of the matrix
Put these together and you have:
for(int i=1; i<n; i++)
{
for(int j=0; j<m; j++)
{
if(tab[i-1][j] == 1)
{
tab[i-1][j] = !tab[i-1][j];
if (i+1 < n)
tab[i+1][j] = !tab[i+1][j];
if (j+1 < m)
tab[i][j+1] = !tab[i][j+1];
if (j > 0)
tab[i][j-1] = !tab[i][j-1];
tab[i][j] = !tab[i][j];
counter ++;
}
}
}
A little class that can take as a input file or test all possible combination for first row with only zeros, on 6,5 matrix:
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <cstdlib>
#include <ctime>
typedef std::vector< std::vector<int> > Matrix;
class MatrixCleaner
{
public:
void swapElement(int row, int col)
{
if (row >= 0 && row < (int)matrix.size() && col >= 0 && col < (int)matrix[row].size())
matrix[row][col] = !matrix[row][col];
}
void swapElements(int row, int col)
{
swapElement(row - 1, col);
swapElement(row, col - 1);
swapElement(row, col);
swapElement(row, col + 1);
swapElement(row + 1, col);
}
void printMatrix()
{
for (auto &v : matrix)
{
for (auto &val : v)
{
std::cout << val << " ";
}
std::cout << "\n";
}
}
void loadMatrix(std::string path)
{
std::ifstream fileStream;
fileStream.open(path);
matrix.resize(1);
bool enconteredNumber = false;
bool skipLine = false;
bool skipBlock = false;
for (char c; fileStream.get(c);)
{
if (skipLine)
{
if (c != '*')
skipBlock = true;
if (c != '\n')
continue;
else
skipLine = false;
}
if (skipBlock)
{
if (c == '*')
skipBlock = false;
continue;
}
switch (c)
{
case '0':
matrix.back().push_back(0);
enconteredNumber = true;
break;
case '1':
matrix.back().push_back(1);
enconteredNumber = true;
break;
case '\n':
if (enconteredNumber)
{
matrix.resize(matrix.size() + 1);
enconteredNumber = false;
}
break;
case '#':
if(!skipBlock)
skipLine = true;
break;
case '*':
skipBlock = true;
break;
default:
break;
}
}
while (matrix.size() > 0 && matrix.back().empty())
matrix.pop_back();
fileStream.close();
}
void loadRandomValidMatrix(int seed = -1)
{
//Default matrix
matrix = {
{ 0,0,0,0,0 },
{ 0,0,0,0,0 },
{ 0,0,0,0,0 },
{ 0,0,0,0,0 },
{ 0,0,0,0,0 },
{ 0,0,0,0,0 },
};
int setNum = seed;
if(seed < 0)
if(seed < -1)
setNum = std::rand() % -seed;
else
setNum = std::rand() % 33554432;
for (size_t r = 1; r < matrix.size(); r++)
for (size_t c = 0; c < matrix[r].size(); c++)
{
if (setNum & 1)
swapElements(r, c);
setNum >>= 1;
}
}
bool test()
{
bool retVal = true;
for (int i = 0; i < 33554432; i++)
{
loadRandomValidMatrix(i);
if( (i % 1000000) == 0 )
std::cout << "i= " << i << "\n";
if (clean() < 0)
{
// std::cout << "x";
std::cout << "\n" << i << "\n";
retVal = false;
break;
}
else
{
// std::cout << ".";
}
}
return retVal;
}
int clean()
{
int numOfSwaps = 0;
try
{
for (size_t r = 1; r < matrix.size(); r++)
{
for (size_t c = 0; c < matrix[r].size(); c++)
{
if (matrix.at(r - 1).at(c))
{
swapElements(r, c);
numOfSwaps++;
}
}
}
}
catch (...)
{
return -2;
}
if (!matrix.empty())
for (auto &val : matrix.back())
{
if (val == 1)
{
numOfSwaps = -1;
break;
}
}
return numOfSwaps;
}
Matrix matrix;
};
int main(int argc, char **argv)
{
std::srand(std::time(NULL));
MatrixCleaner matrixSwaper;
if (argc > 1)
{
matrixSwaper.loadMatrix(argv[argc - 1]);
std::cout << "intput:\n";
matrixSwaper.printMatrix();
int numOfSwaps = matrixSwaper.clean();
std::cout << "\noutput:\n";
matrixSwaper.printMatrix();
if (numOfSwaps > 0)
std::cout << "\nresult = " << numOfSwaps << " matrix is clean now " << std::endl;
else if (numOfSwaps == 0)
std::cout << "\nresult = " << numOfSwaps << " nothing to clean " << std::endl;
else
std::cout << "\nresult = " << numOfSwaps << " matrix cannot be clean " << std::endl;
}
else
{
std::cout << "Testing ";
if (matrixSwaper.test())
std::cout << " PASS\n";
else
std::cout << " FAIL\n";
}
std::cin.ignore();
return 0;
}