How to handle limitation of Dynamodb BatchWriteItem - amazon-web-services

Just wondering whats the best way to handle the fact that dynamodb can only write batch sizes of max 25.
I have 3 Lambdas (there are more but I am simplifying down so we don't get side tracked)
GetNItemsFromExternalSourceLambda
SaveAllToDynamoDBLambda
AnalyzeDynamoDBLambda
Here is what happens:
GetNItemsFromExternalSourceLambda can potentially fetch 250 items in 1 rest call it makes to an external api.
It then invokes SaveAllToDynamoDBLambda and passes a) all these items and b) paging info e.g. {pageNum:1, pageSize : 250, numPages:5 } in the payload
SaveAllToDynamoDBLambda needs to save all items to a dynamodb table and then , based on the paging info will either a) re-invoke GetNItemsFromExternalSourceLambda (to fetch next page of data) or b) invoke AnalyzeDynamoDBLambda
these steps can loop many times obviously until we have got all the data from the external source before finally proceeding to last step
the final AnalyzeDynamoDBLambda then is some lambda that processes all the data that was fetched and saved to the db
So my problems lies in fact that SaveAllToDynamoDBLambda can only write 25 items in a batch, which means I would have to tell my GetNItemsFromExternalSourceLambda to only fetch 25 items at a time from the external source which is not ideal. (being able to fetch 250 at a time would be a lot better)
One could extend the timeout period of the SaveAllToDynamoDBLambda so that it could do multiple batch writes inside one invocation but i dont like that approach.
I could also zip up the 250 items and save to s3 in one upload which could trigger a stream event but I would have same issue on the other side of that solution.
just wondering whats a better approach while still being able to invoke AnalyzeDynamoDBLambda only after all info from all rest calls has been saved to dynamodb.

Basically the problem is you need a way of subdividing the large batch (250 items in this case) down to batches of 25 of less.
A very simple solution would be to use a Kinesis stream in the middle. Kinesis can take up to 500 records per PutRecords call. You can then use GetRecords with a Limit of 25 and put the records into Dynamo with a single BatchWriteItem call.
Make sure you look at the size limits as well before deciding if this solution will work for you.

Related

Dividing tasks into aws step functions and then join them back when all completed

We have a AWS step function that processes csv files. These CSV files records can be anything from 1 to 4000.
Now, I want to create another inner AWS step function that will process these csv records. The problem is for each record I need to hit another API and for that I want all of the record to be executed asynchronously.
For example - CSV recieved having records of 2500
The step function called another step function 2500 times (The other step function will take a CSV record as input) process it and then store the result in Dynamo or in any other place.
I have learnt about the callback pattern in aws step function but in my case I will be passing 2500 tokens and I want the outer step function to process them when all the 2500 records are done processing.
So my question is this possible using the AWS step function.
If you know any article or guide for me to reference then that would be great.
Thanks in advance
It sounds like dynamic parallelism could work:
To configure a Map state, you define an Iterator, which is a complete sub-workflow. When a Step Functions execution enters a Map state, it will iterate over a JSON array in the state input. For each item, the Map state will execute one sub-workflow, potentially in parallel. When all sub-workflow executions complete, the Map state will return an array containing the output for each item processed by the Iterator.
This keeps the flow all within a single Step Function and allows for easier traceability.
The limiting factor would be the amount of concurrency available (docs):
Concurrent iterations may be limited. When this occurs, some iterations will not begin until previous iterations have completed. The likelihood of this occurring increases when your input array has more than 40 items.
One additional thing to be aware of here is cost. You'll easily blow right through the free tier and start incurring actual cost (link).

AWS dynamodb loop putItem vs batchWrite

Hi I was just wondering if someone could give me clarification on the benefits of batchwrite
If we have let's say 36 items we want to write to dynamodb, i'm using a AWS lambda function and the way I see it I have two options (Pseudo code)
Option One
for item in items:
putItem(item)
Option two
for item in items:
if cnt < 25
batch.push(item)
if cnt == 25
batchWrite(batch)
cnt = 0
cnt++
I feel like option one is quick and dirty but if my items would rarely go over 100 is it that bad (would I time out my lambda etc ..) ?
Anyway best practice clarification on this would be great.
For both of your options, you should implement some kind of parallel send for better controlling and performance, like Promise.allSettled in JS and asyncio parallel in python.
Like mentioned in the comments aboce, using batchWrite does in fact reduce the number of requests called, but one critical limitation is it only accepts up to 25 requests and 16 MB total size in one batch requests , if you expect the requests will exceed this limitation, you need to, and you should implement a way to divide the requests into multiple batches, so that each batch size is under 25 requests and 16 MB.
Using putItem is more simple than using batchWrite, as it doesn't have the limitation mentioned above. But again, you will initiate a lot of API requests.
Both the method does not affect the cost, as AWS does not charge you by the number of API called to them, according to their pricing description, but the actual data write to and read from the DynamoDB table, which are known are WCU and RCU respectively. Btw, data transfer in is not charged.
In conclusion, for both putItem and batchWrite, what you have to concern is (1) how to implement the requests and handle retry incase of error. (2) The quantity of the record to be inserted.

How to know when elasticsearch is ready for query after adding new data?

I am trying to do some unit tests using elasticsearch. I first start by using the index API about 100 times to add new data to my index. Then I use the search API with aggs. The problem is if I don't pause for 1 second after adding data 100 times, I get random results. If I wait 1 second I always get the same result.
I'd rather not have to wait x amount of time in my tests, that seems like bad practice. Is there a way to know when the data is ready?
I am waiting until I get a success response from elasticsearch /index api already, but that is not enough it seems.
First I'd suggest you to index your documents with a single bulk query : it would save some time because of less http/tcp overhead.
To answer your question, you should consider using the refresh=true parameter (or wait_for) while indexing your 100 documents.
As stated in documentation, it would :
Refresh the relevant primary and replica shards (not the whole index)
immediately after the operation occurs, so that the updated document
appears in search results immediately
More about it here :
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-refresh.html

DynamoDB Scan/Query Return x Number of Items

If I scan or query in DynamoDB it is possible to set the Limit property. The DynamoDB documentation says the following:
The maximum number of items to evaluate (not necessarily the number of
matching items).
So the problem with this is if you set filters and such it won't return all the items.
My goal that I'm trying to figure out how to achieve is to have a filter in a scan or query, but have it return x number of items. No matter what. I'm ok with having to use LastEvaluatedKey and make multiple requests, but I would like to try to make it as seamless and easy as possible (so not doing that would be best.
The only way I have thought to do this is to set the Limit property to say 1 or something. Then just keep scanning or querying using the LastEvaluatedKey until I reach that x number of items I'm looking for. Problem is, this seems VERY wasteful and inefficient. I mean if you have a table of millions of records you might have to make thousands and thousands of requests. It doesn't seem like it scales very well. Of course I'm sure it's no different than what DynamoDB would be doing behind the scenes.
But is there a way to do this more efficiently where I can reduce the number of requests I have to make? Or is that the only way to achieve this?
How would you achieve this goal?
A single Query operation will read up to the maximum number of items set (if using the Limit parameter) or a maximum of 1 MB of data and then apply any filtering to the results using FilterExpression.
You're 100% right that Limit is applied before FilterExpression. Meaning Dynamo might return some number or documents less than the Limit while other documents that satisfy the FilterExpression still exist in the table but aren't returned.
Its sounds like it would be unacceptable for your api to behave in the same manner. That is going to mean that in some cases, a single request to your service will result in multiple requests to Dynamo. Also, keep in mind that there is no way to predict what the LastEvaluatedKey will be which would be required to parallelize these requests. So in the case that your service makes multiple requests to Dynamo, they will be serial. To me, this is a rather heavy tradeoff but, if it is a requirement that you satisfy the Limit whenever possible, you have options.
First, Dynamo will automatically page at 1 MB. That means you could simply send your query to Dynamo without a Limit and implement the Limit on your end. You may still need to make multiple requests to ensure that your've satisfied the Limit but this approach will result in the fewest number of requests to Dynamo. The trade off here is the total data being read and transferred. Chances are your Limit will not happen to line up perfectly with the 1 MB limit which means the excess data being read, filtered, and transferred is wasted.
You already mentioned the other extreme of sending a Limit of 1 and pointed out that will result in the maximum number of requests to Dynamo
Another approach along these lines is to create some sort of probabilistic function that takes the Limit given to your service by the client and computes a new Limit for Dynamo. For example, your FilterExpression filters out about half of the documents in the table. That means you can multiply the client Limit by 2 and that would be a reasonable Limit to send to Dynamo. Of the approaches we've talked about so far, this one has the highest potential for efficiency however, it also has the highest potential for complexity. For example, you might find that using a simple linear function is not good enough and instead you need to use machine learning to find a multi-variate non-linear function to calculate the new Limit. This approach also heavily depends on the uniformity of your data in Dynamo as well as your access patterns. Again, you might need machine learning to optimize for those variables.
In any of the cases where you are implementing the Limit on your end, if you plan on sending back the LastEvaluatedKey to the client for subsequent calls to your service, you will also need to take care to keep track of the LastEvaluatedKey that you evaluated. You will no longer be able to rely on the LastEvaluatedKey returned from Dynamo.
The final approach would be to reorganize/regroup your data either with a GSI, a separate table that you keep in sync using Dynamo Streams or a different schema altogether with the goal of not requiring a FilterExpression.

Amazon SimpleDB Woes: Implementing counter attributes

Long story short, I'm rewriting a piece of a system and am looking for a way to store some hit counters in AWS SimpleDB.
For those of you not familiar with SimpleDB, the (main) problem with storing counters is that the cloud propagation delay is often over a second. Our application currently gets ~1,500 hits per second. Not all those hits will map to the same key, but a ballpark figure might be around 5-10 updates to a key every second. This means that if we were to use a traditional update mechanism (read, increment, store), we would end up inadvertently dropping a significant number of hits.
One potential solution is to keep the counters in memcache, and using a cron task to push the data. The big problem with this is that it isn't the "right" way to do it. Memcache shouldn't really be used for persistent storage... after all, it's a caching layer. In addition, then we'll end up with issues when we do the push, making sure we delete the correct elements, and hoping that there is no contention for them as we're deleting them (which is very likely).
Another potential solution is to keep a local SQL database and write the counters there, updating our SimpleDB out-of-band every so many requests or running a cron task to push the data. This solves the syncing problem, as we can include timestamps to easily set boundaries for the SimpleDB pushes. Of course, there are still other issues, and though this might work with a decent amount of hacking, it doesn't seem like the most elegant solution.
Has anyone encountered a similar issue in their experience, or have any novel approaches? Any advice or ideas would be appreciated, even if they're not completely flushed out. I've been thinking about this one for a while, and could use some new perspectives.
The existing SimpleDB API does not lend itself naturally to being a distributed counter. But it certainly can be done.
Working strictly within SimpleDB there are 2 ways to make it work. An easy method that requires something like a cron job to clean up. Or a much more complex technique that cleans as it goes.
The Easy Way
The easy way is to make a different item for each "hit". With a single attribute which is the key. Pump the domain(s) with counts quickly and easily. When you need to fetch the count (presumable much less often) you have to issue a query
SELECT count(*) FROM domain WHERE key='myKey'
Of course this will cause your domain(s) to grow unbounded and the queries will take longer and longer to execute over time. The solution is a summary record where you roll up all the counts collected so far for each key. It's just an item with attributes for the key {summary='myKey'} and a "Last-Updated" timestamp with granularity down to the millisecond. This also requires that you add the "timestamp" attribute to your "hit" items. The summary records don't need to be in the same domain. In fact, depending on your setup, they might best be kept in a separate domain. Either way you can use the key as the itemName and use GetAttributes instead of doing a SELECT.
Now getting the count is a two step process. You have to pull the summary record and also query for 'Timestamp' strictly greater than whatever the 'Last-Updated' time is in your summary record and add the two counts together.
SELECT count(*) FROM domain WHERE key='myKey' AND timestamp > '...'
You will also need a way to update your summary record periodically. You can do this on a schedule (every hour) or dynamically based on some other criteria (for example do it during regular processing whenever the query returns more than one page). Just make sure that when you update your summary record you base it on a time that is far enough in the past that you are past the eventual consistency window. 1 minute is more than safe.
This solution works in the face of concurrent updates because even if many summary records are written at the same time, they are all correct and whichever one wins will still be correct because the count and the 'Last-Updated' attribute will be consistent with each other.
This also works well across multiple domains even if you keep your summary records with the hit records, you can pull the summary records from all your domains simultaneously and then issue your queries to all domains in parallel. The reason to do this is if you need higher throughput for a key than what you can get from one domain.
This works well with caching. If your cache fails you have an authoritative backup.
The time will come where someone wants to go back and edit / remove / add a record that has an old 'Timestamp' value. You will have to update your summary record (for that domain) at that time or your counts will be off until you recompute that summary.
This will give you a count that is in sync with the data currently viewable within the consistency window. This won't give you a count that is accurate up to the millisecond.
The Hard Way
The other way way is to do the normal read - increment - store mechanism but also write a composite value that includes a version number along with your value. Where the version number you use is 1 greater than the version number of the value you are updating.
get(key) returns the attribute value="Ver015 Count089"
Here you retrieve a count of 89 that was stored as version 15. When you do an update you write a value like this:
put(key, value="Ver016 Count090")
The previous value is not removed and you end up with an audit trail of updates that are reminiscent of lamport clocks.
This requires you to do a few extra things.
the ability to identify and resolve conflicts whenever you do a GET
a simple version number isn't going to work you'll want to include a timestamp with resolution down to at least the millisecond and maybe a process ID as well.
in practice you'll want your value to include the current version number and the version number of the value your update is based on to more easily resolve conflicts.
you can't keep an infinite audit trail in one item so you'll need to issue delete's for older values as you go.
What you get with this technique is like a tree of divergent updates. you'll have one value and then all of a sudden multiple updates will occur and you will have a bunch of updates based off the same old value none of which know about each other.
When I say resolve conflicts at GET time I mean that if you read an item and the value looks like this:
11 --- 12
/
10 --- 11
\
11
You have to to be able to figure that the real value is 14. Which you can do if you include for each new value the version of the value(s) you are updating.
It shouldn't be rocket science
If all you want is a simple counter: this is way over-kill. It shouldn't be rocket science to make a simple counter. Which is why SimpleDB may not be the best choice for making simple counters.
That isn't the only way but most of those things will need to be done if you implement an SimpleDB solution in lieu of actually having a lock.
Don't get me wrong, I actually like this method precisely because there is no lock and the bound on the number of processes that can use this counter simultaneously is around 100. (because of the limit on the number of attributes in an item) And you can get beyond 100 with some changes.
Note
But if all these implementation details were hidden from you and you just had to call increment(key), it wouldn't be complex at all. With SimpleDB the client library is the key to making the complex things simple. But currently there are no publicly available libraries that implement this functionality (to my knowledge).
To anyone revisiting this issue, Amazon just added support for Conditional Puts, which makes implementing a counter much easier.
Now, to implement a counter - simply call GetAttributes, increment the count, and then call PutAttributes, with the Expected Value set correctly. If Amazon responds with an error ConditionalCheckFailed, then retry the whole operation.
Note that you can only have one expected value per PutAttributes call. So, if you want to have multiple counters in a single row, then use a version attribute.
pseudo-code:
begin
attributes = SimpleDB.GetAttributes
initial_version = attributes[:version]
attributes[:counter1] += 3
attributes[:counter2] += 7
attributes[:version] += 1
SimpleDB.PutAttributes(attributes, :expected => {:version => initial_version})
rescue ConditionalCheckFailed
retry
end
I see you've accepted an answer already, but this might count as a novel approach.
If you're building a web app then you can use Google's Analytics product to track page impressions (if the page to domain-item mapping fits) and then to use the Analytics API to periodically push that data up into the items themselves.
I haven't thought this through in detail so there may be holes. I'd actually be quite interested in your feedback on this approach given your experience in the area.
Thanks
Scott
For anyone interested in how I ended up dealing with this... (slightly Java-specific)
I ended up using an EhCache on each servlet instance. I used the UUID as a key, and a Java AtomicInteger as the value. Periodically a thread iterates through the cache and pushes rows to a simpledb temp stats domain, as well as writing a row with the key to an invalidation domain (which fails silently if the key already exists). The thread also decrements the counter with the previous value, ensuring that we don't miss any hits while it was updating. A separate thread pings the simpledb invalidation domain, and rolls up the stats in the temporary domains (there are multiple rows to each key, since we're using ec2 instances), pushing it to the actual stats domain.
I've done a little load testing, and it seems to scale well. Locally I was able to handle about 500 hits/second before the load tester broke (not the servlets - hah), so if anything I think running on ec2 should only improve performance.
Answer to feynmansbastard:
If you want to store huge amount of events i suggest you to use distributed commit log systems such as kafka or aws kinesis. They allow to consume stream of events cheap and simple (kinesis's pricing is 25$ per month for 1K events per seconds) – you just need to implement consumer (using any language), which bulk reads all events from previous checkpoint, aggregates counters in memory then flushes data into permanent storage (dynamodb or mysql) and commit checkpoint.
Events can be logged simply using nginx log and transfered to kafka/kinesis using fluentd. This is very cheap, performant and simple solution.
Also had similiar needs/challenges.
I looked at using google analytics and count.ly. the latter seemed too expensive to be worth it (plus they have a somewhat confusion definition of sessions). GA i would have loved to use, but I spent two days using their libraries and some 3rd party ones (gadotnet and one other from maybe codeproject). unfortunately I could only ever see counters post in GA realtime section, never in the normal dashboards even when the api reported success. we were probably doing something wrong but we exceeded our time budget for ga.
We already had an existing simpledb counter that updated using conditional updates as mentioned by previous commentor. This works well, but suffers when there is contention and conccurency where counts are missed (for example, our most updated counter lost several million counts over a period of 3 months, versus a backup system).
We implemented a newer solution which is somewhat similiar to the answer for this question, except much simpler.
We just sharded/partitioned the counters. When you create a counter you specify the # of shards which is a function of how many simulatenous updates you expect. this creates a number of sub counters, each which has the shard count started with it as an attribute :
COUNTER (w/5shards) creates :
shard0 { numshards = 5 } (informational only)
shard1 { count = 0, numshards = 5, timestamp = 0 }
shard2 { count = 0, numshards = 5, timestamp = 0 }
shard3 { count = 0, numshards = 5, timestamp = 0 }
shard4 { count = 0, numshards = 5, timestamp = 0 }
shard5 { count = 0, numshards = 5, timestamp = 0 }
Sharded Writes
Knowing the shard count, just randomly pick a shard and try to write to it conditionally. If it fails because of contention, choose another shard and retry.
If you don't know the shard count, get it from the root shard which is present regardless of how many shards exist. Because it supports multiple writes per counter, it lessens the contention issue to whatever your needs are.
Sharded Reads
if you know the shard count, read every shard and sum them.
If you don't know the shard count, get it from the root shard and then read all and sum.
Because of slow update propogation, you can still miss counts in reading but they should get picked up later. This is sufficient for our needs, although if you wanted more control over this you could ensure that- when reading- the last timestamp was as you expect and retry.