convert tree to another tree with new format in Ocaml - ocaml

I want to convert on tree to another tree with different type ,about 1 week i tried the different solution but i didn't successful, please help me.
my code is :
type (a',b') Tree = Lead of a'| Noeud of b'*a'*(a',b')Tree list
type strTree = st of int | Leaf of String | Tree of string *Strin* strTree list
val Tree-strTree :(a'->string)->(b'->string)->(a',b')Tree -> strTree
let Tree-strTree p pp a =
let rec mapA a' = match a' with
| Lead _ -> Tree ("","",[])
| Noeud (f,r,l)-> Tree(p f ,pp r ,fold_left(fun x y->x # [mapA y])[] l)
in
mapA a
Error: unbound value fold_left
I don't Know how i can use fold_left

There is a fold_left function in the List module. You just need to give the name of the module:
List.fold_left (fun x y -> ... )
However, as others have noted there are many other problems with your code, at least as you have shown it here.

Related

How can I make the find function in ocaml?

I have to implement the find function of the module List:
val find : ('a -> bool) -> 'a list -> 'a
This is that I've got, but I don't get the type of the function, so I'm really lost:
let rec find p l= match l with
[]-> raise(Not_found)
| h::t -> if h=p then p else find p t;;
This is the type of my function find:
val find : 'a -> 'a list -> 'a = <fun>
The problem is probably you misunderstood what find was supposed to do.
What you wrote is trying to find p in a list, while find takes p to be a predicate, i.e., a property. You want to find an element x in the list satisfying p, i.e., such that p x is true.
Say you have the following:
type account = { name : string; amount : int; }
let accounts = [{name = "Musterman"; amount = 10}; {name = "Musterfrau"; amount = -90}]
then you can find the account for "Musterman" by using:
List.find (fun a -> a.name = "Musterman") accounts
or accounts with a negative balance using
List.find (fun a -> a.amount < 0) accounts
Having the first argument of List.find be a function returning true when an list item is found makes List.find much more useful than a simple comparison to a know item.
If you have a list like:
let lst = [10; 1; 9; 2; ]
Then your find should take a function like:
find (fun x -> x = 10) lst
The above will find the node in the list which equals 10 if it exists.

Create a list with data extracted from a list of tuples - type issue

My data is ordered like this:
([(x1,y1,z1);(x2,y2,z2);(x3,y3,z3);........;(xn,yn,zn)], e:int)
Example: I try to create a list [x1;x2;x3;....;xn;e] where a value is found only once.
I began the following code but I encounter an issue with type.
let rec verifie_doublons_liste i liste = match liste with
| [] -> false
| head::tail -> i = head || verifie_doublons_liste i tail
let rec existence_doublon liste = match liste with
| [] -> false
| head::tail -> (verifie_doublons_liste head tail) ||
existence_doublon tail
let premier_du_triplet (x,y,z) = x
let deuxieme_du_triplet (x,y,z) = y
let troisieme_du_triplet (x,y,z) = z
let rec extract_donnees l = match l with
| [] -> []
| (x,y,z)::r -> (extract_donnees r)##(x::z::[])
let arrange donnees = match donnees with
| [],i -> i::[]
| (x,y,z)::[],i -> x::z::i::[]
| (x,y,z)::r,i -> (extract_donnees r)##(x::z::i::[])
Basically, you want to extract first elements in a list of tuples, and add the e elemnent at the end.
The easiest way is to use a List.map to extract the first elements
List.map premier_du_triplet
is a function that will take a list of 3-tuples and extract the first element of each.
then you can add the e element at the end using the "#" operator.
The more efficient and informative way would be to directly write a recursive function, say f that does just what you want.
When writing a recursive function, you need to ask yourself two things
what does it do in the simplest case (here, what does f [] do ?)
when you have a list in format head::tail, and you can already use f on the tail, what should you do to head and tail to obtain (f (head::tail)) ?
With this information, you should be able to write a recursive function that does what you want using pattern matching
here the simplest case is
| [] -> [e]
(you just add e at the end)
and the general case is
| h::t -> (premier_de_triplet h)::(f t)

OCaml option type in binary tree

I have a few problems creating a tree size function with type 'a option tree -> int
type 'a tree = Leaf of 'a
| Fork of 'a * 'a tree * 'a tree
How would I create a t_opt_size function with type 'a option tree -> int?
I know I would have to use Some and the None operate.
I have this so far, but it's complicated to match with the option type.
let rec t_size (tr: 'a tree): int =
match tr with
| Leaf _ -> 1
| Fork (_, t1, t2) -> t_size t1 + t_size t2 + 1
I assume from your comments that you want a leaf that looks like (Leaf None) not to be counted in your tree size calculation.
Seems like the key is to split this:
| Leaf _ -> 1
Into two cases:
| Leaf None -> (* Left as exercise *)
| Leaf (Some _) -> (* Left as exercise *)
Since OCaml will take the first match, you can abbreviate this as follows if you like:
| Leaf None -> (* Left as exercise *)
| Leaf _ -> (* Left as exercise *)
You should make a similar change to the Fork case, though I have to say that Fork (None, l, r) doesn't really work for constructing a search tree.
If you want to generalize, you might need to write a generic tree walker which accepts a visitor function. I recommend you try to implement fold_tree, which accepts: (1) a fold function, taking some value, a tree and producing a new result ('a -> 'b t -> 'c), (2) an initial element of type 'a as well as (3) a tree. Then, fold_tree returns a value of type 'c.
Then, you should be able to call fold_tree with a function that skips over None leaves but otherwise increment the count like you did.
If you don't want to count all values in the tree as 1, but each depending on its contents, write a function that determines the count per value and use that:
let weight = function
| _ -> 1 (* or anything else *)
let rec t_opt_size (tr: 'a tree): int = match tr with
| Leaf v -> weight v
| Fork (v, t1, t2) -> t_size t1 + t_size t2 + weight v
You even might want to generalise and pass the weight function as a parameter to t_size instead of writing different size functions that all use their own weighting.

List transform error in OCaml

I am new to OCaml and I am trying to write a function to do this:
(4,a)(1,b)(2,c)(2,a)(1,d)(4,e) --> ((4 a) b (2 c) (2 a) d (4 e))
and this is what I wrote:
let rec transform l =
match l with
| (x,y)::t -> if x = 1 then y::transform(t) else [x; y]::transform(t)
| [] -> []
I put it in the ocaml interpreter but error generated like this:
Error: This expression has type int list
but an expression was expected of type int
Could anyone give some help?
Your example transformation doesn't make it clear what the types of the values are supposed to be.
If they're supposed to be lists, the result isn't a possible list in OCaml. OCaml lists are homogeneous, i.e., all the elements of the list have the same type. This is (in essence) what the compiler is complaining about.
Update
Looking at your code, the problem is here:
if x = 1
then y :: transform (t)
else [x; y] :: transform t
Let's say the type of y is 'a. The expression after then seems to have type 'a list, because y is the head of the list. The expression after else seems to have type 'a list list, because a list containing y is the head of the list. These aren't the same type.
The main problem is to decide how to represent something as either (4 a) or b. The usual OCaml way to represent something-or-something-else is variants, so let's define one of those:
type 'a element =
| Single of 'a
| Count of int * 'a
let rec transform = function
| [] -> []
| (x,y)::t ->
if x = 1 then Single y::transform t
else Count (x, y)::transform t
Note that this won't print in quite the way you want, unless you register a printer with the toplevel.
Or better:
let compact (x, y) =
if x = 1 then Single y else Count (x, y)
let transform list = List.map compact list

Combine Lists with Same Heads in a 2D List (OCaml)

I'm working with a list of lists in OCaml, and I'm trying to write a function that combines all of the lists that share the same head. This is what I have so far, and I make use of the List.hd built-in function, but not surprisingly, I'm getting the failure "hd" error:
let rec combineSameHead list nlist = match list with
| [] -> []#nlist
| h::t -> if List.hd h = List.hd (List.hd t)
then combineSameHead t nlist#uniq(h#(List.hd t))
else combineSameHead t nlist#h;;
So for example, if I have this list:
[[Sentence; Quiet]; [Sentence; Grunt]; [Sentence; Shout]]
I want to combine it into:
[[Sentence; Quiet; Grunt; Shout]]
The function uniq I wrote just removes all duplicates within a list. Please let me know how I would go about completing this. Thanks in advance!
For one thing, I generally avoid functions like List.hd, as pattern maching is usually clearer and less error-prone. In this case, your if can be replaced with guarded patterns (a when clause after the pattern). I think what is happening to cause your error is that your code fails when t is []; guarded patterns help avoid this by making the cases more explicit. So, you can do (x::xs)::(y::ys)::t when x = y as a clause in your match expression to check that the heads of the first two elements of the list are the same. It's not uncommon in OCaml to have several successive patterns which are identical except for guards.
Further things: you don't need []#nlist - it's the same as just writing nlist.
Also, it looks like your nlist#h and similar expressions are trying to concatenate lists before passing them to the recursive call; in OCaml, however, function application binds more tightly than any operator, so it actually appends the result of the recursive call to h.
I don't, off-hand, have a correct version of the function. But I would start by writing it with guarded patterns, and then see how far that gets you in working it out.
Your intended operation has a simple recursive description: recursively process the tail of your list, then perform an "insert" operation with the head which looks for a list that begins with the same head and, if found, inserts all elements but the head, and otherwise appends it at the end. You can then reverse the result to get your intended list of list.
In OCaml, this algorithm would look like this:
let process list =
let rec insert (head,tail) = function
| [] -> head :: tail
| h :: t ->
match h with
| hh :: tt when hh = head -> (hh :: (tail # t)) :: t
| _ -> h :: insert (head,tail) t
in
let rec aux = function
| [] -> []
| [] :: t -> aux t
| (head :: tail) :: t -> insert (head,tail) (aux t)
in
List.rev (aux list)
Consider using a Map or a hash table to keep track of the heads and the elements found for each head. The nlist auxiliary list isn't very helpful if lists with the same heads aren't adjacent, as in this example:
# combineSameHead [["A"; "a0"; "a1"]; ["B"; "b0"]; ["A"; "a2"]]
- : list (list string) = [["A"; "a0"; "a1"; "a2"]; ["B"; "b0"]]
I probably would have done something along the lines of what antonakos suggested. It would totally avoid the O(n) cost of searching in a list. You may also find that using a StringSet.t StringMap.t be easier on further processing. Of course, readability is paramount, and I still find this hold under that criteria.
module OrderedString =
struct
type t = string
let compare = Pervasives.compare
end
module StringMap = Map.Make (OrderedString)
module StringSet = Set.Make (OrderedString)
let merge_same_heads lsts =
let add_single map = function
| hd::tl when StringMap.mem hd map ->
let set = StringMap.find hd map in
let set = List.fold_right StringSet.add tl set in
StringMap.add hd set map
| hd::tl ->
let set = List.fold_right StringSet.add tl StringSet.empty in
StringMap.add hd set map
| [] ->
map
in
let map = List.fold_left add_single StringMap.empty lsts in
StringMap.fold (fun k v acc-> (k::(StringSet.elements v))::acc) map []
You can do a lot just using the standard library:
(* compares the head of a list to a supplied value. Used to partition a lists of lists *)
let partPred x = function h::_ -> h = x
| _ -> false
let rec combineHeads = function [] -> []
| []::t -> combineHeads t (* skip empty lists *)
| (hh::_ as h)::t -> let r, l = List.partition (partPred hh) t in (* split into lists with the same head as the first, and lists with different heads *)
(List.fold_left (fun x y -> x # (List.tl y)) h r)::(combineHeads l) (* combine all the lists with the same head, then recurse on the remaining lists *)
combineHeads [[1;2;3];[1;4;5;];[2;3;4];[1];[1;5;7];[2;5];[3;4;6]];;
- : int list list = [[1; 2; 3; 4; 5; 5; 7]; [2; 3; 4; 5]; [3; 4; 6]]
This won't be fast (partition, fold_left and concat are all O(n)) however.