Depth/Disparity Map from a moving camera in OpenCV - c++

Is that possible to get the depth/disparity map from a moving camera? Let say I capture an image at x location, after I travelled let say 5cm and I capture another picture, and from there I calculate the depth map of the image.
I have tried using BlockMatching in opencv but the result is not good.The first and second image are as following:
first image,second image,
disparity map (colour),disparity map
My code is as following:
GpuMat leftGPU;
GpuMat rightGPU;
leftGPU.upload(left);rightGPU.upload(right);
GpuMat disparityGPU;
GpuMat disparityGPU2;
Mat disparity;Mat disparity1,disparity2;
Ptr<cuda::StereoBM> stereo = createStereoBM(256,3);
stereo->setMinDisparity(-39);
stereo->setPreFilterCap(61);
stereo->setPreFilterSize(3);
stereo->setSpeckleRange(1);
stereo->setUniquenessRatio(0);
stereo->compute(leftGPU,rightGPU,disparityGPU);
drawColorDisp(disparityGPU, disparityGPU2,256);
disparityGPU.download(disparity);
disparityGPU2.download(disparity2);
imshow("display img",disparityGPU);
how can I improve upon this? From the colour disparity map, there are quite a lot error (ie. the tall circle is red in colour and it is the same as some of the part of the table.). Also,from the disparity map, there are small noise (all the black dots in the picture), how can I pad those black dots with nearby disparities?

It is possible if the object is static.
To properly do stereo matching, you first need to rectify your images! If you don't have calibrated cameras, you can do this from detected feature points. Also note that for cuda::StereoBM the minimum default disparity is 0. (I have never used cuda, but I don't think your setMinDisparity is doing anything, see this anser.)
Now, in your example images corresponding points are only about 1 row apart, therefore your disparity map actually doesn't look too bad. Maybe having a larger blockSize would already do in this special case.
Finally, your objects have very low texture, therefore the block matching algorithm can't detect much.

Related

cv::detail::MultiBandBlender strange white streaks at the end of the photo

I'm working with OpenCV 3.4.8 with C++11 and I'm trying to blend images together.
In this example I have 2 images (thiers mask shown in the screen belowe). I have georeference, so I can easy calculate corners of this images in the final image.
The data outside the masks are black.
My code looks like something like that:
std::vector<cv::UMat> inputImages;
std::vector<cv::UMat> masks;
std::vector<cv::Point> corners;
std::vector<cv::Size> imgSizes;
/*
here is code where I load images, create thier masks
(like in the screen above) and calculate corners.
*/
cv::Ptr<cv::detail::SeamFinder> seamFinder = new cv::detail::DpSeamFinder();
seamFinder->find(inputImages, corners, masks);
cv::Ptr<cv::detail::Blender> blender = new cv::detail:: MultiBandBlender(false);
blender->prepare(corners, imgSizes);
for(size_t i = 0; i < inputImages.size(); i++)
{
blender->feed(inputImages[i], masks[i], corners[i]);
}
cv::UMat blendedImg, outMask;
blender->blend(blendedImg, outMask);
SeamFinder gives me result like in the screen above. Finded seam lines looks good and Im very satisied form them. But the other problem occurs in the next step. The MultiBandBlender is making strange white streaks when the seam line goes on the end of the data.
This is an example:
When I don't use blender, but just use masks to cut the oryginal images and just add (cv::add()) images together with additional alpha channel (made from masks) I get very good results without any holes and strange colors, but I need to have more smoothed transition :/
Can anyone help me? When I create MultiBand Blender with smaller num_bands the white streaks are smaller, and with the num_bands = 0 the results looks like with just adding images.
I looked at feed() and blend() methods in the MultiBandBlender and I think that it is connected with Gaussian or Laplacian pyramid and the final restoring images from Laplacian pyramid in the blend() method.
EDIT1:
When Gaussian and Laplacian pyramids are created the copyMakeBorder(), which prevents the MultiBandBlender from making this white streaks when images are fully filled with the data. So in my case I think that I need to create my blender almost the same like MultiBandBlender, but copyMakeBorder() method in the feed() method change to the something that will "extend" my image inside the mask, like #AlexanderKondratskiy suggested.
Now I don't know how to achive correct "extend" similar to BORDER_REFLECT or BORDER_REFLECT_101.
I suspect your input images contain white pixels outside those masks. The white banding occurs around the areas where the seam follows the mask exactly. For Laplacian for example, pixels outside the mask do influence the final result, as each layer of a pyramid is essentially some blurring kernel on the image.
If you have some kind of good data outside the mask, keep it. If you do not, I suggest "extending" your image beyond the mask to maintain a smooth transition.
Edit:
Here's two things you could try, unless someone with more experience with OpenCV comes along.
To prove/disprove my hypothesis, fill the black region with just the average or median color within the mask. This should make the transition to the outside region less sharp, and hopefully reduce the artefacts. If that does not happen, my answer is wrong.
In terms of what is probably a good generalization of "BORDER_REFLECT" when the edge is arbitrary, you could try something like this:
Find the centroid c of the mask polygon
For each pixel p outside the mask, think of the line between it and c
Calculate point p' along this line that is the same distance inside the mask area, as p is from the mask edge. (i.e. you're reflecting along the mask edge)
Linearly interpolate the color of from the neighbors of p' (as it's position may not fall exactly in the middle of a pixel). That's the color of pixel p

Rectangle detection / tracking using OpenCV

What I need
I'm currently working on an augmented reality kinda game. The controller that the game uses (I'm talking about the physical input device here) is a mono colored, rectangluar pice of paper. I have to detect the position, rotation and size of that rectangle in the capture stream of the camera. The detection should be invariant on scale and invariant on rotation along the X and Y axes.
The scale invariance is needed in case that the user moves the paper away or towards the camera. I don't need to know the distance of the rectangle so scale invariance translates to size invariance.
The rotation invariance is needed in case the user tilts the rectangle along its local X and / or Y axis. Such a rotation changes the shape of the paper from rectangle to trapezoid. In this case, the object oriented bounding box can be used to measure the size of the paper.
What I've done
At the beginning there is a calibration step. A window shows the camera feed and the user has to click on the rectangle. On click, the color of the pixel the mouse is pointing at is taken as reference color. The frames are converted into HSV color space to improve color distinguishing. I have 6 sliders that adjust the upper and lower thresholds for each channel. These thresholds are used to binarize the image (using opencv's inRange function).
After that I'm eroding and dilating the binary image to remove noise and unite nerby chunks (using opencv's erode and dilate functions).
The next step is finding contours (using opencv's findContours function) in the binary image. These contours are used to detect the smallest oriented rectangles (using opencv's minAreaRect function). As final result I'm using the rectangle with the largest area.
A short conclusion of the procedure:
Grab a frame
Convert that frame to HSV
Binarize it (using the color that the user selected and the thresholds from the sliders)
Apply morph ops (erode and dilate)
Find contours
Get the smallest oriented bouding box of each contour
Take the largest of those bounding boxes as result
As you may noticed, I don't make an advantage of the knowledge about the actual shape of the paper, simply because I don't know how to use this information properly.
I've also thought about using the tracking algorithms of opencv. But there were three reasons that prevented me from using them:
Scale invariance: as far as I read about some of the algorithms, some don't support different scales of the object.
Movement prediction: some algorithms use movement prediction for better performance, but the object I'm tracking moves completely random and therefore unpredictable.
Simplicity: I'm just looking for a mono colored rectangle in an image, nothing fancy like car or person tracking.
Here is a - relatively - good catch (binary image after erode and dilate)
and here is a bad one
The Question
How can I improve the detection in general and especially to be more resistant against lighting changes?
Update
Here are some raw images for testing.
Can't you just use thicker material?
Yes I can and I already do (unfortunately I can't access these pieces at the moment). However, the problem still remains. Even if I use material like cartboard. It isn't bent as easy as paper, but one can still bend it.
How do you get the size, rotation and position of the rectangle?
The minAreaRect function of opencv returns a RotatedRect object. This object contains all the data I need.
Note
Because the rectangle is mono colored, there is no possibility to distinguish between top and bottom or left and right. This means that the rotation is always in range [0, 180] which is perfectly fine for my purposes. The ratio of the two sides of the rect is always w:h > 2:1. If the rectangle would be a square, the range of roation would change to [0, 90], but this can be considered irrelevant here.
As suggested in the comments I will try histogram equalization to reduce brightness issues and take a look at ORB, SURF and SIFT.
I will update on progress.
The H channel in the HSV space is the Hue, and it is not sensitive to the light changing. Red range in about [150,180].
Based on the mentioned information, I do the following works.
Change into the HSV space, split the H channel, threshold and normalize it.
Apply morph ops (open)
Find contours, filter by some properties( width, height, area, ratio and so on).
PS. I cannot fetch the image you upload on the dropbox because of the NETWORK. So, I just use crop the right side of your second image as the input.
imgname = "src.png"
img = cv2.imread(imgname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
## Split the H channel in HSV, and get the red range
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h,s,v = cv2.split(hsv)
h[h<150]=0
h[h>180]=0
## normalize, do the open-morp-op
normed = cv2.normalize(h, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(3,3))
opened = cv2.morphologyEx(normed, cv2.MORPH_OPEN, kernel)
res = np.hstack((h, normed, opened))
cv2.imwrite("tmp1.png", res)
Now, we get the result as this (h, normed, opened):
Then find contours and filter them.
contours = cv2.findContours(opened, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
print(len(contours))[-2]
bboxes = []
rboxes = []
cnts = []
dst = img.copy()
for cnt in contours:
## Get the stright bounding rect
bbox = cv2.boundingRect(cnt)
x,y,w,h = bbox
if w<30 or h < 30 or w*h < 2000 or w > 500:
continue
## Draw rect
cv2.rectangle(dst, (x,y), (x+w,y+h), (255,0,0), 1, 16)
## Get the rotated rect
rbox = cv2.minAreaRect(cnt)
(cx,cy), (w,h), rot_angle = rbox
print("rot_angle:", rot_angle)
## backup
bboxes.append(bbox)
rboxes.append(rbox)
cnts.append(cnt)
The result is like this:
rot_angle: -2.4540319442749023
rot_angle: -1.8476102352142334
Because the blue rectangle tag in the source image, the card is splited into two sides. But a clean image will have no problem.
I know it's been a while since I asked the question. I recently continued on the topic and solved my problem (although not through rectangle detection).
Changes
Using wood to strengthen my controllers (the "rectangles") like below.
Placed 2 ArUco markers on each controller.
How it works
Convert the frame to grayscale,
downsample it (to increase performance during detection),
equalize the histogram using cv::equalizeHist,
find markers using cv::aruco::detectMarkers,
correlate markers (if multiple controllers),
analyze markers (position and rotation),
compute result and apply some error correction.
It turned out that the marker detection is very robust to lighting changes and different viewing angles which allows me to skip any calibration steps.
I placed 2 markers on each controller to increase the detection robustness even more. Both markers has to be detected only one time (to measure how they correlate). After that, it's sufficient to find only one marker per controller as the other can be extrapolated from the previously computed correlation.
Here is a detection result in a bright environment:
in a darker environment:
and when hiding one of the markers (the blue point indicates the extrapolated marker postition):
Failures
The initial shape detection that I implemented didn't perform well. It was very fragile to lighting changes. Furthermore, it required an initial calibration step.
After the shape detection approach I tried SIFT and ORB in combination with brute force and knn matcher to extract and locate features in the frames. It turned out that mono colored objects don't provide much keypoints (what a surprise). The performance of SIFT was terrible anyway (ca. 10 fps # 540p).
I drew some lines and other shapes on the controller which resulted in more keypoints beeing available. However, this didn't yield in huge improvements.

How to align 2 images based on their content with OpenCV

I am totally new to OpenCV and I have started to dive into it. But I'd need a little bit of help.
So I want to combine these 2 images:
I would like the 2 images to match along their edges (ignoring the very right part of the image for now)
Can anyone please point me into the right direction? I have tried using the findTransformECC function. Here's my implementation:
cv::Mat im1 = [imageArray[1] CVMat3];
cv::Mat im2 = [imageArray[0] CVMat3];
// Convert images to gray scale;
cv::Mat im1_gray, im2_gray;
cvtColor(im1, im1_gray, CV_BGR2GRAY);
cvtColor(im2, im2_gray, CV_BGR2GRAY);
// Define the motion model
const int warp_mode = cv::MOTION_AFFINE;
// Set a 2x3 or 3x3 warp matrix depending on the motion model.
cv::Mat warp_matrix;
// Initialize the matrix to identity
if ( warp_mode == cv::MOTION_HOMOGRAPHY )
warp_matrix = cv::Mat::eye(3, 3, CV_32F);
else
warp_matrix = cv::Mat::eye(2, 3, CV_32F);
// Specify the number of iterations.
int number_of_iterations = 50;
// Specify the threshold of the increment
// in the correlation coefficient between two iterations
double termination_eps = 1e-10;
// Define termination criteria
cv::TermCriteria criteria (cv::TermCriteria::COUNT+cv::TermCriteria::EPS, number_of_iterations, termination_eps);
// Run the ECC algorithm. The results are stored in warp_matrix.
findTransformECC(
im1_gray,
im2_gray,
warp_matrix,
warp_mode,
criteria
);
// Storage for warped image.
cv::Mat im2_aligned;
if (warp_mode != cv::MOTION_HOMOGRAPHY)
// Use warpAffine for Translation, Euclidean and Affine
warpAffine(im2, im2_aligned, warp_matrix, im1.size(), cv::INTER_LINEAR + cv::WARP_INVERSE_MAP);
else
// Use warpPerspective for Homography
warpPerspective (im2, im2_aligned, warp_matrix, im1.size(),cv::INTER_LINEAR + cv::WARP_INVERSE_MAP);
UIImage* result = [UIImage imageWithCVMat:im2_aligned];
return result;
I have tried playing around with the termination_eps and number_of_iterations and increased/decreased those values, but they didn't really make a big difference.
So here's the result:
What can I do to improve my result?
EDIT: I have marked the problematic edges with red circles. The goal is to warp the bottom image and make it match with the lines from the image above:
I did a little bit of research and I'm afraid the findTransformECC function won't give me the result I'd like to have :-(
Something important to add:
I actually have an array of those image "stripes", 8 in this case, they all look similar to the images shown here and they all need to be processed to match the line. I have tried experimenting with the stitch function of OpenCV, but the results were horrible.
EDIT:
Here are the 3 source images:
The result should be something like this:
I transformed every image along the lines that should match. Lines that are too far away from each other can be ignored (the shadow and the piece of road on the right portion of the image)
By your images, it seems that they overlap. Since you said the stitch function didn't get you the desired results, implement your own stitching. I'm trying to do something close to that too. Here is a tutorial on how to implement it in c++: https://ramsrigoutham.com/2012/11/22/panorama-image-stitching-in-opencv/
You can use Hough algorithm with high threshold on two images and then compare the vertical lines on both of them - most of them should be shifted a bit, but keep the angle.
This is what I've got from running this algorithm on one of the pictures:
Filtering out horizontal lines should be easy(as they are represented as Vec4i), and then you can align the remaining lines together.
Here is the example of using it in OpenCV's documentation.
UPDATE: another thought. Aligning the lines together can be done with the concept similar to how cross-correlation function works. Doesn't matter if picture 1 has 10 lines, and picture 2 has 100 lines, position of shift with most lines aligned(which is, mostly, the maximum for CCF) should be pretty close to the answer, though this might require some tweaking - for example giving weight to every line based on its length, angle, etc. Computer vision never has a direct way, huh :)
UPDATE 2: I actually wonder if taking bottom pixels line of top image as an array 1 and top pixels line of bottom image as array 2 and running general CCF over them, then using its maximum as shift could work too... But I think it would be a known method if it worked good.

Match object between different video frames

Am trying to use OPENCV to detect the shift in consecutive video frames when the camera is unstable and moving real time as shown in the picture.. To compensate the effect of shaking or changing in the angle I want to match some objects in the image as example the clock and from the center of the same object in the consecutive frames I can detect the shift value and compensate its effect. I don't know the way to do this real time or how many ways are available and accurate to do this.
Thank you in advance and I hope my question is clear.
This is a fairly standard operation, as it's actively used in MPEG-4 compression. It's called "motion estimation" and you don't do it on objects (too hard, requires image segmentation). In OpenCV, it's covered under Video Stabilization
If you want to try writing code yourself then one method is to first of all crop the frame to produce a sub image of your actual image slightly smaller than your actual image along each dimension. This will give you some room to move.
Next you want to be able to find and track shapes in OpenCV - an example of code is here - http://opencv-srf.blogspot.co.uk/2011/09/object-detection-tracking-using-contours.html - Play around until you get a few geometric primitive shapes coming up on each frame.
Next you want to build some vectors between the centres of each shape - these are what will determine the movement of the camera - if in the next frame most of the vectors are displaced but parallel that is a good indicator that the camera has moved.
The last step is to calculate the displacement, which should is matter of measuring the distance between detected parallel vectors. If this is smaller than your sub-image cropping then you can crop the original image to negate the displacement.
The pseudo code for each iteration would be something like -
//Variables
image wholeFrame1, wholeFrame2, subImage, shapesFrame1, shapesFrame2
vectorArray vectorsFrame1, vectorsFrame2; parallelVectorList
vector cameraDisplacement = [0,0]
//Display image
subImage = cropImage(wholeFrame1, cameraDisplacement)
display(subImage);
//Find shapes to track
shapesFrame1 = findShapes(wholeFrame1)
shapesFrame2 = findShapes(wholeFrame2)
//Store a list of parallel vectors
parallelVectorList = detectParallelVectors(shapesFrame1, shapesFrame2)
//Find the mean displacement of each pair of parallel vectors
cameraDisplacement = meanDisplacement(parallelVectorList)
//Crop the next image accounting for camera displacement
subImage = cropImage(wholeFrame1, cameraDisplacement)
There are better ways of doing it but this would be easy enough for someone doing their first attempt at image stabilisation with experience of OpenCV.

Warp perspective and stitch/overlap images (C++)

I am detecting and matching features of a pair of images, using a typical detector-descriptor-matcher combination and then findHomography to produce a transformation matrix.
After this, I want the two images to be overlapped (the second one (imgTrain) over the first one (imgQuery), so I warp the second image using the transformation matrix using:
cv::Mat imgQuery, imgTrain;
...
TRANSFORMATION_MATRIX = cv::findHomography(...)
...
cv::Mat imgTrainWarped;
cv::warpPerspective(imgTrain, imgTrainWarped, TRANSFORMATION_MATRIX, imgTrain.size());
From here on, I don't know how to produce an image that contains the original imgQuery with the warped imgTrainWarped on it.
I consider two scenarios:
1) One where the size of the final image is the size of imgQuery
2) One where the size of the final image is big enough to accommodate both imgQuery and imgTrainWarped, since they overlap only partially, not completely. I understand this second case might have black/blank space somewhere around the images.
You should warp to a destination matrix that has the same dimensions as imgQuery after that, loop over the whole warped image and copy pixel to the first image, but only if the warped image actually holds a warped pixel. That is most easily done by warping an additional mask. Please try this:
cv::Mat imgMask = cv::Mat(imgTrain.size(), CV_8UC1, cv::Scalar(255));
cv::Mat imgMaskWarped;
cv::warpPerspective(imgMask , imgMaskWarped, TRANSFORMATION_MATRIX, imgQuery.size());
cv::Mat imgTrainWarped;
cv::warpPerspective(imgTrain, imgTrainWarped, TRANSFORMATION_MATRIX, imgQuery.size());
// now copy only masked pixel:
imgTrainWarped.copyTo(imgQuery, imgMaskWarped);
please try and tell whether this is ok and solves scenario 1. For scenario 2 you would test how big the image must be before warping (by using the transformation) and copy both images to a destination image big enough.
Are you trying to create a panoramic image out of two overlapping pictures taken from the same viewpoint in different directions? If so, I am concerned about the "the second one over the first one" part. The correct way to stitch the panorama together is to cut both images off down the central line (symmetry axis) of the overlapping part, and not to add a part of one image to the (whole) other one.
Accepted answer works but could be done easier with using BORDER_TRANSPARENT:
cv::warpPerspective(imgTrain, imgQuery, TRANSFORMATION_MATRIX, imgQuery.size(), INTER_LINEAR, BORDER_TRANSPARENT);
When using BORDER_TRANSPARENT the source pixel of imgQuery remains untouched.
For OpenCV 4 INTER_LINEAR and BORDER_TRANSPARENT
can be resolved by using
cv::InterpolationFlags::INTER_LINEAR, cv::BorderTypes::BORDER_TRANSPARENT, e.g.
cv::warpPerspective(imgTrain, imgQuery, TRANSFORMATION_MATRIX, imgQuery.size(), cv::InterpolationFlags::INTER_LINEAR, cv::BorderTypes::BORDER_TRANSPARENT);