Generate permutation using bitmask - c++

I am generating all permutations of a string using bitmask.
void recurse(string s, int mask,int taken){
if(taken == n){
cout << " ";
return;
}
for(int i = 0; i < n; i++){
if(((1 << i) & mask) == 0){
cout << s[i];
recurse(s, (mask|(1 << i)), taken + 1);
}
}
}
In this function n is the length of the string. I am keeping track of how many characters are printed so far using taken variable.
In the main function I am calling
recurse(s,0,0);
But this is not working correctly.
For input
red
Its output is
red
de
erd
dr
dre
er
Where I am going wrong?
UPDATE
// Below code works fine.
void recurse(string s, int mask,int taken, string pref){
if(taken == n){
cout << pref <<endl;
return;
}
for(int i = 0; i < n; i++){
if(((mask >> i) & 1) == 0){
recurse(s,(mask | (1 << i)),taken + 1, pref + s[i]);
}
}
}

Actually, the questioner provided the answer himself. (Congratulation.)
As I already started to fiddle (couldn't resist) I want to present my solution as well:
#include <iostream>
#include <string>
using namespace std;
void recurse(
const string &s, unsigned mask = 0, const string &out = string())
{
size_t n = s.size();
if (out.size() == n) cout << ' ' << out;
for (size_t i = 0; i < n; ++i) {
unsigned bit = 1 << i;
if (mask & bit) continue;
recurse(s, mask | bit, out + s[i]);
}
}
int main()
{
string test = "red";
recurse(test);
cout << endl;
return 0;
}
Compiled and tested:
red rde erd edr dre der
recurse() iterates through all characters of s looking for one which is not already marked in the mask as taken. Each found characters is added to output out. Then, the recursive call repeats it for all untaken characters.
Check out the sample code yourself on ideone.

Permutation tree for 'abc'
Your first code was visiting each node of this tree once and printing a character. So it was giving wrong output.
On a different note, you have used some redundant variables.
Instead of n you should use s.size().
In the second code instead of taken you you should use pref.size().

Here is another version. It's different from the questioner's code in 2 ways:
The parameter taken can be omitted and we can use mask + 1 == (1 << n) instead. It basically checks if bits 1 to n-1 of mask are all 1's. If so, then the recursion depth is n and we print the permutation.
Copying the string pref in each iteration can be slow if the size of the string is large. We can instead use a reference.
#include <iostream>
#include <string>
using namespace std;
void recurse(string s, int mask, string &pref);
int n = 3;
int main()
{
string pref("");
recurse(string("abc"), 0, pref);
return 0;
}
void recurse(string s, int mask, string &pref)
{
if (mask + 1 == (1 << n)) {
cout << pref << endl;
return;
}
for (int i = 0; i < n; i++) {
if (((mask >> i) & 1) == 0) {
pref += s[i];
recurse(s, (mask | (1 << i)), pref);
pref.erase(pref.end() - 1);
}
}
}
where n is the size of the string. The output is
abc
acb
bac
bca
cab
cba

Related

Binary String Question to find maximum power of 2

We have given a binary String of length n,we can cyclically shift this string any number of times.Let X be the decimal representation of string s. Find the greatest power of 2 with which X can be divisible with, if it can be divisible with arbitrarily large power print "-1".For the result, you are required to print a single integer denoting the maximum power of 2 by which X can be divisible with.
ex:
Input:
0011
Output:
2
Explanation:We can cyclically shift the string 2 times to get "1100" which is divisible by 2^2 hence the answer is 2.
Here is my solution .. however it is giving me tle on most of the test cases and wrong answer on some of the test cases..
int highestpower(int n)
{
return (n & (~(n - 1)));
}
int findnum(string s)
{
int value = 0;
int p=0;
for(int i = s.length()-1;i>=0;i--)
{
value = value+pow(2,p)*(s[i]-'0');
p++;
}
return value;
}
int maximumPower(string s) {
int ans = 0;
for(int i=0;i<s.length();i++)
{
int num = findnum(s.substr(i)+s.substr(0,i));
ans = max(ans,highestpower(num));
}
return ans/2;
}
how can I solve this answer?Thanks..
I have some difficulty to understand the logic of your code. In practice, it failed on about all cases I have tested.
Moreover, it seems quite over-complicated. It is enough to count the number of consecutive zeros. We just have to pay attention that
this calculation must be performed in a cyclic way. For example, if s == 00100, the count number is 4, as after shifting, we get 10000. One simple way to handle this cyclicity is to concatenate the string s2 = s+s = 0010000100 and then to count the maximum number of consecutive zeros in the obtained string s2. In addition, we must pay attention that the input string is not composed of zeros only.
In the following code, I compared your code (maximumPower) with mine (maximumPower_new), on several different inputs.
Result:
0011 : 2 new: 2
0100010 : 4 new: 3
00100 : 8 new: 4
The code:
#include <iostream>
#include <string>
#include <cmath>
#include <algorithm>
int highestpower(int n)
{
return (n & (~(n - 1)));
}
int findnum(const std::string& s)
{
int value = 0;
int p=0;
for(int i = s.length()-1;i>=0;i--)
{
value = value+pow(2,p)*(s[i]-'0');
p++;
}
return value;
}
int maximumPower(const std::string& s) {
int ans = 0;
for(int i = 0; i < s.length(); i++)
{
int num = findnum(s.substr(i)+s.substr(0,i));
ans = std::max(ans,highestpower(num));
}
return ans/2;
}
int maximumPower_new (const std::string& s) {
int n = s.length();
if (n == 0) return -1;
std::string s2 = s + s;
int count = 0;
int count_max = 0;
for (auto c: s2) {
if (c == '0') {
count ++;
} else {
count_max = std::max(count, count_max);
count = 0;
}
}
count_max = std::max(count, count_max);
if (count_max >= n) return -1;
else return count_max;
}
int main() {
for (std::string s: {"0011", "0100010", "00100"}) {
std::cout << s << " : " << maximumPower(s) << " new: " << maximumPower_new(s) << "\n";
}
}

Displaying sets and subsets of a string

I am trying to find the subsets and output them with binary representation.
EXAMPLE:
000:EMPTY
001:C
010:B
011:B C
100:A
101:A C
110:A B
111:A B C
I have the following code that finds all subsets but not sure about the binary?
#include <iostream>
using namespace std;
void recsub(string sofar, string rest){
if(rest=="") cout<<sofar<<endl;
else{
recsub(sofar+rest[0], rest.substr(1)); //including first letter
recsub(sofar, rest.substr(1)); //recursion without including first letter.
}
}
void listsub(string str){
recsub("",str);
}
int main(){
listsub("abc");
return 0;
}
You can do it other way around, generate mask first and then generate matching string.
#include <iostream>
using namespace std;
void listsub(const string &str) {
auto n = str.size();
// iterate over every binary representation
for (size_t k = 0; k < (1u << n); ++k) {
string binary;
string subset;
// iterate over every bit from right to left
for (size_t bit = n ; bit > 0; --bit) {
bool has_bit = (k & (1 << (bit - 1)));
binary.push_back(has_bit ? '1' : '0');
if (has_bit) {
subset.push_back(str[n - bit]);
}
}
cout << binary << ':' << subset << endl;
}
}
int main() {
listsub("abc");
return 0;
}

Combination of unique elements without repetition

Elements : a b c
all combinations in such a way:abcabacbcabc
Formula to get total number of combinations of unique elements without repetition = 2^n - 1 (where n is the number of unique elements)
In our case top: 2^3 - 1 = 7
Another formula to get the combinations with specific length = n!/(r! * (n - r)!) (where n= nb of unique items and r=length)
Example for our the above case with r=2 : 3!/(2! * 1!) = 3 which is ab ac bc
Is there any algorithm or function that gets all of the 7 combinations?
I searched a lot but all i can find is one that gets the combinations with specific length only.
UPDATE:
This is what I have so far but it only gets combination with specific length:
void recur(string arr[], string out, int i, int n, int k, bool &flag)
{
flag = 1;
// invalid input
if (k > n)
return;
// base case: combination size is k
if (k == 0) {
flag = 0;
cout << out << endl;
return;
}
// start from next index till last index
for (int j = i; j < n; j++)
{
recur(arr, out + " " + arr[j], j + 1, n, k - 1,flag);
}
}
The best algorithm I've ever find to resolve this problem is to use bitwise operator. You simply need to start counting in binary. 1's in binary number means that you have to show number.
e.g.
in case of string "abc"
number , binary , string
1 , 001 , c
2 , 010 , b
3 , 011 , bc
4 , 100 , a
5 , 101 , ac
6 , 110 , ab
7 , 111 , abc
This is the best solution I've ever find. you can do it simply with loop. there will not be any memory issue.
here is the code
#include <iostream>
#include <string>
#include <math.h>
#include<stdio.h>
#include <cmath>
using namespace std;
int main()
{
string s("abcd");
int condition = pow(2, s.size());
for( int i = 1 ; i < condition ; i++){
int temp = i;
for(int j = 0 ; j < s.size() ; j++){
if (temp & 1){ // this condition will always give you the most right bit of temp.
cout << s[j];
}
temp = temp >> 1; //this statement shifts temp to the right by 1 bit.
}
cout<<endl;
}
return 0;
}
Do a simple exhaustive search.
#include <iostream>
#include <string>
using namespace std;
void exhaustiveSearch(const string& s, int i, string t = "")
{
if (i == s.size())
cout << t << endl;
else
{
exhaustiveSearch(s, i + 1, t);
exhaustiveSearch(s, i + 1, t + s[i]);
}
}
int main()
{
string s("abc");
exhaustiveSearch(s, 0);
}
Complexity: O(2^n)
Here's an answer using recursion, which will take any number of elements as strings:
#include <vector>
#include <string>
#include <iostream>
void make_combos(const std::string& start,
const std::vector<std::string>& input,
std::vector<std::string>& output)
{
for(size_t i = 0; i < input.size(); ++i)
{
auto new_string = start + input[i];
output.push_back(new_string);
if (i + 1 == input.size()) break;
std::vector<std::string> new_input(input.begin() + 1 + i, input.end());
make_combos(new_string, new_input, output);
}
}
Now you can do:
int main()
{
std::string s {};
std::vector<std::string> output {};
std::vector<std::string> input {"a", "b", "c"};
make_combos(s, input, output);
for(auto i : output) std::cout << i << std::endl;
std::cout << "There are " << output.size()
<< " unique combinations for this input." << std::endl;
return 0;
}
This outputs:
a
ab
abc
ac
b
bc
c
There are 7 unique combinations for this input.

What's wrong with my dynamic programming algorithm with memoization?

*Sorry about my poor English. If there is anything that you don't understand, please tell me so that I can give you more information that 'make sence'.
**This is first time asking question in Stackoverflow. I've searched some rules for asking questions correctly here, but there should be something I missed. I welcome all feedback.
I'm currently solving algorithm problems to improve my skill, and I'm struggling with one question for three days. This question is from https://algospot.com/judge/problem/read/RESTORE , but since this page is in KOREAN, I tried to translate it in English.
Question
If there are 'k' pieces of partial strings given, calculate shortest string that includes all partial strings.
All strings consist only lowercase alphabets.
If there are more than 1 result strings that satisfy all conditions with same length, choose any string.
Input
In the first line of input, number of test case 'C'(C<=50) is given.
For each test case, number of partial string 'k'(1<=k<=15) is given in the first line, and in next k lines partial strings are given.
Length of partial string is between 1 to 40.
Output
For each testcase, print shortest string that includes all partial strings.
Sample Input
3
3
geo
oji
jing
2
world
hello
3
abrac
cadabra
dabr
Sample Output
geojing
helloworld
cadabrac
And here is my code. My code seems to work perfect with Sample Inputs, and when I made test inputs for my own and tested, everything worked fine. But when I submit this code, they say my code is 'wrong'.
Please tell me what is wrong with my code. You don't need to tell me whole fixed code, I just need sample inputs that causes error with my code. Added code description to make my code easier to understand.
Code Description
Saved all input partial strings in vector 'stringParts'.
Saved current shortest string result in global variable 'answer'.
Used 'cache' array for memoization - to skip repeated function call.
Algorithm I designed to solve this problem is divided into two function -
restore() & eraseOverlapped().
restore() function calculates shortest string that includes all partial strings in 'stringParts'.
Result of resotre() is saved in 'answer'.
For restore(), there are three parameters - 'curString', 'selected' and 'last'.
'curString' stands for currently selected and overlapped string result.
'selected' stands for currently selected elements of 'stringParts'. Used bitmask to make my algorithm concise.
'last' stands for last selected element of 'stringParts' for making 'curString'.
eraseOverlapped() function does preprocessing - it deletes elements of 'stringParts' that can be completly included to other elements before executing restore().
#include <algorithm>
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#define MAX 15
using namespace std;
int k;
string answer; // save shortest result string
vector<string> stringParts;
bool cache[MAX + 1][(1 << MAX) + 1]; //[last selected string][set of selected strings in Bitmask]
void restore(string curString, int selected=0, int last=0) {
//base case 1
if (selected == (1 << k) - 1) {
if (answer.empty() || curString.length() < answer.length())
answer = curString;
return;
}
//base case 2 - memoization
bool& ret = cache[last][selected];
if (ret != false) return;
for (int next = 0; next < k; next++) {
string checkStr = stringParts[next];
if (selected & (1 << next)) continue;
if (curString.empty())
restore(checkStr, selected + (1 << next), next + 1);
else {
int check = false;
//count max overlapping area of two strings and overlap two strings.
for (int i = (checkStr.length() > curString.length() ? curString.length() : checkStr.length())
; i > 0; i--) {
if (curString.substr(curString.size()-i, i) == checkStr.substr(0, i)) {
restore(curString + checkStr.substr(i, checkStr.length()-i), selected + (1 << next), next + 1);
check = true;
break;
}
}
if (!check) { // if there aren't any overlapping area
restore(curString + checkStr, selected + (1 << next), next + 1);
}
}
}
ret = true;
}
//check if there are strings that can be completely included by other strings, and delete that string.
void eraseOverlapped() {
//arranging string vector in ascending order of string length
int vectorLen = stringParts.size();
for (int i = 0; i < vectorLen - 1; i++) {
for (int j = i + 1; j < vectorLen; j++) {
if (stringParts[i].length() < stringParts[j].length()) {
string temp = stringParts[i];
stringParts[i] = stringParts[j];
stringParts[j] = temp;
}
}
}
//deleting included strings
vector<string>::iterator iter;
for (int i = 0; i < vectorLen-1; i++) {
for (int j = i + 1; j < vectorLen; j++) {
if (stringParts[i].find(stringParts[j]) != string::npos) {
iter = stringParts.begin() + j;
stringParts.erase(iter);
j--;
vectorLen--;
}
}
}
}
int main(void) {
int C;
cin >> C; // testcase
for (int testCase = 0; testCase < C; testCase++) {
cin >> k; // number of partial strings
memset(cache, false, sizeof(cache)); // initializing cache to false
string inputStr;
for (int i = 0; i < k; i++) {
cin >> inputStr;
stringParts.push_back(inputStr);
}
eraseOverlapped();
k = stringParts.size();
restore("");
cout << answer << endl;
answer.clear();
stringParts.clear();
}
}
After determining which string-parts can be removed from the list since they are contained in other string-parts, one way to model this problem might be as the "taxicab ripoff problem" problem (or Max TSP), where each potential length reduction by overlap is given a positive weight. Considering that the input size in the question is very small, it seems likely that they expect a near brute-force solution, with possibly some heuristic and backtracking or other form of memoization.
Thanks Everyone who tried to help me solve this problem. I actually solved this problem with few changes on my previous algorithm. These are main changes.
In my previous algorithm I saved result of restore() in global variable 'answer' since restore() didn't return anything, but in new algorithm since restore() returns mid-process answer string I no longer need to use 'answer'.
Used string type cache instead of bool type cache. I found out using bool cache for memoization in this algorithm was useless.
Deleted 'curString' parameter from restore(). Since what we only need during recursive call is one previously selected partial string, 'last' can replace role of 'curString'.
CODE
#include <algorithm>
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#define MAX 15
using namespace std;
int k;
vector<string> stringParts;
string cache[MAX + 1][(1 << MAX) + 1];
string restore(int selected = 0, int last = -1) {
if (selected == (1 << k) - 1) {
return stringParts[last];
}
if (last == -1) {
string ret = "";
for (int next = 0; next < k; next++) {
string resultStr = restore(selected + (1 << next), next);
if (ret.empty() || ret.length() > resultStr.length())
ret = resultStr;
}
return ret;
}
string& ret = cache[last][selected];
if (!ret.empty()) {
cout << "cache used in [" << last << "][" << selected << "]" << endl;
return ret;
}
string curString = stringParts[last];
for (int next = 0; next < k; next++) {
if (selected & (1 << next)) continue;
string checkStr = restore(selected + (1 << next), next);
int check = false;
string resultStr;
for (int i = (checkStr.length() > curString.length() ? curString.length() : checkStr.length())
; i > 0; i--) {
if (curString.substr(curString.size() - i, i) == checkStr.substr(0, i)) {
resultStr = curString + checkStr.substr(i, checkStr.length() - i);
check = true;
break;
}
}
if (!check)
resultStr = curString + checkStr;
if (ret.empty() || ret.length() > resultStr.length())
ret = resultStr;
}
return ret;
}
void EraseOverlapped() {
int vectorLen = stringParts.size();
for (int i = 0; i < vectorLen - 1; i++) {
for (int j = i + 1; j < vectorLen; j++) {
if (stringParts[i].length() < stringParts[j].length()) {
string temp = stringParts[i];
stringParts[i] = stringParts[j];
stringParts[j] = temp;
}
}
}
vector<string>::iterator iter;
for (int i = 0; i < vectorLen - 1; i++) {
for (int j = i + 1; j < vectorLen; j++) {
if (stringParts[i].find(stringParts[j]) != string::npos) {
iter = stringParts.begin() + j;
stringParts.erase(iter);
j--;
vectorLen--;
}
}
}
}
int main(void) {
int C;
cin >> C;
for (int testCase = 0; testCase < C; testCase++) {
cin >> k;
for (int i = 0; i < MAX + 1; i++) {
for (int j = 0; j < (1 << MAX) + 1; j++)
cache[i][j] = "";
}
string inputStr;
for (int i = 0; i < k; i++) {
cin >> inputStr;
stringParts.push_back(inputStr);
}
EraseOverlapped();
k = stringParts.size();
string resultStr = restore();
cout << resultStr << endl;
stringParts.clear();
}
}
This algorithm is much slower than the 'ideal' algorithm that the book I'm studying suggests, but it was fast enough to pass this question's time limit.

C++ - Decimal to binary converting

I wrote a 'simple' (it took me 30 minutes) program that converts decimal number to binary. I am SURE that there's a lot simpler way so can you show me?
Here's the code:
#include <iostream>
#include <stdlib.h>
using namespace std;
int a1, a2, remainder;
int tab = 0;
int maxtab = 0;
int table[0];
int main()
{
system("clear");
cout << "Enter a decimal number: ";
cin >> a1;
a2 = a1; //we need our number for later on so we save it in another variable
while (a1!=0) //dividing by two until we hit 0
{
remainder = a1%2; //getting a remainder - decimal number(1 or 0)
a1 = a1/2; //dividing our number by two
maxtab++; //+1 to max elements of the table
}
maxtab--; //-1 to max elements of the table (when dividing finishes it adds 1 additional elemnt that we don't want and it's equal to 0)
a1 = a2; //we must do calculations one more time so we're gatting back our original number
table[0] = table[maxtab]; //we set the number of elements in our table to maxtab (we don't get 10's of 0's)
while (a1!=0) //same calculations 2nd time but adding every 1 or 0 (remainder) to separate element in table
{
remainder = a1%2; //getting a remainder
a1 = a1/2; //dividing by 2
table[tab] = remainder; //adding 0 or 1 to an element
tab++; //tab (element count) increases by 1 so next remainder is saved in another element
}
tab--; //same as with maxtab--
cout << "Your binary number: ";
while (tab>=0) //until we get to the 0 (1st) element of the table
{
cout << table[tab] << " "; //write the value of an element (0 or 1)
tab--; //decreasing by 1 so we show 0's and 1's FROM THE BACK (correct way)
}
cout << endl;
return 0;
}
By the way it's complicated but I tried my best.
edit - Here is the solution I ended up using:
std::string toBinary(int n)
{
std::string r;
while(n!=0) {r=(n%2==0 ?"0":"1")+r; n/=2;}
return r;
}
std::bitset has a .to_string() method that returns a std::string holding a text representation in binary, with leading-zero padding.
Choose the width of the bitset as needed for your data, e.g. std::bitset<32> to get 32-character strings from 32-bit integers.
#include <iostream>
#include <bitset>
int main()
{
std::string binary = std::bitset<8>(128).to_string(); //to binary
std::cout<<binary<<"\n";
unsigned long decimal = std::bitset<8>(binary).to_ulong();
std::cout<<decimal<<"\n";
return 0;
}
EDIT: Please do not edit my answer for Octal and Hexadecimal. The OP specifically asked for Decimal To Binary.
The following is a recursive function which takes a positive integer and prints its binary digits to the console.
Alex suggested, for efficiency, you may want to remove printf() and store the result in memory... depending on storage method result may be reversed.
/**
* Takes a unsigned integer, converts it into binary and prints it to the console.
* #param n the number to convert and print
*/
void convertToBinary(unsigned int n)
{
if (n / 2 != 0) {
convertToBinary(n / 2);
}
printf("%d", n % 2);
}
Credits to UoA ENGGEN 131
*Note: The benefit of using an unsigned int is that it can't be negative.
You can use std::bitset to convert a number to its binary format.
Use the following code snippet:
std::string binary = std::bitset<8>(n).to_string();
I found this on stackoverflow itself. I am attaching the link.
A pretty straight forward solution to print binary:
#include <iostream>
using namespace std;
int main()
{
int num,arr[64];
cin>>num;
int i=0,r;
while(num!=0)
{
r = num%2;
arr[i++] = r;
num /= 2;
}
for(int j=i-1;j>=0;j--){
cout<<arr[j];
}
}
Non recursive solution:
#include <iostream>
#include<string>
std::string toBinary(int n)
{
std::string r;
while(n!=0) {r=(n%2==0 ?"0":"1")+r; n/=2;}
return r;
}
int main()
{
std::string i= toBinary(10);
std::cout<<i;
}
Recursive solution:
#include <iostream>
#include<string>
std::string r="";
std::string toBinary(int n)
{
r=(n%2==0 ?"0":"1")+r;
if (n / 2 != 0) {
toBinary(n / 2);
}
return r;
}
int main()
{
std::string i=toBinary(10);
std::cout<<i;
}
An int variable is not in decimal, it's in binary. What you're looking for is a binary string representation of the number, which you can get by applying a mask that filters individual bits, and then printing them:
for( int i = sizeof(value)*CHAR_BIT-1; i>=0; --i)
cout << value & (1 << i) ? '1' : '0';
That's the solution if your question is algorithmic. If not, you should use the std::bitset class to handle this for you:
bitset< sizeof(value)*CHAR_BIT > bits( value );
cout << bits.to_string();
Here are two approaches. The one is similar to your approach
#include <iostream>
#include <string>
#include <limits>
#include <algorithm>
int main()
{
while ( true )
{
std::cout << "Enter a non-negative number (0-exit): ";
unsigned long long x = 0;
std::cin >> x;
if ( !x ) break;
const unsigned long long base = 2;
std::string s;
s.reserve( std::numeric_limits<unsigned long long>::digits );
do { s.push_back( x % base + '0' ); } while ( x /= base );
std::cout << std::string( s.rbegin(), s.rend() ) << std::endl;
}
}
and the other uses std::bitset as others suggested.
#include <iostream>
#include <string>
#include <bitset>
#include <limits>
int main()
{
while ( true )
{
std::cout << "Enter a non-negative number (0-exit): ";
unsigned long long x = 0;
std::cin >> x;
if ( !x ) break;
std::string s =
std::bitset<std::numeric_limits<unsigned long long>::digits>( x ).to_string();
std::string::size_type n = s.find( '1' );
std::cout << s.substr( n ) << std::endl;
}
}
The conversion from natural number to a binary string:
string toBinary(int n) {
if (n==0) return "0";
else if (n==1) return "1";
else if (n%2 == 0) return toBinary(n/2) + "0";
else if (n%2 != 0) return toBinary(n/2) + "1";
}
For this , In C++ you can use itoa() function .This function convert any Decimal integer to binary, decimal , hexadecimal and octal number.
#include<bits/stdc++.h>
using namespace std;
int main(){
int a;
char res[1000];
cin>>a;
itoa(a,res,10);
cout<<"Decimal- "<<res<<endl;
itoa(a,res,2);
cout<<"Binary- "<<res<<endl;
itoa(a,res,16);
cout<<"Hexadecimal- "<<res<<endl;
itoa(a,res,8);
cout<<"Octal- "<<res<<endl;return 0;
}
However, it is only supported by specific compilers.
You can see also: itoa - C++ Reference
Here is modern variant that can be used for ints of different sizes.
#include <type_traits>
#include <bitset>
template<typename T>
std::enable_if_t<std::is_integral_v<T>,std::string>
encode_binary(T i){
return std::bitset<sizeof(T) * 8>(i).to_string();
}
Your solution needs a modification. The final string should be reversed before returning:
std::reverse(r.begin(), r.end());
return r;
DECIMAL TO BINARY NO ARRAYS USED *made by Oya:
I'm still a beginner, so this code will only use loops and variables xD...
Hope you like it. This can probably be made simpler than it is...
#include <iostream>
#include <cmath>
#include <cstdlib>
using namespace std;
int main()
{
int i;
int expoentes; //the sequence > pow(2,i) or 2^i
int decimal;
int extra; //this will be used to add some 0s between the 1s
int x = 1;
cout << "\nThis program converts natural numbers into binary code\nPlease enter a Natural number:";
cout << "\n\nWARNING: Only works until ~1.073 millions\n";
cout << " To exit, enter a negative number\n\n";
while(decimal >= 0){
cout << "\n----- // -----\n\n";
cin >> decimal;
cout << "\n";
if(decimal == 0){
cout << "0";
}
while(decimal >= 1){
i = 0;
expoentes = 1;
while(decimal >= expoentes){
i++;
expoentes = pow(2,i);
}
x = 1;
cout << "1";
decimal -= pow(2,i-x);
extra = pow(2,i-1-x);
while(decimal < extra){
cout << "0";
x++;
extra = pow(2,i-1-x);
}
}
}
return 0;
}
here a simple converter by using std::string as container. it allows a negative value.
#include <iostream>
#include <string>
#include <limits>
int main()
{
int x = -14;
int n = std::numeric_limits<int>::digits - 1;
std::string s;
s.reserve(n + 1);
do
s.push_back(((x >> n) & 1) + '0');
while(--n > -1);
std::cout << s << '\n';
}
This is a more simple program than ever
//Program to convert Decimal into Binary
#include<iostream>
using namespace std;
int main()
{
long int dec;
int rem,i,j,bin[100],count=-1;
again:
cout<<"ENTER THE DECIMAL NUMBER:- ";
cin>>dec;//input of Decimal
if(dec<0)
{
cout<<"PLEASE ENTER A POSITIVE DECIMAL";
goto again;
}
else
{
cout<<"\nIT's BINARY FORM IS:- ";
for(i=0;dec!=0;i++)//making array of binary, but reversed
{
rem=dec%2;
bin[i]=rem;
dec=dec/2;
count++;
}
for(j=count;j>=0;j--)//reversed binary is printed in correct order
{
cout<<bin[j];
}
}
return 0;
}
There is in fact a very simple way to do so. What we do is using a recursive function which is given the number (int) in the parameter. It is pretty easy to understand. You can add other conditions/variations too. Here is the code:
int binary(int num)
{
int rem;
if (num <= 1)
{
cout << num;
return num;
}
rem = num % 2;
binary(num / 2);
cout << rem;
return rem;
}
// function to convert decimal to binary
void decToBinary(int n)
{
// array to store binary number
int binaryNum[1000];
// counter for binary array
int i = 0;
while (n > 0) {
// storing remainder in binary array
binaryNum[i] = n % 2;
n = n / 2;
i++;
}
// printing binary array in reverse order
for (int j = i - 1; j >= 0; j--)
cout << binaryNum[j];
}
refer :-
https://www.geeksforgeeks.org/program-decimal-binary-conversion/
or
using function :-
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;cin>>n;
cout<<bitset<8>(n).to_string()<<endl;
}
or
using left shift
#include<bits/stdc++.h>
using namespace std;
int main()
{
// here n is the number of bit representation we want
int n;cin>>n;
// num is a number whose binary representation we want
int num;
cin>>num;
for(int i=n-1;i>=0;i--)
{
if( num & ( 1 << i ) ) cout<<1;
else cout<<0;
}
}
#include <iostream>
#include <bitset>
#define bits(x) (std::string( \
std::bitset<8>(x).to_string<char,std::string::traits_type, std::string::allocator_type>() ).c_str() )
int main() {
std::cout << bits( -86 >> 1 ) << ": " << (-86 >> 1) << std::endl;
return 0;
}
Okay.. I might be a bit new to C++, but I feel the above examples don't quite get the job done right.
Here's my take on this situation.
char* DecimalToBinary(unsigned __int64 value, int bit_precision)
{
int length = (bit_precision + 7) >> 3 << 3;
static char* binary = new char[1 + length];
int begin = length - bit_precision;
unsigned __int64 bit_value = 1;
for (int n = length; --n >= begin; )
{
binary[n] = 48 | ((value & bit_value) == bit_value);
bit_value <<= 1;
}
for (int n = begin; --n >= 0; )
binary[n] = 48;
binary[length] = 0;
return binary;
}
#value = The Value we are checking.
#bit_precision = The highest left most bit to check for.
#Length = The Maximum Byte Block Size. E.g. 7 = 1 Byte and 9 = 2 Byte, but we represent this in form of bits so 1 Byte = 8 Bits.
#binary = just some dumb name I gave to call the array of chars we are setting. We set this to static so it won't be recreated with every call. For simply getting a result and display it then this works good, but if let's say you wanted to display multiple results on a UI they would all show up as the last result. This can be fixed by removing static, but make sure you delete [] the results when you are done with it.
#begin = This is the lowest index that we are checking. Everything beyond this point is ignored. Or as shown in 2nd loop set to 0.
#first loop - Here we set the value to 48 and basically add a 0 or 1 to 48 based on the bool value of (value & bit_value) == bit_value. If this is true the char is set to 49. If this is false the char is set to 48. Then we shift the bit_value or basically multiply it by 2.
#second loop - Here we set all the indexes we ignored to 48 or '0'.
SOME EXAMPLE OUTPUTS!!!
int main()
{
int val = -1;
std::cout << DecimalToBinary(val, 1) << '\n';
std::cout << DecimalToBinary(val, 3) << '\n';
std::cout << DecimalToBinary(val, 7) << '\n';
std::cout << DecimalToBinary(val, 33) << '\n';
std::cout << DecimalToBinary(val, 64) << '\n';
std::cout << "\nPress any key to continue. . .";
std::cin.ignore();
return 0;
}
00000001 //Value = 2^1 - 1
00000111 //Value = 2^3 - 1.
01111111 //Value = 2^7 - 1.
0000000111111111111111111111111111111111 //Value = 2^33 - 1.
1111111111111111111111111111111111111111111111111111111111111111 //Value = 2^64 - 1.
SPEED TESTS
Original Question's Answer: "Method: toBinary(int);"
Executions: 10,000 , Total Time (Milli): 4701.15 , Average Time (Nanoseconds): 470114
My Version: "Method: DecimalToBinary(int, int);"
//Using 64 Bit Precision.
Executions: 10,000,000 , Total Time (Milli): 3386 , Average Time (Nanoseconds): 338
//Using 1 Bit Precision.
Executions: 10,000,000, Total Time (Milli): 634, Average Time (Nanoseconds): 63
Below is simple C code that converts binary to decimal and back again. I wrote it long ago for a project in which the target was an embedded processor and the development tools had a stdlib that was way too big for the firmware ROM.
This is generic C code that does not use any library, nor does it use division or the remainder (%) operator (which is slow on some embedded processors), nor does it use any floating point, nor does it use any table lookup nor emulate any BCD arithmetic. What it does make use of is the type long long, more specifically unsigned long long (or uint64_t), so if your embedded processor (and the C compiler that goes with it) cannot do 64-bit integer arithmetic, this code is not for your application. Otherwise, I think this is production quality C code (maybe after changing long to int32_t and unsigned long long to uint64_t). I have run this overnight to test it for every 2³² signed integer values and there is no error in conversion in either direction.
We had a C compiler/linker that could generate executables and we needed to do what we could do without any stdlib (which was a pig). So no printf() nor scanf(). Not even an sprintf() nor sscanf(). But we still had a user interface and had to convert base-10 numbers into binary and back. (We also made up our own malloc()-like utility also and our own transcendental math functions too.)
So this was how I did it (the main program and calls to stdlib were there for testing this thing on my mac, not for the embedded code). Also, because some older dev systems don't recognize "int64_t" and "uint64_t" and similar types, the types long long and unsigned long long are used and assumed to be the same. And long is assumed to be 32 bits. I guess I could have typedefed it.
// returns an error code, 0 if no error,
// -1 if too big, -2 for other formatting errors
int decimal_to_binary(char *dec, long *bin)
{
int i = 0;
int past_leading_space = 0;
while (i <= 64 && !past_leading_space) // first get past leading spaces
{
if (dec[i] == ' ')
{
i++;
}
else
{
past_leading_space = 1;
}
}
if (!past_leading_space)
{
return -2; // 64 leading spaces does not a number make
}
// at this point the only legitimate remaining
// chars are decimal digits or a leading plus or minus sign
int negative = 0;
if (dec[i] == '-')
{
negative = 1;
i++;
}
else if (dec[i] == '+')
{
i++; // do nothing but go on to next char
}
// now the only legitimate chars are decimal digits
if (dec[i] == '\0')
{
return -2; // there needs to be at least one good
} // digit before terminating string
unsigned long abs_bin = 0;
while (i <= 64 && dec[i] != '\0')
{
if ( dec[i] >= '0' && dec[i] <= '9' )
{
if (abs_bin > 214748364)
{
return -1; // this is going to be too big
}
abs_bin *= 10; // previous value gets bumped to the left one digit...
abs_bin += (unsigned long)(dec[i] - '0'); // ... and a new digit appended to the right
i++;
}
else
{
return -2; // not a legit digit in text string
}
}
if (dec[i] != '\0')
{
return -2; // not terminated string in 64 chars
}
if (negative)
{
if (abs_bin > 2147483648)
{
return -1; // too big
}
*bin = -(long)abs_bin;
}
else
{
if (abs_bin > 2147483647)
{
return -1; // too big
}
*bin = (long)abs_bin;
}
return 0;
}
void binary_to_decimal(char *dec, long bin)
{
unsigned long long acc; // 64-bit unsigned integer
if (bin < 0)
{
*(dec++) = '-'; // leading minus sign
bin = -bin; // make bin value positive
}
acc = 989312855LL*(unsigned long)bin; // very nearly 0.2303423488 * 2^32
acc += 0x00000000FFFFFFFFLL; // we need to round up
acc >>= 32;
acc += 57646075LL*(unsigned long)bin;
// (2^59)/(10^10) = 57646075.2303423488 = 57646075 + (989312854.979825)/(2^32)
int past_leading_zeros = 0;
for (int i=9; i>=0; i--) // maximum number of digits is 10
{
acc <<= 1;
acc += (acc<<2); // an efficient way to multiply a long long by 10
// acc *= 10;
unsigned int digit = (unsigned int)(acc >> 59); // the digit we want is in bits 59 - 62
if (digit > 0)
{
past_leading_zeros = 1;
}
if (past_leading_zeros)
{
*(dec++) = '0' + digit;
}
acc &= 0x07FFFFFFFFFFFFFFLL; // mask off this digit and go on to the next digit
}
if (!past_leading_zeros) // if all digits are zero ...
{
*(dec++) = '0'; // ... put in at least one zero digit
}
*dec = '\0'; // terminate string
}
#if 1
#include <stdlib.h>
#include <stdio.h>
int main (int argc, const char* argv[])
{
char dec[64];
long bin, result1, result2;
unsigned long num_errors;
long long long_long_bin;
num_errors = 0;
for (long_long_bin=-2147483648LL; long_long_bin<=2147483647LL; long_long_bin++)
{
bin = (long)long_long_bin;
if ((bin&0x00FFFFFFL) == 0)
{
printf("bin = %ld \n", bin); // this is to tell us that things are moving along
}
binary_to_decimal(dec, bin);
decimal_to_binary(dec, &result1);
sscanf(dec, "%ld", &result2); // decimal_to_binary() should do the same as this sscanf()
if (bin != result1 || bin != result2)
{
num_errors++;
printf("bin = %ld, result1 = %ld, result2 = %ld, num_errors = %ld, dec = %s \n",
bin, result1, result2, num_errors, dec);
}
}
printf("num_errors = %ld \n", num_errors);
return 0;
}
#else
#include <stdlib.h>
#include <stdio.h>
int main (int argc, const char* argv[])
{
char dec[64];
long bin;
printf("bin = ");
scanf("%ld", &bin);
while (bin != 0)
{
binary_to_decimal(dec, bin);
printf("dec = %s \n", dec);
printf("bin = ");
scanf("%ld", &bin);
}
return 0;
}
#endif
My way of converting decimal to binary in C++. But since we are using mod, this function will work in case of hexadecimal or octal also. You can also specify bits. This function keeps calculating the lowest significant bit and place it on the end of the string. If you are not so similar to this method than you can vist: https://www.wikihow.com/Convert-from-Decimal-to-Binary
#include <bits/stdc++.h>
using namespace std;
string itob(int bits, int n) {
int count;
char str[bits + 1]; // +1 to append NULL character.
str[bits] = '\0'; // The NULL character in a character array flags the end
// of the string, not appending it may cause problems.
count = bits - 1; // If the length of a string is n, than the index of the
// last character of the string will be n - 1. Cause the
// index is 0 based not 1 based. Try yourself.
do {
if (n % 2)
str[count] = '1';
else
str[count] = '0';
n /= 2;
count--;
} while (n > 0);
while (count > -1) {
str[count] = '0';
count--;
}
return str;
}
int main() {
cout << itob(1, 0) << endl; // 0 in 1 bit binary.
cout << itob(2, 1) << endl; // 1 in 2 bit binary.
cout << itob(3, 2) << endl; // 2 in 3 bit binary.
cout << itob(4, 4) << endl; // 4 in 4 bit binary.
cout << itob(5, 15) << endl; // 15 in 5 bit binary.
cout << itob(6, 30) << endl; // 30 in 6 bit binary.
cout << itob(7, 61) << endl; // 61 in 7 bit binary.
cout << itob(8, 127) << endl; // 127 in 8 bit binary.
return 0;
}
The Output:
0
01
010
0100
01111
011110
0111101
01111111
Since you asked for a simple way, I am sharing this answer, after 8 years
Here is the expression!
Is it not interesting when there is no if condition, and we can get 0 or 1 with just a simple expression?
Well yes, NO if, NO long division
Here is what each variable means
Note: variable is the orange highlighted ones
Number: 0-infinity (a value to be converted to binary)
binary holder: 1 / 2 / 4 / 8 / 16 / 32 / ... (Place of binary needed, just like tens, hundreds)
Result: 0 or 1
If you want to make binary holder from 1 / 2 / 4 / 8 / 16 /... to 1 / 2 / 3 / 4 / 5/...
then use this expression
The procedure is simple for the second expression
First, the number variable is always, your number needed, and its stable.
Second the binary holder variable needs to be changed ,in a for loop, by +1 for the second image, x2 for the first image
I don't know c++ a lot ,here is a js code,for your understanding
function FindBinary(Number) {
var x,i,BinaryValue = "",binaryHolder = 1;
for (i = 1; Math.pow(2, i) <= Number; i++) {}//for trimming, you can even remove this and set i to 7,see the result
for (x = 1; x <= i; x++) {
var Algorithm = ((Number - (Number % binaryHolder)) / binaryHolder) % 2;//Main algorithm
BinaryValue = Algorithm + BinaryValue;
binaryHolder += binaryHolder;
}
return BinaryValue;
}
console.log(FindBinary(17));//your number
more ever, I think language doesn't matters a lot for algorithm questions
You want to do something like:
cout << "Enter a decimal number: ";
cin >> a1;
cout << setbase(2);
cout << a1
#include "stdafx.h"
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
int main() {
// Initialize Variables
double x;
int xOct;
int xHex;
//Initialize a variable that stores the order if the numbers in binary/sexagesimal base
vector<int> rem;
//Get Demical value
cout << "Number (demical base): ";
cin >> x;
//Set the variables
xOct = x;
xHex = x;
//Get the binary value
for (int i = 0; x >= 1; i++) {
rem.push_back(abs(remainder(x, 2)));
x = floor(x / 2);
}
//Print binary value
cout << "Binary: ";
int n = rem.size();
while (n > 0) {
n--;
cout << rem[n];
} cout << endl;
//Print octal base
cout << oct << "Octal: " << xOct << endl;
//Print hexademical base
cout << hex << "Hexademical: " << xHex << endl;
system("pause");
return 0;
}
#include <iostream>
using namespace std;
int main()
{
int a,b;
cin>>a;
for(int i=31;i>=0;i--)
{
b=(a>>i)&1;
cout<<b;
}
}
HOPE YOU LIKE THIS SIMPLE CODE OF CONVERSION FROM DECIMAL TO BINARY
#include<iostream>
using namespace std;
int main()
{
int input,rem,res,count=0,i=0;
cout<<"Input number: ";
cin>>input;`enter code here`
int num=input;
while(input > 0)
{
input=input/2;
count++;
}
int arr[count];
while(num > 0)
{
arr[i]=num%2;
num=num/2;
i++;
}
for(int i=count-1 ; i>=0 ; i--)
{
cout<<" " << arr[i]<<" ";
}
return 0;
}
#include <iostream>
// x is our number to test
// pow is a power of 2 (e.g. 128, 64, 32, etc...)
int printandDecrementBit(int x, int pow)
{
// Test whether our x is greater than some power of 2 and print the bit
if (x >= pow)
{
std::cout << "1";
// If x is greater than our power of 2, subtract the power of 2
return x - pow;
}
else
{
std::cout << "0";
return x;
}
}
int main()
{
std::cout << "Enter an integer between 0 and 255: ";
int x;
std::cin >> x;
x = printandDecrementBit(x, 128);
x = printandDecrementBit(x, 64);
x = printandDecrementBit(x, 32);
x = printandDecrementBit(x, 16);
std::cout << " ";
x = printandDecrementBit(x, 8);
x = printandDecrementBit(x, 4);
x = printandDecrementBit(x, 2);
x = printandDecrementBit(x, 1);
return 0;
}
this is a simple way to get the binary form of an int. credit to learncpp.com. im sure this could be used in different ways to get to the same point.
In this approach, the decimal will be converted to the respective binary number in the string formate. The string return type is chosen since it can handle more range of input values.
class Solution {
public:
string ConvertToBinary(int num)
{
vector<int> bin;
string op;
for (int i = 0; num > 0; i++)
{
bin.push_back(num % 2);
num /= 2;
}
reverse(bin.begin(), bin.end());
for (size_t i = 0; i < bin.size(); ++i)
{
op += to_string(bin[i]);
}
return op;
}
};
using bitmask and bitwise and .
string int2bin(int n){
string x;
for(int i=0;i<32;i++){
if(n&1) {x+='1';}
else {x+='0';}
n>>=1;
}
reverse(x.begin(),x.end());
return x;
}
You Could use std::bitset:
#include <bits/stdc++.h>
int main()
{
std::string binary = std::bitset<(int)ceil(log2(10))>(10).to_string(); // decimal number is 10
std::cout << binary << std::endl; // 1010
return 0;
}
SOLUTION 1
Shortest function. Recursive. No headers required.
size_t bin(int i) {return i<2?i:10*bin(i/2)+i%2;}
The simplicity of this function comes at the cost of some limitations. It returns correct values only for arguments between 0 and 1048575 (2 to the power of how many digits the largest unsigned int has, -1). I used the following program to test it:
#include <iostream> // std::cout, std::cin
#include <climits> // ULLONG_MAX
#include <math.h> // pow()
int main()
{
size_t bin(int);
int digits(size_t);
int i = digits(ULLONG_MAX); // maximum digits of the return value of bin()
int iMax = pow(2.0,i)-1; // maximum value of a valid argument of bin()
while(true) {
std::cout << "Decimal: ";
std::cin >> i;
if (i<0 or i>iMax) {
std::cout << "\nB Integer out of range, 12:1";
return 0;
}
std::cout << "Binary: " << bin(i) << "\n\n";
}
return 0;
}
size_t bin(int i) {return i<2?i:10*bin(i/2)+i%2;}
int digits(size_t i) {return i<10?1:digits(i/10)+1;}
SOLUTION 2
Short. Recursive. Some headers required.
std::string bin(size_t i){return !i?"0":i==1?"1":bin(i/2)+(i%2?'1':'0');}
This function can return the binary representation of the largest integers as a string. I used the following program to test it:
#include <string> // std::string
#include <iostream> // std::cout, std::cin
int main()
{
std::string s, bin(size_t);
size_t i, x;
std::cout << "Enter exit code: "; // Used to exit the program.
std::cin >> x;
while(i!=x) {
std::cout << "\nDecimal: ";
std::cin >> i;
std::cout << "Binary: " << bin(i) << "\n";
}
return 0;
}
std::string bin(size_t i){return !i?"0":i==1?"1":bin(i/2)+(i%2?'1':'0');}