Computing the side planes of a 3D AABB - c++

I have a 3D AABB defined by two sets of points a min/max.
I'd like to define the 6 planes that make up the sides of the AABB, such that any point that is within the AABB will have a positive signed-distance.
My plane definition is comprised of a normal (x,y,z) and a constant D, Corresponding to the Ax + By +Cz + D = 0 form plane equation.
struct myplane {
double nx,ny,nz;
double D;
};
Note: nx,ny, and nz are normalized.
The AABB struct is as follows:
struct myAABB {
point3d min;
point3d max;
};
I'm currently defining instances of the AABB sides like so:
myplane p0 = myplane{-1.0f, 0.0f, 0.0f,aabb.max.x);
myplane p1 = myplane{ 0.0f,-1.0f, 0.0f,aabb.max.y);
myplane p2 = myplane{ 0.0f, 0.0f,-1.0f,aabb.max.z);
myplane p3 = myplane{+1.0f, 0.0f, 0.0f,aabb.min.x);
myplane p4 = myplane{ 0.0f,+1.0f, 0.0f,aabb.min.y);
myplane p5 = myplane{ 0.0f, 0.0f,+1.0f,aabb.min.z);
where aabb is in this case is: min(-1,-1,-1) max(1,1,1)
The problem is that points in the AABB return a positive distance for the planes p0,p1 and p2, however not so for planes p3,p4 and p5, as they return negative distances which seem to indicate the points are on the other side.
For example the origin point (0,0,0) should return a positive distance of 1 for each of the planes however does not for planes p3,p4 and p5.
The signed-distance calculation being used is:
double distance(myplane& p, const point3d& v)
{
// p.normal dot v + D
return (p.nx * v.x) + (p.ny * v.y) + (p.nz * v.z) + p.D;
}
I think my equations are wrong in some way, but I can't seem to figure it out.

Signed distance from point to plane according to Chapter 2.3 of Mathematical Handbook (Korn, Korn) is
Delta = (Normal. dot. v + D) / (-Sign(D) * NormalLength)
but you don't account for D sign. Just modify function:
dt = (p.nx * v.x) + (p.ny * v.y) + (p.nz * v.z) + p.D;
return (p.D < 0) ? dt: -dt;

Xm < X < XM
is equivalent to
1.X + 0.Y + 0.Z - Xm > 0 and - 1.X + 0.Y + 0.Z + XM > 0

Related

Ray-bounded plane intersection

I'm trying to write a ray tracer in my freetime. Currently trying to do ray - bounded plane intersections.
My program is already working with infinite planes. I'm trying to work out the math for non-infinite planes. Tried to google, but all of the resources talk only about infinite planes.
My plane has a corner point (called position), from which two vectors (u and v) extend (their length correspond to the length of the sides). The ray has an origin and a direction.
First I calculate the intersection point with an infinite plane with the formula
t = normal * (position - origin) / (normal * direction)
The normal is calculated as a cross product of u and v.
Then with the formula
origin + direction * t
I get the intersection point itself.
The next step is checking if this point is in the bounds of the rectangle, and this is where I'm having trouble.
My idea was to get the relative vector intersection - position that is extending from the corner of the plane to the intersection point, then transform it to a new basis of u, normal and v then check if the lengths of the transformed vectors are shorter than the u and v vectors.
bool BoundedPlane::intersect(const Vec3f &origin, const Vec3f &direction, float &t) const {
t = normal * (position - origin) / (normal * direction);
Vec3f relative = (origin + direction * t) - position;
Mat3f transform{
Vec3f(u.x, normal.x, v.x),
Vec3f(u.y, normal.y, v.y),
Vec3f(u.z, normal.z, v.z)
};
Vec3f local = transform.mul(relative);
return t > 0 && local.x >= 0 && local.x <= u.x && local.z <= 0 && local.z <= v.z;
}
At the end I check if t is larger than 0, meaning the intersection is in front of the camera, and if the lengths of the vectors are inside the bounds. This gives me a weird line:
.
The plane should appear below the spheres like this:
(this used manual checking to see if it appears correctly if the numbers are right).
I'm not sure what I'm doing wrong, and if there's an easier way to check the bounds. Thanks in advance.
Edit1:
I moved the transformation matrix calculations into the constructor, so now the intersection test is:
bool BoundedPlane::intersect(const Vec3f &origin, const Vec3f &direction, float &t) const {
if (!InfinitePlane::intersect(origin, direction, t)) {
return false;
}
Vec3f local = transform.mul((origin + direction * t) - position);
return local.x >= 0 && local.x <= 1 && local.z >= 0 && local.z <= 1;
}
The transform member is the inverse of the transformation matrix.
Could I suggest another approach? Consider the frame with origin
position and basis vectors
u = { u.x, u.y, u.z }
v = { v.x, v.y, v.z }
direction = { direction.x, direction.y, direction.z}
Step 1: Form the matrix
M = {
{u.x, v.x, direction.x},
{u.y, v.y, direction.y},
{u.z, v.z, direction.z}
}
Step 2: Calculate the vector w, which is a solution to the 3 x 3 system of liner equations
M * w = origin - position, i.e.
w = inverse(M) * (origin - position);
Make sure that direction is not coplanar with u, v, otherwise there is no intersection and inverse(M) does not exist.
Step 3: if 0.0 <= w.x && w.x <= 1.0 && 0.0 <= w.y && w.y <= 1.0 then the line intersects the parallelogram spanned by the vectors u, v and the point of intersection is
w0 = { w.x, w.y , 0 };
intersection = position + M * w0;
else, the line does not intersect the parallelogram spanned by the vectors u, v
The idea of this algorithm is to consider the (non-orthonormal) frame position, u, v, direction. Then the matrix M changes everything in the coordinates of this new frame. In this frame, the line is vertical, parallel to the "z-"axis, the point origin has coordinates w, and the vertical line through w intersects the plane at w0.
Edit 1: Here is a templet formula for the inverse of a 3x3 matrix:
If original matrix M is
a b c
d e f
g h i
inverse is
(1 / det(M)) * {
{e*i - f*h, c*h - b*i, b*f - c*e},
{f*g - d*i, a*i - c*g, c*d - a*f},
{d*h - e*g, b*g - a*h, a*e - b*d},
}
where
det(M) = a*(e*i - f*h) + b*(f*g - d*i) + c*(d*h - e*h)
is the determinant of M.
So the inversion algorithm can be as follows:
Given
M = {
{a, b, c},
{d, e, f},
{g, h, i},
}
Calculate
inv_M = {
{e*i - f*h, c*h - b*i, b*f - c*e},
{f*g - d*i, a*i - c*g, c*d - a*f},
{d*h - e*g, b*g - a*h, a*e - b*d},
};
Calculate
det_M = a*inv_M[1][1] + b*inv_M[2][1] + c*inv_M[3][1];
Return inverse matrix of M
inv_M = (1/det_M) * inv_M;
Edit 2: Let's try another approach in order to speed things up.
Step 1: For each plane, determined by the point position and the two vectors u and v, precompute the following quatntities:
normal = cross(u, v);
u_dot_u = dot(u, u);
u_dot_v = dot(u, v);
v_dot_v = dot(v, v); // all these need to be computed only once for the u and v vectors
det = u_dot_u * v_dot_v - u_dot_v * u_dot_v; // again only once per u and v
Step 2: Now, for a given line with point origin and direction direction, as before, calculate the intersection point int_point with the plane spanned by u and v:
t = dot(normal, position - origin) / dot(normal, direction);
int_point = origin + t * direction;
rhs = int_point - position;
Step 3: Calcualte
u_dot_rhs = dot(u, rhs);
v_dot_rhs = dot(v, rhs);
w1 = (v_dot_v * u_dot_rhs - u_dot_v * v_dot_rhs) / det;
w2 = (- u_dot_v * u_dot_rhs + u_dot_u * v_dot_rhs) / det;
Step 4:
if (0 < = w1 && w1 <= 1 && 0 < = w2 && w2 <= 1 ){
int_point is in the parallelogram;
}
else{
int_point is not in the parallelogram;
}
So what I am doing here is basically finding the intersection point of the line origin, direction with the plane given by position, u, v and restricting myself to the plane, which allows me to work in 2D rather than 3D. I am representing
int_point = position + w1 * u + w2 * v;
rhs = int_point - position = w1 * u + w2 * v
and finding w1 and w2 by dot-multiplying of this vector expression with the basis vectors u and v, which results in a 2x2 linear system, which I am solving directly.

Intersection between line and triangle in 3D

I have a line and a triangle somewhere in 3D space. In other words, I have 3 points ([x,y,z] each) for the triangle, and two points (also [x,y,z]) for the line.
I need to figure out a way, hopefully using C++, to figure out if the line ever crosses the triangle. A line parallel to the triangle, and with more than one point in common, should be counted as "does not intersect".
I already made some code, but it doesn't work, and I always get false even when a visual representation clearly shows an intersection.
ofVec3f P1, P2;
P1 = ray.s;
P2 = ray.s + ray.t;
ofVec3f p1, p2, p3;
p1 = face.getVertex(0);
p2 = face.getVertex(1);
p3 = face.getVertex(2);
ofVec3f v1 = p1 - p2;
ofVec3f v2 = p3 - p2;
float a, b, c, d;
a = v1.y * v2.z - v1.z * v2.y;
b = -(v1.x * v2.z - v1.z * v2.x);
c = v1.x * v2.y - v1.y * v2.x;
d = -(a * p1.x + b * p1.y + c * p1.z);
ofVec3f O = P1;
ofVec3f V = P2 - P1;
float t;
t = -(a * O.x + b * O.y + c * O.z + d) / (a * V.x + b * V.y + c * V.z);
ofVec3f p = O + V * t;
float xmin = std::min(P1.x, P2.x);
float ymin = std::min(P1.y, P2.y);
float zmin = std::min(P1.z, P2.z);
float xmax = std::max(P1.x, P2.x);
float ymax = std::max(P1.y, P2.y);
float zmax = std::max(P1.z, P2.z);
if (inside(p, xmin, xmax, ymin, ymax, zmin, zmax)) {
*result = p.length();
return true;
}
return false;
And here is the definition of inside()
bool primitive3d::inside(ofVec3f p, float xmin, float xmax, float ymin, float ymax, float zmin, float zmax) const {
if (p.x >= xmin && p.x <= xmax && p.y >= ymin && p.y <= ymax && p.z >= zmin && p.z <= zmax)
return true;
return false;
}
1) If you just want to know whether the line intersects the triangle (without needing the actual intersection point):
Let p1,p2,p3 denote your triangle
Pick two points q1,q2 on the line very far away in both directions.
Let SignedVolume(a,b,c,d) denote the signed volume of the tetrahedron a,b,c,d.
If SignedVolume(q1,p1,p2,p3) and SignedVolume(q2,p1,p2,p3) have different signs AND
SignedVolume(q1,q2,p1,p2), SignedVolume(q1,q2,p2,p3) and SignedVolume(q1,q2,p3,p1) have the same sign, then there is an intersection.
SignedVolume(a,b,c,d) = (1.0/6.0)*dot(cross(b-a,c-a),d-a)
2) Now if you want the intersection, when the test in 1) passes
write the equation of the line in parametric form: p(t) = q1 + t*(q2-q1)
Write the equation of the plane: dot(p-p1,N) = 0 where
N = cross(p2-p1, p3-p1)
Inject p(t) into the equation of the plane: dot(q1 + t*(q2-q1) - p1, N) = 0
Expand: dot(q1-p1,N) + t dot(q2-q1,N) = 0
Deduce t = -dot(q1-p1,N)/dot(q2-q1,N)
The intersection point is q1 + t*(q2-q1)
3) A more efficient algorithm
We now study the algorithm in:
Möller and Trumbore, "Fast, Minimum Storage Ray-Triangle Intersection", Journal of Graphics Tools, vol. 2,‎ 1997, p. 21–28
(see also: https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm)
The algorithm is in the end simpler (less instructions than what we did in 1) and 2)), but sightly more complicated to understand. Let us derive it step by step.
Notation:
O = origin of the ray,
D = direction vector of the ray,
A,B,C = vertices of the triangle
An arbitrary point P on the ray can be written as P = O + tD
An arbitrary point P on the triangle can be written as P = A + uE1 + vE2 where E1 = B-A and E2 = C-A, u>=0, v>=0 and (u+v)<=1
Writing both expressions of P gives:
O + tD = A + uE1 + vE2
or:
uE1 + vE2 -tD = O-A
in matrix form:
[u]
[E1|E2|-D] [v] = O-A
[t]
(where [E1|E2|-D] is the 3x3 matrix with E1,E2,-D as its columns)
Using Cramer's formula for the solution of:
[a11 a12 a13][x1] [b1]
[a12 a22 a23][x2] = [b2]
[a31 a32 a33][x3] [b3]
gives:
|b1 a12 a13| |a11 a12 a13|
x1 = |b2 a22 a23| / |a21 a22 a23|
|b3 a32 a33| |a31 a32 a33|
|a11 b1 a13| |a11 a12 a13|
x2 = |a21 b2 a23| / |a21 a22 a23|
|a31 b3 a33| |a31 a32 a33|
|a11 a12 b1| |a11 a12 a13|
x3 = |a21 a22 b2| / |a21 a22 a23|
|a31 a32 b3| |a31 a32 a33|
Now we get:
u = (O-A,E2,-D) / (E1,E2,-D)
v = (E1,O-A,-D) / (E1,E2,-D)
t = (E1,E2,O-A) / (E1,E2,-D)
where (A,B,C) denotes the determinant of the 3x3 matrix with A,B,C as its column vectors.
Now we use the following identities:
(A,B,C) = dot(A,cross(B,C)) (develop the determinant w.r.t. first column)
(B,A,C) = -(A,B,C) (swapping two vectors changes the sign)
(B,C,A) = (A,B,C) (circular permutation does not change the sign)
Now we get:
u = -(E2,O-A,D) / (D,E1,E2)
v = (E1,O-A,D) / (D,E1,E2)
t = -(O-A,E1,E2) / (D,E1,E2)
Using:
N=cross(E1,E2);
AO = O-A;
DAO = cross(D,AO)
We obtain finally the following code (here in GLSL, easy to translate to other languages):
bool intersect_triangle(
in Ray R, in vec3 A, in vec3 B, in vec3 C, out float t,
out float u, out float v, out vec3 N
) {
vec3 E1 = B-A;
vec3 E2 = C-A;
N = cross(E1,E2);
float det = -dot(R.Dir, N);
float invdet = 1.0/det;
vec3 AO = R.Origin - A;
vec3 DAO = cross(AO, R.Dir);
u = dot(E2,DAO) * invdet;
v = -dot(E1,DAO) * invdet;
t = dot(AO,N) * invdet;
return (det >= 1e-6 && t >= 0.0 && u >= 0.0 && v >= 0.0 && (u+v) <= 1.0);
}
When the function returns true, the intersection point is given by R.Origin + t * R.Dir. The barycentric coordinates of the intersection in the triangle are u, v, 1-u-v (useful for Gouraud shading or texture mapping). The nice thing is that you get them for free !
Note that the code is branchless.
It is used by some of my shaders on ShaderToy
https://www.shadertoy.com/view/tl3XRN
https://www.shadertoy.com/view/3ltSzM
#BrunoLevi: your algorithm does not seem to work, see the following python implementation:
def intersect_line_triangle(q1,q2,p1,p2,p3):
def signed_tetra_volume(a,b,c,d):
return np.sign(np.dot(np.cross(b-a,c-a),d-a)/6.0)
s1 = signed_tetra_volume(q1,p1,p2,p3)
s2 = signed_tetra_volume(q2,p1,p2,p3)
if s1 != s2:
s3 = signed_tetra_volume(q1,q2,p1,p2)
s4 = signed_tetra_volume(q1,q2,p2,p3)
s5 = signed_tetra_volume(q1,q2,p3,p1)
if s3 == s4 and s4 == s5:
n = np.cross(p2-p1,p3-p1)
t = -np.dot(q1,n-p1) / np.dot(q1,q2-q1)
return q1 + t * (q2-q1)
return None
My test code is:
q0 = np.array([0.0,0.0,1.0])
q1 = np.array([0.0,0.0,-1.0])
p0 = np.array([-1.0,-1.0,0.0])
p1 = np.array([1.0,-1.0,0.0])
p2 = np.array([0.0,1.0,0.0])
print(intersect_line_triangle(q0,q1,p0,p1,p2))
gives:
[ 0. 0. -3.]
instead of the expected
[ 0. 0. 0.]
looking at the line
t = np.dot(q1,n-p1) / np.dot(q1,q2-q1)
Subtracting p1 from the normal doesn't make sense to me, you want to project from q1 onto the plane of the triangle, so you need to project along the normal, with a distance that is proportional to the ratio of the distance from q1 to the plane and q1-q2 along the normal, right?
The following code fixes this:
n = np.cross(p2-p1,p3-p1)
t = np.dot(p1-q1,n) / np.dot(q2-q1,n)
return q1 + t * (q2-q1)
To find the intersection between a line and a triangle in 3D, follow this approach:
Compute the plane supporting the triangle,
Intersect the line with the plane supporting the triangle:
If there is no intersection, then there is no intersection with the triangle.
If there is an intersection, verify that the intersection point indeed lies in the triangle:
Each edge of the triangle together with the normal of the plane supporting the triangle determines a half-space bounding the inside of the triangle (the corresponding bounding plane can be derived from the normal and the edge vertices),
Verify that the intersection point lies on the inside of all the edge half-spaces.
Here is some sample code with detailed computations that should work:
// Compute the plane supporting the triangle (p1, p2, p3)
// normal: n
// offset: d
//
// A point P lies on the supporting plane iff n.dot(P) + d = 0
//
ofVec3f v21 = p2 - p1;
ofVec3f v31 = p3 - p1;
ofVec3f n = v21.getCrossed(v31);
float d = -n.dot(p1);
// A point P belongs to the line from P1 to P2 iff
// P = P1 + t * (P2 - P1)
//
// Find the intersection point P(t) between the line and
// the plane supporting the triangle:
// n.dot(P) + d = 0
// = n.dot(P1 + t (P2 - P1)) + d
// = n.dot(P1) + t n.dot(P2 - P1) + d
//
// t = -(n.dot(P1) + d) / n.dot(P2 - P1)
//
ofVec3f P21 = P2 - P1;
float nDotP21 = n.dot(P21);
// Ignore line parallel to (or lying in) the plane
if (fabs(nDotP21) < Epsilon)
return false;
float t = -(n.dot(P1) + d) / nDotP21;
ofVec3f P = P1 + t * P21;
// Plane bounding the inside half-space of edge (p1, p2):
// normal: n21 = n x (p2 - p1)
// offset: d21 = -n21.dot(p1)
//
// A point P is in the inside half-space iff n21.dot(P) + d21 > 0
//
// Edge (p1, p2)
ofVec3f n21 = n.cross(v21);
float d21 = -n21.dot(p1);
if (n21.dot(P) + d21 <= 0)
return false;
// Edge (p2, p3)
ofVec3f v32 = p3 - p2;
ofVec3f n32 = n.cross(v32);
float d32 = -n32.dot(p2);
if (n32.dot(P) + d32 <= 0)
return false;
// Edge (p3, p1)
ofVec3f n13 = n.cross(-v31);
float d13 = -n13.dot(p3);
if (n13.dot(P) + d13 <= 0)
return false;
return true;
Some comments on the code posted with the question:
Predefined operations of ofVec3f (.dot() and .cross() for geometric products, etc...) should be preferred when available (more readable, avoids implementation mistakes, etc...),
The code initially follows the approach above but then only checks that the intersection point is in the 3D axis-aligned bounding box of the line segment [P1, P2]. This combined with possible other errorscould explain why the results are incorrect.
One can verify that the intersection point is in the 3D axis-aligned bounding box of the (whole) triangle. While this is not enough to guarantee intersection, it can however be used to cull points clearly not intersecting and avoid further complex computations.
I have a different way to do it which I found in my renderer to be far faster than the first way given by BrunoLevy. (I haven't implemented the second way)
Points A, B, C are vertexes of the triangle
O is the origin of the ray
D is the direction of the ray (doesn't need to be normalised, just closer to the origin than the triangle)
Check if the direction (D+O) is inside the tetrahedron A, B, C, O
bool SameSide(vec3 A, vec3 B, vec3 C, vec3 D, vec3 p)
{
vec3 normal = cross(B - A, C - A);
float dotD = dot(normal, D - A);
float dotP = dot(normal, p - A);
return signbit(dotD) == signbit(dotP);
}
bool LineIntersectTri(vec3 A, vec3 B, vec3 C, vec3 O, vec3 D)
{
return SameSide(A, B, C, O, O+D) &&
SameSide(B, C, O, A, O+D) &&
SameSide(C, O, A, B, O+D) &&
SameSide(O, A, B, C, O+D);
}
If D varies, and everything else stays the same (for example in a raycasting renderer) then normal and dotP don't need to be recalculated; This is why I found it so much faster
The code came from this answer https://stackoverflow.com/a/25180294/18244401

How to get vertices for a sphere? [duplicate]

Are there any tutorials out there that explain how I can draw a sphere in OpenGL without having to use gluSphere()?
Many of the 3D tutorials for OpenGL are just on cubes. I have searched but most of the solutions to drawing a sphere are to use gluSphere(). There is also a site that has the code to drawing a sphere at this site but it doesn't explain the math behind drawing the sphere. I have also other versions of how to draw the sphere in polygon instead of quads in that link. But again, I don't understand how the spheres are drawn with the code. I want to be able to visualize so that I could modify the sphere if I need to.
One way you can do it is to start with a platonic solid with triangular sides - an octahedron, for example. Then, take each triangle and recursively break it up into smaller triangles, like so:
Once you have a sufficient amount of points, you normalize their vectors so that they are all a constant distance from the center of the solid. This causes the sides to bulge out into a shape that resembles a sphere, with increasing smoothness as you increase the number of points.
Normalization here means moving a point so that its angle in relation to another point is the same, but the distance between them is different.
Here's a two dimensional example.
A and B are 6 units apart. But suppose we want to find a point on line AB that's 12 units away from A.
We can say that C is the normalized form of B with respect to A, with distance 12. We can obtain C with code like this:
#returns a point collinear to A and B, a given distance away from A.
function normalize(a, b, length):
#get the distance between a and b along the x and y axes
dx = b.x - a.x
dy = b.y - a.y
#right now, sqrt(dx^2 + dy^2) = distance(a,b).
#we want to modify them so that sqrt(dx^2 + dy^2) = the given length.
dx = dx * length / distance(a,b)
dy = dy * length / distance(a,b)
point c = new point
c.x = a.x + dx
c.y = a.y + dy
return c
If we do this normalization process on a lot of points, all with respect to the same point A and with the same distance R, then the normalized points will all lie on the arc of a circle with center A and radius R.
Here, the black points begin on a line and "bulge out" into an arc.
This process can be extended into three dimensions, in which case you get a sphere rather than a circle. Just add a dz component to the normalize function.
If you look at the sphere at Epcot, you can sort of see this technique at work. it's a dodecahedron with bulged-out faces to make it look rounder.
I'll further explain a popular way of generating a sphere using latitude and longitude (another
way, icospheres, was already explained in the most popular answer at the time of this writing.)
A sphere can be expressed by the following parametric equation:
F(u, v) = [ cos(u)*sin(v)*r, cos(v)*r, sin(u)*sin(v)*r ]
Where:
r is the radius;
u is the longitude, ranging from 0 to 2π; and
v is the latitude, ranging from 0 to π.
Generating the sphere then involves evaluating the parametric function at fixed intervals.
For example, to generate 16 lines of longitude, there will be 17 grid lines along the u axis, with a step of
π/8 (2π/16) (the 17th line wraps around).
The following pseudocode generates a triangle mesh by evaluating a parametric function
at regular intervals (this works for any parametric surface function, not just spheres).
In the pseudocode below, UResolution is the number of grid points along the U axis
(here, lines of longitude), and VResolution is the number of grid points along the V axis
(here, lines of latitude)
var startU=0
var startV=0
var endU=PI*2
var endV=PI
var stepU=(endU-startU)/UResolution // step size between U-points on the grid
var stepV=(endV-startV)/VResolution // step size between V-points on the grid
for(var i=0;i<UResolution;i++){ // U-points
for(var j=0;j<VResolution;j++){ // V-points
var u=i*stepU+startU
var v=j*stepV+startV
var un=(i+1==UResolution) ? endU : (i+1)*stepU+startU
var vn=(j+1==VResolution) ? endV : (j+1)*stepV+startV
// Find the four points of the grid
// square by evaluating the parametric
// surface function
var p0=F(u, v)
var p1=F(u, vn)
var p2=F(un, v)
var p3=F(un, vn)
// NOTE: For spheres, the normal is just the normalized
// version of each vertex point; this generally won't be the case for
// other parametric surfaces.
// Output the first triangle of this grid square
triangle(p0, p2, p1)
// Output the other triangle of this grid square
triangle(p3, p1, p2)
}
}
The code in the sample is quickly explained. You should look into the function void drawSphere(double r, int lats, int longs):
void drawSphere(double r, int lats, int longs) {
int i, j;
for(i = 0; i <= lats; i++) {
double lat0 = M_PI * (-0.5 + (double) (i - 1) / lats);
double z0 = sin(lat0);
double zr0 = cos(lat0);
double lat1 = M_PI * (-0.5 + (double) i / lats);
double z1 = sin(lat1);
double zr1 = cos(lat1);
glBegin(GL_QUAD_STRIP);
for(j = 0; j <= longs; j++) {
double lng = 2 * M_PI * (double) (j - 1) / longs;
double x = cos(lng);
double y = sin(lng);
glNormal3f(x * zr0, y * zr0, z0);
glVertex3f(r * x * zr0, r * y * zr0, r * z0);
glNormal3f(x * zr1, y * zr1, z1);
glVertex3f(r * x * zr1, r * y * zr1, r * z1);
}
glEnd();
}
}
The parameters lat defines how many horizontal lines you want to have in your sphere and lon how many vertical lines. r is the radius of your sphere.
Now there is a double iteration over lat/lon and the vertex coordinates are calculated, using simple trigonometry.
The calculated vertices are now sent to your GPU using glVertex...() as a GL_QUAD_STRIP, which means you are sending each two vertices that form a quad with the previously two sent.
All you have to understand now is how the trigonometry functions work, but I guess you can figure it out easily.
If you wanted to be sly like a fox you could half-inch the code from GLU. Check out the MesaGL source code (http://cgit.freedesktop.org/mesa/mesa/).
See the OpenGL red book: http://www.glprogramming.com/red/chapter02.html#name8
It solves the problem by polygon subdivision.
My example how to use 'triangle strip' to draw a "polar" sphere, it consists in drawing points in pairs:
const float PI = 3.141592f;
GLfloat x, y, z, alpha, beta; // Storage for coordinates and angles
GLfloat radius = 60.0f;
int gradation = 20;
for (alpha = 0.0; alpha < GL_PI; alpha += PI/gradation)
{
glBegin(GL_TRIANGLE_STRIP);
for (beta = 0.0; beta < 2.01*GL_PI; beta += PI/gradation)
{
x = radius*cos(beta)*sin(alpha);
y = radius*sin(beta)*sin(alpha);
z = radius*cos(alpha);
glVertex3f(x, y, z);
x = radius*cos(beta)*sin(alpha + PI/gradation);
y = radius*sin(beta)*sin(alpha + PI/gradation);
z = radius*cos(alpha + PI/gradation);
glVertex3f(x, y, z);
}
glEnd();
}
First point entered (glVertex3f) is as follows the parametric equation and the second one is shifted by a single step of alpha angle (from next parallel).
Although the accepted answer solves the question, there's a little misconception at the end. Dodecahedrons are (or could be) regular polyhedron where all faces have the same area. That seems to be the case of the Epcot (which, by the way, is not a dodecahedron at all). Since the solution proposed by #Kevin does not provide this characteristic I thought I could add an approach that does.
A good way to generate an N-faced polyhedron where all vertices lay in the same sphere and all its faces have similar area/surface is starting with an icosahedron and the iteratively sub-dividing and normalizing its triangular faces (as suggested in the accepted answer). Dodecahedrons, for instance, are actually truncated icosahedrons.
Regular icosahedrons have 20 faces (12 vertices) and can easily be constructed from 3 golden rectangles; it's just a matter of having this as a starting point instead of an octahedron. You may find an example here.
I know this is a bit off-topic but I believe it may help if someone gets here looking for this specific case.
Python adaptation of #Constantinius answer:
lats = 10
longs = 10
r = 10
for i in range(lats):
lat0 = pi * (-0.5 + i / lats)
z0 = sin(lat0)
zr0 = cos(lat0)
lat1 = pi * (-0.5 + (i+1) / lats)
z1 = sin(lat1)
zr1 = cos(lat1)
glBegin(GL_QUAD_STRIP)
for j in range(longs+1):
lng = 2 * pi * (j+1) / longs
x = cos(lng)
y = sin(lng)
glNormal(x * zr0, y * zr0, z0)
glVertex(r * x * zr0, r * y * zr0, r * z0)
glNormal(x * zr1, y * zr1, z1)
glVertex(r * x * zr1, r * y * zr1, r * z1)
glEnd()
void draw_sphere(float r)
{
float pi = 3.141592;
float di = 0.02;
float dj = 0.04;
float db = di * 2 * pi;
float da = dj * pi;
for (float i = 0; i < 1.0; i += di) //horizonal
for (float j = 0; j < 1.0; j += dj) //vertical
{
float b = i * 2 * pi; //0 to 2pi
float a = (j - 0.5) * pi; //-pi/2 to pi/2
//normal
glNormal3f(
cos(a + da / 2) * cos(b + db / 2),
cos(a + da / 2) * sin(b + db / 2),
sin(a + da / 2));
glBegin(GL_QUADS);
//P1
glTexCoord2f(i, j);
glVertex3f(
r * cos(a) * cos(b),
r * cos(a) * sin(b),
r * sin(a));
//P2
glTexCoord2f(i + di, j);//P2
glVertex3f(
r * cos(a) * cos(b + db),
r * cos(a) * sin(b + db),
r * sin(a));
//P3
glTexCoord2f(i + di, j + dj);
glVertex3f(
r * cos(a + da) * cos(b + db),
r * cos(a + da) * sin(b + db),
r * sin(a + da));
//P4
glTexCoord2f(i, j + dj);
glVertex3f(
r * cos(a + da) * cos(b),
r * cos(a + da) * sin(b),
r * sin(a + da));
glEnd();
}
}
One way is to make a quad that faces the camera and write a vertex and fragment shader that renders something that looks like a sphere. You could use equations for a circle/sphere that you can find on the internet.
One nice thing is that the silhouette of a sphere looks the same from any angle. However, if the sphere is not in the center of a perspective view, then it would appear perhaps more like an ellipse. You could work out the equations for this and put them in the fragment shading. Then the light shading needs to changed as the player moves, if you do indeed have a player moving in 3D space around the sphere.
Can anyone comment on if they have tried this or if it would be too expensive to be practical?

How to do ray plane intersection?

How do I calculate the intersection between a ray and a plane?
Code
This produces the wrong results.
float denom = normal.dot(ray.direction);
if (denom > 0)
{
float t = -((center - ray.origin).dot(normal)) / denom;
if (t >= 0)
{
rec.tHit = t;
rec.anyHit = true;
computeSurfaceHitFields(ray, rec);
return true;
}
}
Parameters
ray represents the ray object.
ray.direction is the direction vector.
ray.origin is the origin vector.
rec represents the result object.
rec.tHit is the value of the hit.
rec.anyHit is a boolean.
My function has access to the plane:
center and normal defines the plane
As wonce commented, you want to also allow the denominator to be negative, otherwise you will miss intersections with the front face of your plane. However, you still want a test to avoid a division by zero, which would indicate the ray being parallel to the plane. You also have a superfluous negation in your computation of t. Overall, it should look like this:
float denom = normal.dot(ray.direction);
if (abs(denom) > 0.0001f) // your favorite epsilon
{
float t = (center - ray.origin).dot(normal) / denom;
if (t >= 0) return true; // you might want to allow an epsilon here too
}
return false;
First consider the math of the ray-plane intersection:
In general one intersects the parametric form of the ray, with the implicit form of the geometry.
So given a ray of the form x = a * t + a0, y = b * t + b0, z = c * t + c0;
and a plane of the form: A x * B y * C z + D = 0;
now substitute the x, y and z ray equations into the plane equation and you will get a polynomial in t. you then solve that polynomial for the real values of t. With those values of t you can back substitute into the ray equation to get the real values of x, y and z.
Here it is in Maxima:
Note that the answer looks like the quotient of two dot products!
The normal to a plane is the first three coefficients of the plane equation A, B, and C.
You still need D to uniquely determine the plane.
Then you code that up in the language of your choice like so:
Point3D intersectRayPlane(Ray ray, Plane plane)
{
Point3D point3D;
// Do the dot products and find t > epsilon that provides intersection.
return (point3D);
}
Math
Define:
Let the ray be given parametrically by q = p + t*v for initial point p and direction vector v for t >= 0.
Let the plane be the set of points r satisfying the equation dot(n, r) + d = 0 for normal vector n = (a, b, c) and constant d. Fully expanded, the plane equation may also be written in the familiar form ax + by + cz + d = 0.
The ray-plane intersection occurs when q satisfies the plane equation. Substituting, we have:
d = -dot(n, q)
= -dot(n, p + t * v)
= -dot(n, p) + t * dot(n, v)
Rearranging:
t = -(dot(n, p) + d) / dot(n, v)
This value of t can be used to determine the intersection by plugging it back into p + t*v.
Example implementation
std::optional<vec3> intersectRayWithPlane(
vec3 p, vec3 v, // ray
vec3 n, float d // plane
) {
float denom = dot(n, v);
// Prevent divide by zero:
if (abs(denom) <= 1e-4f)
return std::nullopt;
// If you want to ensure the ray reflects off only
// the "top" half of the plane, use this instead:
//
// if (-denom <= 1e-4f)
// return std::nullopt;
float t = -(dot(n, p) + d) / dot(n, v);
// Use pointy end of the ray.
// It is technically correct to compare t < 0,
// but that may be undesirable in a raytracer.
if (t <= 1e-4)
return std::nullopt;
return p + t * v;
}
implementation of vwvan's answer
Vector3 Intersect(Vector3 planeP, Vector3 planeN, Vector3 rayP, Vector3 rayD)
{
var d = Vector3.Dot(planeP, -planeN);
var t = -(d + Vector3.Dot(rayP, planeN)) / Vector3.Dot(rayD, planeN);
return rayP + t * rayD;
}

Draw arbitrary plane from plane equation, OpenGL

I have a plane defined by the standard plane equation a*x + b*y + c*z + d = 0, which I would like to be able to draw using OpenGL. How can I derive the four points needed to draw it as a quadrilateral in 3D space?
My plane type is defined as:
struct Plane {
float x,y,z; // plane normal
float d;
};
void DrawPlane(const Plane & p)
{
???
}
EDIT:
So, rethinking the question, what I actually wanted was to draw a discreet representation of a plane in 3D space, not an infinite plane.
Base on the answer provided by #a.lasram, I have produced this implementation, which doest just that:
void DrawPlane(const Vector3 & center, const Vector3 & planeNormal, float planeScale, float normalVecScale, const fColorRGBA & planeColor, const fColorRGBA & normalVecColor)
{
Vector3 tangent, bitangent;
OrthogonalBasis(planeNormal, tangent, bitangent);
const Vector3 v1(center - (tangent * planeScale) - (bitangent * planeScale));
const Vector3 v2(center + (tangent * planeScale) - (bitangent * planeScale));
const Vector3 v3(center + (tangent * planeScale) + (bitangent * planeScale));
const Vector3 v4(center - (tangent * planeScale) + (bitangent * planeScale));
// Draw wireframe plane quadrilateral:
DrawLine(v1, v2, planeColor);
DrawLine(v2, v3, planeColor);
DrawLine(v3, v4, planeColor);
DrawLine(v4, v1, planeColor);
// And a line depicting the plane normal:
const Vector3 pvn(
(center[0] + planeNormal[0] * normalVecScale),
(center[1] + planeNormal[1] * normalVecScale),
(center[2] + planeNormal[2] * normalVecScale)
);
DrawLine(center, pvn, normalVecColor);
}
Where OrthogonalBasis() computes the tangent and bi-tangent from the plane normal.
To see the plane as if it's infinite you can find 4 quad vertices so that the clipped quad and the clipped infinite plane form the same polygon. Example:
Sample 2 random points P1 and P2 on the plane such as P1 != P2.
Deduce a tangent t and bi-tangent b as
t = normalize(P2-P1); // get a normalized tangent
b = cross(t, n); // the bi-tangent is the cross product of the tangent and the normal
Compute the bounding sphere of the view frustum. The sphere would have a diameter D (if this step seems difficult, just set D to a large enough value such as the corresponding sphere encompasses the frustum).
Get the 4 quad vertices v1 , v2 , v3 and v4 (CCW or CW depending on the choice of P1 and P2):
v1 = P1 - t*D - b*D;
v2 = P1 + t*D - b*D;
v3 = P1 + t*D + b*D;
v4 = P1 - t*D + b*D;
One possibility (possibly not the cleanest) is to get the orthogonal vectors aligned to the plane and then choose points from there.
P1 = < x, y, z >
t1 = random non-zero, non-co-linear vector with P1.
P2 = norm(P1 cross t1)
P3 = norm(P1 cross P2)
Now all points in the desired plane are defined as a starting point plus a linear combination of P2 and P3. This way you can get as many points as desired for your geometry.
Note: the starting point is just your plane normal < x, y, z > multiplied by the distance from the origin: abs(d).
Also of interest, with clever selection of t1, you can also get P2 aligned to some view. Say you are looking at the x, y plane from some z point. You might want to choose t1 = < 0, 1, 0 > (as long as it isn't co-linear to P1). This yields P2 with 0 for the y component, and P3 with 0 for the x component.