Can plain array be put in cpu register? - c++

Can a plain array (arr) be put into cpu register in the following situation:
int arr[6] {/*some values*/};
const auto lambda_f = [arr](int input) {/*some manipulations on array elements and input*/};
// further usage of lambda_f
If it can't, how should I rewrite the code to make it possible?
EDIT: Of course, I've meant the copy of the array in the lambda.

In general, yes. But it depends on the particular platform. If you have a very recent Intel x86-64 chip it will have "AVX2" instructions which operate on 256-bit (32 byte) integers.
Your int arr[6] is 4*6=24 bytes, so it will fit in a single AVX register, and then you can use AVX2 integer instructions on it. You'll just need to ignore the extra 8 bytes of the register, but that's usually not a problem.
If you need to support older processors, you can use SSE2 instead, which will work on most any modern-ish x86 system. You can only operate on 128 bits (4 ints) at a time though.
The first step is loading your data into a wide register. For examples, see here: What's the most efficient way to load and extract 32 bit integer values from a 128 bit SSE vector?

On most platforms, int[6] is too much information to put in a single register, though of course you could have pointers into the array in registers suitable for holding pointers. Or if you mean to ask whether the contents of the array could be stored in some set of registers, it could be possible.
But it all depends on how the data is used, and whether or not the compiler thinks the registers are more valuable for other data. If I can assume your posted code is actually inside a function block, any optimizing compiler would ignore your posted code entirely and get rid of both arr and lambda_f, since you never use them.
The only way to determine the answer is to try it out on specific actual code that does use lambda_f, and examine the resulting assembly.

Related

Difference between uint8_t and unspecified int for large matrices

I have a matrix that is over 17,000 x 14,000 that I'm storing in memory in C++. The values will never get over 255 so I'm thinking I should store this matrix as a uint8_t type instead of a regular int type. Will the regular int type will assume the native word size (64 bit so 8 bytes per cell) even with an optimizing compiler? I'm assuming I'll use 8x less memory if I store the array as uint8_t?
If you doubt this, you could have just tried it.
Of course it will be smaller.
However, it wholly depends on your usage patterns which will be faster. Profile! Profile! Profile!
Reasons for unexpected performance considerations:
alignment issues
elements sharing cache lines (could be positive on sequential access; negative in multicore scenarios)
increased need for locking on atomic reads/writes (in case of threading)
reduced applicability of certain optimized MIPS instructions (? - I'm not up-to-date with details here; also a very good optimizing compiler might simply register-allocate temporaries of the right size)
other, unrelated border conditions, originating from the surrounding code
The standard doesn't specify the exact size of int other than it's at least the size of short. On some 64-bit architectures (for example many Linux and Solaris x86 systems I work with) int is 32 bits and long is 64 bits. The exact size of each type will of course vary by compiler/hardware.
The best way to find out is to use sizeof(int) on your system and see how big it is. If you have enough RAM using the native type may in fact be significantly faster than the uint8_t.
Even the best optimizing compiler is not going to do an analysis of the values of the data that you put into your matrix and assume (anthropomorphizing here) "Hmmm. He said int but everything is between 0 and 255. I'm going to make that an array of uint8_t."
The compiler can interpret some keywords such as register and inline as suggestions rather than mandates. Types on the other hand are mandates. You told the compiler to use int so the compiler must use int. So switching to a uint8_t matrix will save you a considerable amount of memory here.

Byte swap during copy

I need to efficiently swap the byte order of an array during copying into another array.
The source array is of a certain type; char, short or int so the byte swapping required is unambiguous and will be according to that type.
My plan is to do this very simply with a multi-pass byte-wise copy (2 for short, 4 for int, ...). However are there any pre-existing "memcpy_swap_16/32/64" functions or libraries? Perhaps in image processing for BGR/RGB image processing.
EDIT
I know how to swap the bytes of individual values, that is not the problem. I want to do this process during a copy that I am going to perform anyway.
For example, if I have an array or little endian 4-byte integers I can do they swap by performing 4 bytewise copies with initial offsets of 0, 1, 2 and 3 with a stride of 4. But there may be a better way, perhaps even reading each 4-byte integer individually and using the byte-swap intrinsics _byteswap_ushort, _byteswap_ulong and _byteswap_uint64 would be faster. But I suspect there must be existing functions that do this type of processing.
EDIT 2
Just found this, which may be a useful basis for SSE, though its true that memory bandwidth probably makes it a waste of time.
Fast vectorized conversion from RGB to BGRA
Unix systems have a swab function that does what you want for 16-bit arrays. It's probably optimized, but I'm not sure. Note that modern gcc will generate extremely efficient code if you just write the naive byte swap code:
uint32_t x, y;
y = (x<<24) | (x<<8 & 0xff0000) | (x>>8 & 0xff00) | (x>>24);
i.e. it will use the bswap instruction on i486+. Presumably putting this in a loop will give an efficient loop too...
Edit: For your copying task, I would do the following in your loop:
Read a 32-bit value from const uint32_t *src.
Use the above code to swap it.
Write a 32-bit value to uint32_t *dest.
Strictly speaking this may not be portable (aliasing violations) but as long as the copy function is in its own translation unit and not getting inlined, there's very little to worry about. Forget what I wrote about aliasing; if you're swapping the data as 32-bit values, it almost surely was actually 32-bit values to begin with, not some other type of pointer that was cast, so there's no issue.
In linux, you should check the header bits/byteswap.h. there's a family of macros of the form bswap_##, and some of them use assembly instructions where appropriate.
Yes there are existing functions like the one linked in the question but its not worth the effort because the size of the data (in this case) means the set up overhead is too high. So instead, it's better to just read out 2, 4, and 8 bytes at a time and do the swap using intrinsics and write back.

Implementing memcmp

The following is the Microsoft CRT implementation of memcmp:
int memcmp(const void* buf1,
const void* buf2,
size_t count)
{
if(!count)
return(0);
while(--count && *(char*)buf1 == *(char*)buf2 ) {
buf1 = (char*)buf1 + 1;
buf2 = (char*)buf2 + 1;
}
return(*((unsigned char*)buf1) - *((unsigned char*)buf2));
}
It basically performs a byte by byte comparision.
My question is in two parts:
Is there any reason to not alter this to an int by int comparison until count < sizeof(int), then do a byte by byte comparision for what remains?
If I were to do 1, are there any potential/obvious problems?
Notes: I'm not using the CRT at all, so I have to implement this function anyway. I'm just looking for advice on how to implement it correctly.
You could do it as an int-by-int comparison or an even wider data type if you wish.
The two things you have to watch out for (at a minimum) are an overhang at the start as well as the end, and whether the alignments are different between the two areas.
Some processors run slower if you access values without following their alignment rules (some even crash if you try it).
So your code could probably do char comparisons up to an int alignment area, then int comparisons, then char comparisons again but, again, the alignments of both areas will probably matter.
Whether that extra code complexity is worth whatever savings you will get depends on many factors outside your control. A possible method would be to detect the ideal case where both areas are aligned identically and do it a fast way, otherwise just do it character by character.
The optimization you propose is very common. The biggest concern would be if you try to run it on a processor that doesn't allow unaligned accesses for anything other than a single byte, or is slower in that mode; the x86 family doesn't have that problem.
It's also more complicated, and thus more likely to contain a bug.
Don't forget that when you find a mismatch within a larger chunk, you must then identify the first differing char within that chunk so that you can calculate the correct return value (memcmp() returns the difference of the first differing bytes, treated as unsigned char values).
If you compare as int, you will need to check alignment and check if count is divisible by sizeof(int) (to compare the last bytes as char).
Is that really their implementation? I have other issues besides not doing it int-wise:
castng away constness.
does that return statement work? unsigned char - unsigned char = signed int?
int at a time only works if the pointers are aligned, or if you can read a few bytes from the front of each and they are both still aligned, so if both are 1 before the alignment boundary you can read one char of each then go int-at-a-time, but if they are aligned differently eg one is aligned and one is not, there is no way to do this.
memcmp is at its most inefficient (i.e. it takes the longest) when they do actually compare (it has to go to the end) and the data is long.
I would not write my own but if you are going to be comparing large portions of data you could do things like ensure alignment and even pad the ends, then do word-at-a-time, if you want.
Another idea is to optimize for the processor cache and fetching. Processors like to fetch in large chunks rather than individual bytes at random times. Although the internal workings may already account for this, it would be a good exercise anyway. Always profile to determine the most efficient solution.
Psuedo code:
while bytes remaining > (cache size) / 2 do // Half the cache for source, other for dest.
fetch source bytes
fetch destination bytes
perform comparison using fetched bytes
end-while
perform byte by byte comparison for remainder.
For more information, search the web for "Data Driven Design" and "data oriented programming".
Some processors, such as the ARM family, allow for conditional execution of instructions (in 32-bit, non-thumb) mode. The processor fetches the instructions but will only execute them if the conditions are satisfied. In this case, try rephrasing the comparison in terms of boolean assignments. This may also reduce the number of branches taken, which improves performance.
See also loop unrolling.
See also assembly language.
You can gain a lot of performance by tailoring the algorithm to a specific processor, but loose in the portability area.
The code you found is just a debug implementation of memcmp, it's optimized for simplicity and readability, not for performance.
The intrinsic compiler implementation is platform specific and smart enough to generate processor instructions that compare dwords or qwords (depending on the target architecture) at once whenever possible.
Also, an intrinsic implementation may return immediately if both buffers have the same address (buf1 == buf2). This check is also missing in the debug implementation.
Finally, even when you know exactly on which platform you'll be running, the perfect implementation is still the less generic one as it depends on a bunch of different factors that are specific to the rest of your program:
What is the minumum guaranteed buffer alignment?
Can you read any padding bytes past the end of a buffer without triggering an access violation?
May the buffer parameters be identical?
May the buffer size be 0?
Do you only need to compare buffer contents for equality? Or do you also need to know which one is larger (return value < 0 or > 0)?
...
If performace is a concern, I suggest writing the comparison routine in assembly. Most compilers give you an option to see the assembly lising that they generate for a source. You could take that code and adapt it to your needs.
Many processors implement this as a single instruction. If you can guarantee the processor you're running on it can be implemented with a single line of inline assembler.

C++ : why bool is 8 bits long?

In C++, I'm wondering why the bool type is 8 bits long (on my system), where only one bit is enough to hold the boolean value ?
I used to believe it was for performance reasons, but then on a 32 bits or 64 bits machine, where registers are 32 or 64 bits wide, what's the performance advantage ?
Or is it just one of these 'historical' reasons ?
Because every C++ data type must be addressable.
How would you create a pointer to a single bit? You can't. But you can create a pointer to a byte. So a boolean in C++ is typically byte-sized. (It may be larger as well. That's up to the implementation. The main thing is that it must be addressable, so no C++ datatype can be smaller than a byte)
Memory is byte addressable. You cannot address a single bit, without shifting or masking the byte read from memory. I would imagine this is a very large reason.
A boolean type normally follows the smallest unit of addressable memory of the target machine (i.e. usually the 8bits byte).
Access to memory is always in "chunks" (multiple of words, this is for efficiency at the hardware level, bus transactions): a boolean bit cannot be addressed "alone" in most CPU systems. Of course, once the data is contained in a register, there are often specialized instructions to manipulate bits independently.
For this reason, it is quite common to use techniques of "bit packing" in order to increase efficiency in using "boolean" base data types. A technique such as enum (in C) with power of 2 coding is a good example. The same sort of trick is found in most languages.
Updated: Thanks to a excellent discussion, it was brought to my attention that sizeof(char)==1 by definition in C++. Hence, addressing of a "boolean" data type is pretty tied to the smallest unit of addressable memory (reinforces my point).
The answers about 8-bits being the smallest amount of memory that is addressable are correct. However, some languages can use 1-bit for booleans, in a way. I seem to remember Pascal implementing sets as bit strings. That is, for the following set:
{1, 2, 5, 7}
You might have this in memory:
01100101
You can, of course, do something similar in C / C++ if you want. (If you're keeping track of a bunch of booleans, it could make sense, but it really depends on the situation.)
I know this is old but I thought I'd throw in my 2 cents.
If you limit your boolean or data type to one bit then your application is at risk for memory curruption. How do you handle error stats in memory that is only one bit long?
I went to a job interview and one of the statements the program lead said to me was, "When we send the signal to launch a missle we just send a simple one bit on off bit via wireless. Sending one bit is extremelly fast and we need that signal to be as fast as possible."
Well, it was a test to see if I understood the concepts and bits, bytes, and error handling. How easy would it for a bad guy to send out a one bit msg. Or what happens if during transmittion the bit gets flipped the other way.
Some embedded compilers have an int1 type that is used to bit-pack boolean flags (e.g. CCS series of C compilers for Microchip MPU's). Setting, clearing, and testing these variables uses single-instruction bit-level instructions, but the compiler will not permit any other operations (e.g. taking the address of the variable), for the reasons noted in other answers.
Note, however, that std::vector<bool> is allowed to use bit-packing, i.e. to store the bits in smaller units than an ordinary bool. But it is not required.

Is there a relation between integer and register sizes?

Recently, I was challenged in a recent interview with a string manipulation problem and asked to optimize for performance. I had to use an iterator to move back and forth between TCHAR characters (with UNICODE support - 2bytes each).
Not really thinking of the array length, I made a curial mistake with not using size_t but an int to iterate through. I understand it is not compliant and not secure.
int i, size = _tcslen(str);
for(i=0; i<size; i++){
// code here
}
But, the maximum memory we can allocate is limited. And if there is a relation between int and register sizes, it may be safe to use an integer.
E.g.: Without any virtual mapping tools, we can only map 2^register-size bytes. Since TCHAR is 2 bytes long, half of that number. For any system that has int as 32-bits, this is not going to be a problem even if you dont use an unsigned version of int. People with embedded background used to think of int as 16-bits, but memory size will be restricted on such a device. So I wonder if there is a architectural fine-tuning decision between integer and register sizes.
The C++ standard doesn't specify the size of an int. (It says that sizeof(char) == 1, and sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long).
So there doesn't have to be a relation to register size. A fully conforming C++ implementation could give you 256 byte integers on your PC with 32-bit registers. But it'd be inefficient.
So yes, in practice, the size of the int datatype is generally equal to the size of the CPU's general-purpose registers, since that is by far the most efficient option.
If an int was bigger than a register, then simple arithmetic operations would require more than one instruction, which would be costly. If they were smaller than a register, then loading and storing the values of a register would require the program to mask out the unused bits, to avoid overwriting other data. (That is why the int datatype is typically more efficient than short.)
(Some languages simply require an int to be 32-bit, in which case there is obviously no relation to register size --- other than that 32-bit is chosen because it is a common register size)
Going strictly by the standard, there is no guarantee as to how big/small an int is, much less any relation to the register size. Also, some architectures have different sizes of registers (i.e: not all registers on the CPU are the same size) and memory isn't always accessed using just one register (like DOS with its Segment:Offset addressing).
With all that said, however, in most cases int is the same size as the "regular" registers since it's supposed to be the most commonly used basic type and that's what CPUs are optimized to operate on.
AFAIK, there is no direct link between register size and the size of int.
However, since you know for which platform you're compiling the application, you can define your own type alias with the sizes you need:
Example
#ifdef WIN32 // Types for Win32 target
#define Int16 short
#define Int32 int
// .. etc.
#elif defined // for another target
Then, use the declared aliases.
I am not totally aware, if I understand this correct, since some different problems (memory sizes, allocation, register sizes, performance?) are mixed here.
What I could say is (just taking the headline), that on most actual processors for maximum speed you should use integers that match register size. The reason is, that when using smaller integers, you have the advantage of needing less memory, but for example on the x86 architecture, an additional command for conversion is needed. Also on Intel you have the problem, that accesses to unaligned (mostly on register-sized boundaries) memory will give some penality. Off course, on todays processors things are even more complex, since the CPUs are able to process commands in parallel. So you end up fine tuning for some architecture.
So the best guess -- without knowing the architectore -- speeedwise is, to use register sized ints, as long you can afford the memory.
I don't have a copy of the standard, but my old copy of The C Programming Language says (section 2.2) int refers to "an integer, typically reflecting the natural size of integers on the host machine." My copy of The C++ Programming Language says (section 4.6) "the int type is supposed to be chosen to be the most suitable for holding and manipulating integers on a given computer."
You're not the only person to say "I'll admit that this is technically a flaw, but it's not really exploitable."
There are different kinds of registers with different sizes. What's important are the address registers, not the general purpose ones. If the machine is 64-bit, then the address registers (or some combination of them) must be 64-bits, even if the general-purpose registers are 32-bit. In this case, the compiler may have to do some extra work to actually compute 64-bit addresses using multiple general purpose registers.
If you don't think that hardware manufacturers ever make odd design choices for their registers, then you probably never had to deal with the original 8086 "real mode" addressing.