C++ [Recursive] Write a number as sum of ascending powers of 2 [closed] - c++

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 5 years ago.
Improve this question
So as the title says,I have to write a number as sum of ascending powers of 2.
For instance, if I input 10, 25 , 173
10 = 2 + 8
25 = 1 + 8 + 16
173 = 1 + 4 + 8 + 32 + 128
So this is what I have done:
#include <iostream>
using namespace std;
int x,c;
int v[500];
void Rezolva(int putere)
{
if(putere * 2 <= x)
Rezolva(putere * 2);
if(x - putere >= 0)
{
c++;
v[c] = putere;
x -= putere;
}
}
int main()
{
cin >> x;
c = 0;
Rezolva(1);
for(int i = c; i >= 1; i--)
cout << v[i] << " ";
return 0;
}
I have a program which gives my code some tests and verifies if it's correct. To one test, it says that I exit the array. Is there any way to get rid of the array or to fix this problem ? If I didn't use the array it would have been in descending order.
The error isn't a compiler error.
Caught fatal signal 11 is what I receive when my program checks some tests on the code

For values higher than 10^9 the program crashes so you need to change from int to long long.
#include <iostream>
using namespace std;
long long x,c;
long long v[500];
void Rezolva(long long putere)
{
if (putere * 2 <= x)
Rezolva(putere * 2);
if (x - putere >= 0)
{
v[c++] = putere;
x -= putere;
}
}
int main()
{
cin >> x;
c = 0;
Rezolva(1);
for(int i = c - 1; i >= 0; i--)
cout << v[i] << " ";
return 0;
}
All in all, a simple overflow was the cause.

It was a simple overflow. And by the way a way easier way to do it is have a long long unsigned int
#include <bitset>
unsigned long long x = input;
std::cout << x << " = ";
std::string str = std::bitset<64>(x).to_string();
for (int i = str.size()-1; i >= 0; --i)
if(str[i]-'0')
std::cout << (2ull << i) << " + ";
if (x)
std::cout << char(8)<<char(8) << std::endl; //DELETING LAST "+" for non-zero x
else
std::cout << "0\n";

If you have a fixed size integer (e.g. int etc.) then you can just start at the greatest possible power of two, and if your number is bigger than that power, subtract the power of 2. Then go to the next power of two.
This is similar to how you would normally write numbers yourself starting from the most significant digit. So also works for how numbers are printed in base 16 (hex), 10, binary literals, etc.
int main() {
unsigned x = 173;
std::cout << x << " = ";
bool first = true;
// get the max power from a proper constant
for (unsigned power = 0x80000000; power > 0; power >>= 1)
{
if (power <= x)
{
if (!first) std::cout << " + ";
std::cout << power;
x -= power;
first = false;
}
}
assert(x == 0);
std::cout << std::endl;
}
Outputs:
173 = 128 + 32 + 8 + 4 + 1

Related

Converting an array of decimals to 8-bit binary form in c++

Okay so I'm tryna create a program that:
(1) swaps my array
(2) performs caesar cipher substitution on the swapped array
(3) convert the array from (2) that is in decimal form into 8-bit binary form
And so far I've successfully done the first 2 parts but I'm facing problem with converting the array from decimal to binary form.
And this is my coding of what I've tried
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
void swapfrontback(int a[], int n);
int main()
{
int a[10], i, n;
cout << "enter size" << endl;
cin >> n;
if (n == 0)
{
cout << "Array is empty!\n";
}
else
{
cout << "p = " << endl;
for (i = 0; i < n; i++)
{
cin >> a[i];
}
}
swapfrontback(a,n);
//caesar cipher
int shift = 0;
cout << "input shift: ";
cin >> shift;
int modulus = 0;
cout << "input modulus: ";
cin >> modulus;
cout << "p''=" << endl;
for (i = 0; i < n; i++)
{
a[i] = (a[i] + shift) % modulus;
cout << a[i] << endl;
}
// Function that convert Decimal to binary
int b;
b = 8;
cout<< "p'''=" << endl;
for (i = 0; i < n; i++)
{
for(int i=b-1;i>=0;i--)
{
if( a[i] & ( 1 << i ) ) cout<<1;
else cout<<0;
}
}
return 0;
}
void swapfrontback(int a[], int n)
{
int i, temp;
for (i = 0; i < n / 2; i++)
{
temp = a[i];
a[i] = a[n - i-1];
a[n - i-1] = temp;
}
cout << "p' = '" << endl;
for (i = 0; i < n; i++)
{
cout << a[i] << endl;
}
}
the problem is that instead of converting the array of decimal from the 2nd part which is the caesar cipher into its binary form, I'm getting 000000010000000100000001 .
My initial array is
3
18
25
Shift 8 and modulo 26. If anyone knows how to fix this please do help me.
Well, there seems to be something that may be an issue in the future (like the n being larger than 10, but, regarding your question, this nested for sentence is wrong.
for (i = 0; i < n; i++)
{
for(int i=b-1;i>=0;i--) //here you are using the variable 'i' twice
{
if( a[i] & ( 1 << i ) ) cout<<1; //i starts at 7, which binary representation in 4 bits is 0111
else cout<<0;
}
}
When you're using nested for sentences, it is a good idea to not repeat their iterating variables' names since they can affect each other and create nasty things like infinite loops or something like that. Try to use a different variable name instead to avoid confusion and issues:
for(int j=b-1;j>=0;j--) //this is an example
Finally, the idea behind transforming a base 10 number to its binary representation (is to use the & operator with the number 1 to know if a given bit position is a 1 (true) or 0 (false)) for example, imagine that you want to convert 14 to its binary form (00001110), the idea is to start making the & operation with the number 1, an continue with powers of 2 (since them will always be a number with a single 1 and trailing 0s) 1-1 2-10 4-100 8-1000, etc.
So you start with j = 1 and you apply the & operation between it and your number (14 in this case) so: 00000001 & 00001110 is 0 because there is not a given index in which both numbers have a '1' bit in common, so the first bit of 14 is 0, then you either multiply j by two (j*=2), or shift their bits to the left once (j = 1<<j) to move your bit one position to the left, now j = 2 (00000010), and 2 & 14 is 2 because they both have the second bit at '1', so, since the result is not 0, we know that the second bit of 14 is '1', the algorithm is something like:
int j = 128; 128 because this is the number with a '1' in the 8th bit (your 8 bit limit)
int mynumber = 14;
while(j){ // when the j value is 0, it will be the same as false
if(mynumber & j) cout<<1;
else cout<<0;
j=j>>1;
}
Hope you understand, please ensure that your numbers fit in 8 bits (255 max).

Number of steps to reduce a number in binary representation to 1

Given the binary representation of an integer as a string s, return the number of steps to reduce it to 1 under the following rules:
If the current number is even, you have to divide it by 2.
If the current number is odd, you have to add 1 to it.
It is guaranteed that you can always reach one for all test cases.
Step 1) 13 is odd, add 1 and obtain 14.
Step 2) 14 is even, divide by 2 and obtain 7.
Step 3) 7 is odd, add 1 and obtain 8.
Step 4) 8 is even, divide by 2 and obtain 4.
Step 5) 4 is even, divide by 2 and obtain 2.
Step 6) 2 is even, divide by 2 and obtain 1.
My input = 1111011110000011100000110001011011110010111001010111110001
Expected output = 85
My output = 81
For the above input, the output is supposed to be 85. But my output shows 81. For other test cases it
seems to be giving the right answer. I have been trying all possible debugs, but I am stuck.
#include <iostream>
#include <string.h>
#include <vector>
#include <bits/stdc++.h>
using namespace std;
int main()
{
string s =
"1111011110000011100000110001011011110010111001010111110001";
long int count = 0, size;
unsigned long long int dec = 0;
size = s.size();
// cout << s[size - 1] << endl;
for (int i = 0; i < size; i++)
{
// cout << pow(2, size - i - 1) << endl;
if (s[i] == '0')
continue;
// cout<<int(s[i])-48<<endl;
dec += (int(s[i]) - 48) * pow(2, size - 1 - i);
}
// cout << dec << endl;
// dec = 278675673186014705;
while (dec != 1)
{
if (dec % 2 == 0)
dec /= 2;
else
dec += 1;
count += 1;
}
cout << count;
return 0;
}
This line:
pow(2, size - 1 - i)
Can face precision errors as pow takes and returns doubles.
Luckily, for powers base 2 that won't overflow unsigned long longs, we can simply use bit shift (which is equivalent to pow(2, x)).
Replace that line with:
1LL<<(size - 1 - i)
So that it should look like this:
dec += (int(s[i]) - 48) * 1ULL<<(size - 1 - i);
And we will get the correct output of 85.
Note: as mentioned by #RSahu, you can remove (int(s[i]) - 48), as the case where int(s[i]) == '0' is already caught in an above if statement. Simply change the line to:
dec += 1ULL<<(size - 1 - i);
The core problem has already been pointed out in answer by #Ryan Zhang.
I want to offer some suggestions to improve your code and make it easier to debug.
The main function has two parts -- first part coverts a string to number and the second part computes the number of steps to get the number to 1. I suggest creating two helper functions. That will allow you to debug each piece separately.
int main()
{
string s = "1111011110000011100000110001011011110010111001010111110001";
unsigned long long int dec = stringToNumber(s);
cout << "Number: " << dec << endl;
// dec = 278675673186014705;
int count = getStepsTo1(dec);
cout << "Steps to 1: " << count << endl;
return 0;
}
Iterate over the string from right to left using std::string::reverse_iterator. That will obviate the need for size and use of size - i - 1. You can just use i.
unsigned long long stringToNumber(string const& s)
{
size_t i = 0;
unsigned long long num = 0;
for (auto it = s.rbegin(); it != s.rend(); ++it, ++i )
{
if (*it != '0')
{
num += 1ULL << i;
}
}
return num;
}
Here's the other helper function.
int getStepsTo1(unsigned long long num)
{
long int count = 0;
while (num != 1 )
{
if (num % 2 == 0)
num /= 2;
else
num += 1;
count += 1;
}
return count;
}
Working demo: https://ideone.com/yerRfK.

Looping until string length is divisible by 16. (C++) [closed]

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 1 year ago.
Improve this question
So I was coding a program that takes the length of a given string, then loop through it until it is divisible by 16. I don't know what's going on in the program but it spits this error out:
terminate called after throwing an instance of std::length_error' what(): basic_string::_M_replace_aux
I expect an output of the text padded with 0's and the length being divisible by 16
Heres the code
#include <iostream>
#include <string.h>
using namespace std;
int check(string usrinp) {
if (usrinp.length() % 16 != 0) {
for (int i = 0; i < usrinp.length(); i++) {
if (usrinp.length() % 2 != 0) {
usrinp.append(15 - usrinp.length(), '0');
}
else {
usrinp.append(16 - usrinp.length(), '0');
}
}
}
cout << usrinp;
return 0;
}
int main(){
check("1");
}
It is not very clear what question is asking about. So I implemented two interpretations of your question.
First variant, when you have to make a multiple of 16 by repeating a string, then you just have to use LCM (Least Common Multiple), your target string size is equal target_size = LCM(original_string.size(), 16).
Second solution is when you have to pad a string to multiple of 16. Then your resulting size is equal to target_size = (original_string.size() + 15) / 16 * 16.
Try it online!
#include <numeric>
#include <iostream>
#include <string>
std::string RepeatToMultiple(std::string const & s, size_t k) {
size_t const cnt = std::lcm(s.size(), k) / s.size();
auto r = s;
for (size_t i = 1; i < cnt; ++i)
r += s;
return r;
}
std::string PadToMultiple(std::string s, size_t k, char fill = '0') {
s.resize((s.size() + k - 1) / k * k, fill);
return s;
}
int main() {
std::string s = "abcde_";
std::cout << "Original: (size " << s.size() << ") " << s << std::endl;
auto r = RepeatToMultiple(s, 16);
std::cout << "Repeated till multiple of 16: (size " << r.size() << ") " << r << std::endl;
auto r2 = PadToMultiple(s, 16);
std::cout << "Padded to multiple of 16: (size " << r2.size() << ") " << r2 << std::endl;
}
Output:
Original: (size 6) abcde_
Repeated till multiple of 16: (size 48) abcde_abcde_abcde_abcde_abcde_abcde_abcde_abcde_
Padded to multiple of 16: (size 16) abcde_0000000000
What you want is to calculate your padding correctly:
int pad = 16 * (str.length() / 16 + 1) - str.length();
Example1:
length of string = 4
then required pad = 12
16 * (4 / 16 + 1) - 4 gives 12. Don't be mistaken by (4 / 16), it'll result in 0 for integer division.
Example2:
length of string = 37
then required pad = 11
16 * (37 / 16 + 1) - 37 gives 11.
Then you can use whatever function you require to append to the string.
str.append(pad, '0');

Find palindrome with algorithm [closed]

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 4 years ago.
Improve this question
I am given a number N<=200 and I need to find palindrom using ONLY this algorithm and output the palindrom and number of iterations:
1)Reverse nember
2)Revers number + previous one
Examples:
1) N=99
Out 99 0
2) N=69
69+96=165 165+561=726 726+627=1353 1353+3531=4884
Out:4884 4
My code:
#include <iostream>
using namespace std;
int rev(int a)
{
int b = 0;
while (a)
{
b = 10 * b + a % 10;
a /= 10;
}
return b;
}
int main()
{
ios::sync_with_stdio(0);
int n, c = 0;
cin >> n;
while (n != rev(n))
{
n = n + rev(n);
c++;
}
cout << n << endl << c;
return 0;
}
It works only for 70 tests out of 100:(
Can you help me so that it works for all tests?
It is simply a problem of integer overflow. A first implementation was realized with unsigned long long. It seemed to work but some overflows were not detected.
A new implementation was performed with __int128. Moreover, a signed version was used in order to be able to detect overflow easily.
Now, for n between 1 and 200, all palindromes are found, except for n = 196, for which an overflow is detected.
Here is the program:
#include <iostream>
//using namespace std;
void print128 (__int128 a) {
__int128 v64 = (__int128) 1 << 64;
__int128 high128 = a / v64;
__int128 low128 = a % v64;
unsigned long long high = high128;
unsigned long long low = low128;
if (high > 0) std::cout << high;
std::cout << low;
}
__int128 rev(__int128 a) {
__int128 b = 0;
while (a) {
b = 10 * b + a % 10;
a /= 10;
}
return b;
}
int main() {
//std::ios::sync_with_stdio(0);
int nerr = 0;
int cmax = 100000;
for (int n0 = 10; n0 <= 200; n0++) {
bool overf = false;
int c = 0;
__int128 nrev;
__int128 n = n0;
while ((n != (nrev = rev(n))) && (c < cmax)) {
if (nrev < 0) overf = true;
n = n + nrev;
if (n < 0) overf = true;
c++;
}
std::cout << "n = " << n0 << " ";;
if ((c == cmax) && !overf) {
std::cout << " ERR0R\n";
nerr++;
} else if (overf) {
std::cout << " OVERFLOW\n";
nerr++;
} else {
std::cout << " palym = ";
print128 (n);
std::cout << " c = " << c << "\n";
}
}
std::cout << "Nbre of errors = " << nerr << "\n";
return 0;
}
The question is "what to do for the 196 case ?" We don't know if a solution exists, i.e. if there is convergence. Moreover, if it converges, we don't know what the size of the palindrome could be. Trying to use int with more bits can be a long race. What is better will be to implement a dedicated int type adapted to the problem, i.e. a vector of int, each int between 0 and 9. We only have two operations to perform for this algorithm, calculating a palindrome and an addition. Calculating a palindrome will be trivial, inverse the elements of the vector (ignoring first zeros), and an addition will be rather easy to implement. Moreover, such an addition will easily detect overflow. Last but not least, the size of the vector could be adaptable for each n value, until a given limit.
EDIT: In a comment, Mark Ransom provided a link to Wikipedia page on Lychrel numbers, i.e. numbers for which the algorithm will not converge. 196 is the lowest and most famous "candidate Lychrel" number. It is conjectured, not proved, that 196 is such a number. Experiments have been performed until billions of digits, not finding a convergence for this number.

C++ - Decimal to binary converting

I wrote a 'simple' (it took me 30 minutes) program that converts decimal number to binary. I am SURE that there's a lot simpler way so can you show me?
Here's the code:
#include <iostream>
#include <stdlib.h>
using namespace std;
int a1, a2, remainder;
int tab = 0;
int maxtab = 0;
int table[0];
int main()
{
system("clear");
cout << "Enter a decimal number: ";
cin >> a1;
a2 = a1; //we need our number for later on so we save it in another variable
while (a1!=0) //dividing by two until we hit 0
{
remainder = a1%2; //getting a remainder - decimal number(1 or 0)
a1 = a1/2; //dividing our number by two
maxtab++; //+1 to max elements of the table
}
maxtab--; //-1 to max elements of the table (when dividing finishes it adds 1 additional elemnt that we don't want and it's equal to 0)
a1 = a2; //we must do calculations one more time so we're gatting back our original number
table[0] = table[maxtab]; //we set the number of elements in our table to maxtab (we don't get 10's of 0's)
while (a1!=0) //same calculations 2nd time but adding every 1 or 0 (remainder) to separate element in table
{
remainder = a1%2; //getting a remainder
a1 = a1/2; //dividing by 2
table[tab] = remainder; //adding 0 or 1 to an element
tab++; //tab (element count) increases by 1 so next remainder is saved in another element
}
tab--; //same as with maxtab--
cout << "Your binary number: ";
while (tab>=0) //until we get to the 0 (1st) element of the table
{
cout << table[tab] << " "; //write the value of an element (0 or 1)
tab--; //decreasing by 1 so we show 0's and 1's FROM THE BACK (correct way)
}
cout << endl;
return 0;
}
By the way it's complicated but I tried my best.
edit - Here is the solution I ended up using:
std::string toBinary(int n)
{
std::string r;
while(n!=0) {r=(n%2==0 ?"0":"1")+r; n/=2;}
return r;
}
std::bitset has a .to_string() method that returns a std::string holding a text representation in binary, with leading-zero padding.
Choose the width of the bitset as needed for your data, e.g. std::bitset<32> to get 32-character strings from 32-bit integers.
#include <iostream>
#include <bitset>
int main()
{
std::string binary = std::bitset<8>(128).to_string(); //to binary
std::cout<<binary<<"\n";
unsigned long decimal = std::bitset<8>(binary).to_ulong();
std::cout<<decimal<<"\n";
return 0;
}
EDIT: Please do not edit my answer for Octal and Hexadecimal. The OP specifically asked for Decimal To Binary.
The following is a recursive function which takes a positive integer and prints its binary digits to the console.
Alex suggested, for efficiency, you may want to remove printf() and store the result in memory... depending on storage method result may be reversed.
/**
* Takes a unsigned integer, converts it into binary and prints it to the console.
* #param n the number to convert and print
*/
void convertToBinary(unsigned int n)
{
if (n / 2 != 0) {
convertToBinary(n / 2);
}
printf("%d", n % 2);
}
Credits to UoA ENGGEN 131
*Note: The benefit of using an unsigned int is that it can't be negative.
You can use std::bitset to convert a number to its binary format.
Use the following code snippet:
std::string binary = std::bitset<8>(n).to_string();
I found this on stackoverflow itself. I am attaching the link.
A pretty straight forward solution to print binary:
#include <iostream>
using namespace std;
int main()
{
int num,arr[64];
cin>>num;
int i=0,r;
while(num!=0)
{
r = num%2;
arr[i++] = r;
num /= 2;
}
for(int j=i-1;j>=0;j--){
cout<<arr[j];
}
}
Non recursive solution:
#include <iostream>
#include<string>
std::string toBinary(int n)
{
std::string r;
while(n!=0) {r=(n%2==0 ?"0":"1")+r; n/=2;}
return r;
}
int main()
{
std::string i= toBinary(10);
std::cout<<i;
}
Recursive solution:
#include <iostream>
#include<string>
std::string r="";
std::string toBinary(int n)
{
r=(n%2==0 ?"0":"1")+r;
if (n / 2 != 0) {
toBinary(n / 2);
}
return r;
}
int main()
{
std::string i=toBinary(10);
std::cout<<i;
}
An int variable is not in decimal, it's in binary. What you're looking for is a binary string representation of the number, which you can get by applying a mask that filters individual bits, and then printing them:
for( int i = sizeof(value)*CHAR_BIT-1; i>=0; --i)
cout << value & (1 << i) ? '1' : '0';
That's the solution if your question is algorithmic. If not, you should use the std::bitset class to handle this for you:
bitset< sizeof(value)*CHAR_BIT > bits( value );
cout << bits.to_string();
Here are two approaches. The one is similar to your approach
#include <iostream>
#include <string>
#include <limits>
#include <algorithm>
int main()
{
while ( true )
{
std::cout << "Enter a non-negative number (0-exit): ";
unsigned long long x = 0;
std::cin >> x;
if ( !x ) break;
const unsigned long long base = 2;
std::string s;
s.reserve( std::numeric_limits<unsigned long long>::digits );
do { s.push_back( x % base + '0' ); } while ( x /= base );
std::cout << std::string( s.rbegin(), s.rend() ) << std::endl;
}
}
and the other uses std::bitset as others suggested.
#include <iostream>
#include <string>
#include <bitset>
#include <limits>
int main()
{
while ( true )
{
std::cout << "Enter a non-negative number (0-exit): ";
unsigned long long x = 0;
std::cin >> x;
if ( !x ) break;
std::string s =
std::bitset<std::numeric_limits<unsigned long long>::digits>( x ).to_string();
std::string::size_type n = s.find( '1' );
std::cout << s.substr( n ) << std::endl;
}
}
The conversion from natural number to a binary string:
string toBinary(int n) {
if (n==0) return "0";
else if (n==1) return "1";
else if (n%2 == 0) return toBinary(n/2) + "0";
else if (n%2 != 0) return toBinary(n/2) + "1";
}
For this , In C++ you can use itoa() function .This function convert any Decimal integer to binary, decimal , hexadecimal and octal number.
#include<bits/stdc++.h>
using namespace std;
int main(){
int a;
char res[1000];
cin>>a;
itoa(a,res,10);
cout<<"Decimal- "<<res<<endl;
itoa(a,res,2);
cout<<"Binary- "<<res<<endl;
itoa(a,res,16);
cout<<"Hexadecimal- "<<res<<endl;
itoa(a,res,8);
cout<<"Octal- "<<res<<endl;return 0;
}
However, it is only supported by specific compilers.
You can see also: itoa - C++ Reference
Here is modern variant that can be used for ints of different sizes.
#include <type_traits>
#include <bitset>
template<typename T>
std::enable_if_t<std::is_integral_v<T>,std::string>
encode_binary(T i){
return std::bitset<sizeof(T) * 8>(i).to_string();
}
Your solution needs a modification. The final string should be reversed before returning:
std::reverse(r.begin(), r.end());
return r;
DECIMAL TO BINARY NO ARRAYS USED *made by Oya:
I'm still a beginner, so this code will only use loops and variables xD...
Hope you like it. This can probably be made simpler than it is...
#include <iostream>
#include <cmath>
#include <cstdlib>
using namespace std;
int main()
{
int i;
int expoentes; //the sequence > pow(2,i) or 2^i
int decimal;
int extra; //this will be used to add some 0s between the 1s
int x = 1;
cout << "\nThis program converts natural numbers into binary code\nPlease enter a Natural number:";
cout << "\n\nWARNING: Only works until ~1.073 millions\n";
cout << " To exit, enter a negative number\n\n";
while(decimal >= 0){
cout << "\n----- // -----\n\n";
cin >> decimal;
cout << "\n";
if(decimal == 0){
cout << "0";
}
while(decimal >= 1){
i = 0;
expoentes = 1;
while(decimal >= expoentes){
i++;
expoentes = pow(2,i);
}
x = 1;
cout << "1";
decimal -= pow(2,i-x);
extra = pow(2,i-1-x);
while(decimal < extra){
cout << "0";
x++;
extra = pow(2,i-1-x);
}
}
}
return 0;
}
here a simple converter by using std::string as container. it allows a negative value.
#include <iostream>
#include <string>
#include <limits>
int main()
{
int x = -14;
int n = std::numeric_limits<int>::digits - 1;
std::string s;
s.reserve(n + 1);
do
s.push_back(((x >> n) & 1) + '0');
while(--n > -1);
std::cout << s << '\n';
}
This is a more simple program than ever
//Program to convert Decimal into Binary
#include<iostream>
using namespace std;
int main()
{
long int dec;
int rem,i,j,bin[100],count=-1;
again:
cout<<"ENTER THE DECIMAL NUMBER:- ";
cin>>dec;//input of Decimal
if(dec<0)
{
cout<<"PLEASE ENTER A POSITIVE DECIMAL";
goto again;
}
else
{
cout<<"\nIT's BINARY FORM IS:- ";
for(i=0;dec!=0;i++)//making array of binary, but reversed
{
rem=dec%2;
bin[i]=rem;
dec=dec/2;
count++;
}
for(j=count;j>=0;j--)//reversed binary is printed in correct order
{
cout<<bin[j];
}
}
return 0;
}
There is in fact a very simple way to do so. What we do is using a recursive function which is given the number (int) in the parameter. It is pretty easy to understand. You can add other conditions/variations too. Here is the code:
int binary(int num)
{
int rem;
if (num <= 1)
{
cout << num;
return num;
}
rem = num % 2;
binary(num / 2);
cout << rem;
return rem;
}
// function to convert decimal to binary
void decToBinary(int n)
{
// array to store binary number
int binaryNum[1000];
// counter for binary array
int i = 0;
while (n > 0) {
// storing remainder in binary array
binaryNum[i] = n % 2;
n = n / 2;
i++;
}
// printing binary array in reverse order
for (int j = i - 1; j >= 0; j--)
cout << binaryNum[j];
}
refer :-
https://www.geeksforgeeks.org/program-decimal-binary-conversion/
or
using function :-
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;cin>>n;
cout<<bitset<8>(n).to_string()<<endl;
}
or
using left shift
#include<bits/stdc++.h>
using namespace std;
int main()
{
// here n is the number of bit representation we want
int n;cin>>n;
// num is a number whose binary representation we want
int num;
cin>>num;
for(int i=n-1;i>=0;i--)
{
if( num & ( 1 << i ) ) cout<<1;
else cout<<0;
}
}
#include <iostream>
#include <bitset>
#define bits(x) (std::string( \
std::bitset<8>(x).to_string<char,std::string::traits_type, std::string::allocator_type>() ).c_str() )
int main() {
std::cout << bits( -86 >> 1 ) << ": " << (-86 >> 1) << std::endl;
return 0;
}
Okay.. I might be a bit new to C++, but I feel the above examples don't quite get the job done right.
Here's my take on this situation.
char* DecimalToBinary(unsigned __int64 value, int bit_precision)
{
int length = (bit_precision + 7) >> 3 << 3;
static char* binary = new char[1 + length];
int begin = length - bit_precision;
unsigned __int64 bit_value = 1;
for (int n = length; --n >= begin; )
{
binary[n] = 48 | ((value & bit_value) == bit_value);
bit_value <<= 1;
}
for (int n = begin; --n >= 0; )
binary[n] = 48;
binary[length] = 0;
return binary;
}
#value = The Value we are checking.
#bit_precision = The highest left most bit to check for.
#Length = The Maximum Byte Block Size. E.g. 7 = 1 Byte and 9 = 2 Byte, but we represent this in form of bits so 1 Byte = 8 Bits.
#binary = just some dumb name I gave to call the array of chars we are setting. We set this to static so it won't be recreated with every call. For simply getting a result and display it then this works good, but if let's say you wanted to display multiple results on a UI they would all show up as the last result. This can be fixed by removing static, but make sure you delete [] the results when you are done with it.
#begin = This is the lowest index that we are checking. Everything beyond this point is ignored. Or as shown in 2nd loop set to 0.
#first loop - Here we set the value to 48 and basically add a 0 or 1 to 48 based on the bool value of (value & bit_value) == bit_value. If this is true the char is set to 49. If this is false the char is set to 48. Then we shift the bit_value or basically multiply it by 2.
#second loop - Here we set all the indexes we ignored to 48 or '0'.
SOME EXAMPLE OUTPUTS!!!
int main()
{
int val = -1;
std::cout << DecimalToBinary(val, 1) << '\n';
std::cout << DecimalToBinary(val, 3) << '\n';
std::cout << DecimalToBinary(val, 7) << '\n';
std::cout << DecimalToBinary(val, 33) << '\n';
std::cout << DecimalToBinary(val, 64) << '\n';
std::cout << "\nPress any key to continue. . .";
std::cin.ignore();
return 0;
}
00000001 //Value = 2^1 - 1
00000111 //Value = 2^3 - 1.
01111111 //Value = 2^7 - 1.
0000000111111111111111111111111111111111 //Value = 2^33 - 1.
1111111111111111111111111111111111111111111111111111111111111111 //Value = 2^64 - 1.
SPEED TESTS
Original Question's Answer: "Method: toBinary(int);"
Executions: 10,000 , Total Time (Milli): 4701.15 , Average Time (Nanoseconds): 470114
My Version: "Method: DecimalToBinary(int, int);"
//Using 64 Bit Precision.
Executions: 10,000,000 , Total Time (Milli): 3386 , Average Time (Nanoseconds): 338
//Using 1 Bit Precision.
Executions: 10,000,000, Total Time (Milli): 634, Average Time (Nanoseconds): 63
Below is simple C code that converts binary to decimal and back again. I wrote it long ago for a project in which the target was an embedded processor and the development tools had a stdlib that was way too big for the firmware ROM.
This is generic C code that does not use any library, nor does it use division or the remainder (%) operator (which is slow on some embedded processors), nor does it use any floating point, nor does it use any table lookup nor emulate any BCD arithmetic. What it does make use of is the type long long, more specifically unsigned long long (or uint64_t), so if your embedded processor (and the C compiler that goes with it) cannot do 64-bit integer arithmetic, this code is not for your application. Otherwise, I think this is production quality C code (maybe after changing long to int32_t and unsigned long long to uint64_t). I have run this overnight to test it for every 2³² signed integer values and there is no error in conversion in either direction.
We had a C compiler/linker that could generate executables and we needed to do what we could do without any stdlib (which was a pig). So no printf() nor scanf(). Not even an sprintf() nor sscanf(). But we still had a user interface and had to convert base-10 numbers into binary and back. (We also made up our own malloc()-like utility also and our own transcendental math functions too.)
So this was how I did it (the main program and calls to stdlib were there for testing this thing on my mac, not for the embedded code). Also, because some older dev systems don't recognize "int64_t" and "uint64_t" and similar types, the types long long and unsigned long long are used and assumed to be the same. And long is assumed to be 32 bits. I guess I could have typedefed it.
// returns an error code, 0 if no error,
// -1 if too big, -2 for other formatting errors
int decimal_to_binary(char *dec, long *bin)
{
int i = 0;
int past_leading_space = 0;
while (i <= 64 && !past_leading_space) // first get past leading spaces
{
if (dec[i] == ' ')
{
i++;
}
else
{
past_leading_space = 1;
}
}
if (!past_leading_space)
{
return -2; // 64 leading spaces does not a number make
}
// at this point the only legitimate remaining
// chars are decimal digits or a leading plus or minus sign
int negative = 0;
if (dec[i] == '-')
{
negative = 1;
i++;
}
else if (dec[i] == '+')
{
i++; // do nothing but go on to next char
}
// now the only legitimate chars are decimal digits
if (dec[i] == '\0')
{
return -2; // there needs to be at least one good
} // digit before terminating string
unsigned long abs_bin = 0;
while (i <= 64 && dec[i] != '\0')
{
if ( dec[i] >= '0' && dec[i] <= '9' )
{
if (abs_bin > 214748364)
{
return -1; // this is going to be too big
}
abs_bin *= 10; // previous value gets bumped to the left one digit...
abs_bin += (unsigned long)(dec[i] - '0'); // ... and a new digit appended to the right
i++;
}
else
{
return -2; // not a legit digit in text string
}
}
if (dec[i] != '\0')
{
return -2; // not terminated string in 64 chars
}
if (negative)
{
if (abs_bin > 2147483648)
{
return -1; // too big
}
*bin = -(long)abs_bin;
}
else
{
if (abs_bin > 2147483647)
{
return -1; // too big
}
*bin = (long)abs_bin;
}
return 0;
}
void binary_to_decimal(char *dec, long bin)
{
unsigned long long acc; // 64-bit unsigned integer
if (bin < 0)
{
*(dec++) = '-'; // leading minus sign
bin = -bin; // make bin value positive
}
acc = 989312855LL*(unsigned long)bin; // very nearly 0.2303423488 * 2^32
acc += 0x00000000FFFFFFFFLL; // we need to round up
acc >>= 32;
acc += 57646075LL*(unsigned long)bin;
// (2^59)/(10^10) = 57646075.2303423488 = 57646075 + (989312854.979825)/(2^32)
int past_leading_zeros = 0;
for (int i=9; i>=0; i--) // maximum number of digits is 10
{
acc <<= 1;
acc += (acc<<2); // an efficient way to multiply a long long by 10
// acc *= 10;
unsigned int digit = (unsigned int)(acc >> 59); // the digit we want is in bits 59 - 62
if (digit > 0)
{
past_leading_zeros = 1;
}
if (past_leading_zeros)
{
*(dec++) = '0' + digit;
}
acc &= 0x07FFFFFFFFFFFFFFLL; // mask off this digit and go on to the next digit
}
if (!past_leading_zeros) // if all digits are zero ...
{
*(dec++) = '0'; // ... put in at least one zero digit
}
*dec = '\0'; // terminate string
}
#if 1
#include <stdlib.h>
#include <stdio.h>
int main (int argc, const char* argv[])
{
char dec[64];
long bin, result1, result2;
unsigned long num_errors;
long long long_long_bin;
num_errors = 0;
for (long_long_bin=-2147483648LL; long_long_bin<=2147483647LL; long_long_bin++)
{
bin = (long)long_long_bin;
if ((bin&0x00FFFFFFL) == 0)
{
printf("bin = %ld \n", bin); // this is to tell us that things are moving along
}
binary_to_decimal(dec, bin);
decimal_to_binary(dec, &result1);
sscanf(dec, "%ld", &result2); // decimal_to_binary() should do the same as this sscanf()
if (bin != result1 || bin != result2)
{
num_errors++;
printf("bin = %ld, result1 = %ld, result2 = %ld, num_errors = %ld, dec = %s \n",
bin, result1, result2, num_errors, dec);
}
}
printf("num_errors = %ld \n", num_errors);
return 0;
}
#else
#include <stdlib.h>
#include <stdio.h>
int main (int argc, const char* argv[])
{
char dec[64];
long bin;
printf("bin = ");
scanf("%ld", &bin);
while (bin != 0)
{
binary_to_decimal(dec, bin);
printf("dec = %s \n", dec);
printf("bin = ");
scanf("%ld", &bin);
}
return 0;
}
#endif
My way of converting decimal to binary in C++. But since we are using mod, this function will work in case of hexadecimal or octal also. You can also specify bits. This function keeps calculating the lowest significant bit and place it on the end of the string. If you are not so similar to this method than you can vist: https://www.wikihow.com/Convert-from-Decimal-to-Binary
#include <bits/stdc++.h>
using namespace std;
string itob(int bits, int n) {
int count;
char str[bits + 1]; // +1 to append NULL character.
str[bits] = '\0'; // The NULL character in a character array flags the end
// of the string, not appending it may cause problems.
count = bits - 1; // If the length of a string is n, than the index of the
// last character of the string will be n - 1. Cause the
// index is 0 based not 1 based. Try yourself.
do {
if (n % 2)
str[count] = '1';
else
str[count] = '0';
n /= 2;
count--;
} while (n > 0);
while (count > -1) {
str[count] = '0';
count--;
}
return str;
}
int main() {
cout << itob(1, 0) << endl; // 0 in 1 bit binary.
cout << itob(2, 1) << endl; // 1 in 2 bit binary.
cout << itob(3, 2) << endl; // 2 in 3 bit binary.
cout << itob(4, 4) << endl; // 4 in 4 bit binary.
cout << itob(5, 15) << endl; // 15 in 5 bit binary.
cout << itob(6, 30) << endl; // 30 in 6 bit binary.
cout << itob(7, 61) << endl; // 61 in 7 bit binary.
cout << itob(8, 127) << endl; // 127 in 8 bit binary.
return 0;
}
The Output:
0
01
010
0100
01111
011110
0111101
01111111
Since you asked for a simple way, I am sharing this answer, after 8 years
Here is the expression!
Is it not interesting when there is no if condition, and we can get 0 or 1 with just a simple expression?
Well yes, NO if, NO long division
Here is what each variable means
Note: variable is the orange highlighted ones
Number: 0-infinity (a value to be converted to binary)
binary holder: 1 / 2 / 4 / 8 / 16 / 32 / ... (Place of binary needed, just like tens, hundreds)
Result: 0 or 1
If you want to make binary holder from 1 / 2 / 4 / 8 / 16 /... to 1 / 2 / 3 / 4 / 5/...
then use this expression
The procedure is simple for the second expression
First, the number variable is always, your number needed, and its stable.
Second the binary holder variable needs to be changed ,in a for loop, by +1 for the second image, x2 for the first image
I don't know c++ a lot ,here is a js code,for your understanding
function FindBinary(Number) {
var x,i,BinaryValue = "",binaryHolder = 1;
for (i = 1; Math.pow(2, i) <= Number; i++) {}//for trimming, you can even remove this and set i to 7,see the result
for (x = 1; x <= i; x++) {
var Algorithm = ((Number - (Number % binaryHolder)) / binaryHolder) % 2;//Main algorithm
BinaryValue = Algorithm + BinaryValue;
binaryHolder += binaryHolder;
}
return BinaryValue;
}
console.log(FindBinary(17));//your number
more ever, I think language doesn't matters a lot for algorithm questions
You want to do something like:
cout << "Enter a decimal number: ";
cin >> a1;
cout << setbase(2);
cout << a1
#include "stdafx.h"
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
int main() {
// Initialize Variables
double x;
int xOct;
int xHex;
//Initialize a variable that stores the order if the numbers in binary/sexagesimal base
vector<int> rem;
//Get Demical value
cout << "Number (demical base): ";
cin >> x;
//Set the variables
xOct = x;
xHex = x;
//Get the binary value
for (int i = 0; x >= 1; i++) {
rem.push_back(abs(remainder(x, 2)));
x = floor(x / 2);
}
//Print binary value
cout << "Binary: ";
int n = rem.size();
while (n > 0) {
n--;
cout << rem[n];
} cout << endl;
//Print octal base
cout << oct << "Octal: " << xOct << endl;
//Print hexademical base
cout << hex << "Hexademical: " << xHex << endl;
system("pause");
return 0;
}
#include <iostream>
using namespace std;
int main()
{
int a,b;
cin>>a;
for(int i=31;i>=0;i--)
{
b=(a>>i)&1;
cout<<b;
}
}
HOPE YOU LIKE THIS SIMPLE CODE OF CONVERSION FROM DECIMAL TO BINARY
#include<iostream>
using namespace std;
int main()
{
int input,rem,res,count=0,i=0;
cout<<"Input number: ";
cin>>input;`enter code here`
int num=input;
while(input > 0)
{
input=input/2;
count++;
}
int arr[count];
while(num > 0)
{
arr[i]=num%2;
num=num/2;
i++;
}
for(int i=count-1 ; i>=0 ; i--)
{
cout<<" " << arr[i]<<" ";
}
return 0;
}
#include <iostream>
// x is our number to test
// pow is a power of 2 (e.g. 128, 64, 32, etc...)
int printandDecrementBit(int x, int pow)
{
// Test whether our x is greater than some power of 2 and print the bit
if (x >= pow)
{
std::cout << "1";
// If x is greater than our power of 2, subtract the power of 2
return x - pow;
}
else
{
std::cout << "0";
return x;
}
}
int main()
{
std::cout << "Enter an integer between 0 and 255: ";
int x;
std::cin >> x;
x = printandDecrementBit(x, 128);
x = printandDecrementBit(x, 64);
x = printandDecrementBit(x, 32);
x = printandDecrementBit(x, 16);
std::cout << " ";
x = printandDecrementBit(x, 8);
x = printandDecrementBit(x, 4);
x = printandDecrementBit(x, 2);
x = printandDecrementBit(x, 1);
return 0;
}
this is a simple way to get the binary form of an int. credit to learncpp.com. im sure this could be used in different ways to get to the same point.
In this approach, the decimal will be converted to the respective binary number in the string formate. The string return type is chosen since it can handle more range of input values.
class Solution {
public:
string ConvertToBinary(int num)
{
vector<int> bin;
string op;
for (int i = 0; num > 0; i++)
{
bin.push_back(num % 2);
num /= 2;
}
reverse(bin.begin(), bin.end());
for (size_t i = 0; i < bin.size(); ++i)
{
op += to_string(bin[i]);
}
return op;
}
};
using bitmask and bitwise and .
string int2bin(int n){
string x;
for(int i=0;i<32;i++){
if(n&1) {x+='1';}
else {x+='0';}
n>>=1;
}
reverse(x.begin(),x.end());
return x;
}
You Could use std::bitset:
#include <bits/stdc++.h>
int main()
{
std::string binary = std::bitset<(int)ceil(log2(10))>(10).to_string(); // decimal number is 10
std::cout << binary << std::endl; // 1010
return 0;
}
SOLUTION 1
Shortest function. Recursive. No headers required.
size_t bin(int i) {return i<2?i:10*bin(i/2)+i%2;}
The simplicity of this function comes at the cost of some limitations. It returns correct values only for arguments between 0 and 1048575 (2 to the power of how many digits the largest unsigned int has, -1). I used the following program to test it:
#include <iostream> // std::cout, std::cin
#include <climits> // ULLONG_MAX
#include <math.h> // pow()
int main()
{
size_t bin(int);
int digits(size_t);
int i = digits(ULLONG_MAX); // maximum digits of the return value of bin()
int iMax = pow(2.0,i)-1; // maximum value of a valid argument of bin()
while(true) {
std::cout << "Decimal: ";
std::cin >> i;
if (i<0 or i>iMax) {
std::cout << "\nB Integer out of range, 12:1";
return 0;
}
std::cout << "Binary: " << bin(i) << "\n\n";
}
return 0;
}
size_t bin(int i) {return i<2?i:10*bin(i/2)+i%2;}
int digits(size_t i) {return i<10?1:digits(i/10)+1;}
SOLUTION 2
Short. Recursive. Some headers required.
std::string bin(size_t i){return !i?"0":i==1?"1":bin(i/2)+(i%2?'1':'0');}
This function can return the binary representation of the largest integers as a string. I used the following program to test it:
#include <string> // std::string
#include <iostream> // std::cout, std::cin
int main()
{
std::string s, bin(size_t);
size_t i, x;
std::cout << "Enter exit code: "; // Used to exit the program.
std::cin >> x;
while(i!=x) {
std::cout << "\nDecimal: ";
std::cin >> i;
std::cout << "Binary: " << bin(i) << "\n";
}
return 0;
}
std::string bin(size_t i){return !i?"0":i==1?"1":bin(i/2)+(i%2?'1':'0');}