Blurring images of an image pyramid - Vector subscript out of range - c++

I am trying to load an image, calculate the image pyramid (save every image) and then blur every single image of the pyramid with opencv 3.2 in C++. When I run my program I receive the error:
vector Line:1740 Expression: vector subscript out of range
Here is my code:
#include "stdafx.h"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <iostream>
#include <opencv2/shape/shape.hpp>
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;
int main(int argc, char** argv)
{
// Read the image
Mat img_1;
img_1 = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
// Build an image pyramid and save it in a vector of Mat
vector<Mat> img_1_pyramid;
int pyramid_octaves = 3;
buildPyramid(img_1, img_1_pyramid, pyramid_octaves);
/* void cv::buildPyramid (InputArray src, OutputArrayOfArrays dst, int
maxlevel, int borderType = BORDER_DEFAULT) */
// Initialize parameters for the first image pyramid
vector<Mat> reduced_noise_1;
blur(img_1_pyramid[0], reduced_noise_1[0], Size(3,3));
/* void cv::blur (InputArray src, OutputArray dst, Size ksize, Point
anchor=Point(-1,-1), int borderType=BORDER_DEFAULT)*/
return 0;
}
I also tried it with a Mat object: Mat reduced_noise_1; or a vector of predefined size vector<Mat> reduced_noise(4);and I can draw img_1_pyramid[0] with imshow and receive the right image...
When I debug the program I receive an error in Line 621 of cvstd.hpp:
String::String(const char* s)
: cstr_(0), len_(0)
{
if (!s) return;
size_t len = strlen(s); // Here appears the error (only in German;))
memcpy(allocate(len), s, len);
}

Related

Convert Magick::Image to cv::Mat

I am trying to convert an image loaded in from a GIF via Magick++ into a cv::Mat. I have already converted from cv::Mat to Magick::Image but cannot seem to find how to pull the data out of an Image in Magick in order to load it into a Mat. What's the best way to do this?
For reference, in reverse: Convert cv::Mat to Magick::Image
Updated Answer
This is the best I can get it, I think!
#include <opencv2/opencv.hpp>
#include <Magick++.h>
#include <iostream>
using namespace std;
using namespace Magick;
using namespace cv;
int main(int argc,char **argv)
{
// Initialise ImageMagick library
InitializeMagick(*argv);
// Create Magick++ Image object and read image file
Image image("image.gif");
// Get dimensions of Magick++ Image
int w=image.columns();
int h=image.rows();
// Make OpenCV Mat of same size with 8-bit and 3 channels
Mat opencvImage(h,w,CV_8UC3);
// Unpack Magick++ pixels into OpenCV Mat structure
image.write(0,0,w,h,"BGR",Magick::CharPixel,opencvImage.data);
// Save opencvImage
imwrite("result.png",opencvImage);
}
For my own future reference, the other Magick++ StorageTypes and my assumed OpenCV equivalents in brackets are:
Magick::CharPixel (CV_8UC3)
Magick::ShortPixel (CV_16UC3)
Magick::IntegerPixel (CV_32SC3)
Magick::FloatPixel (CV_32FC3)
Magick::DoublePixel (CV_64FC3)
Previous Answer
This is a work in progress - it works but may not be optimal as I am still learning myself.
#include <opencv2/opencv.hpp>
#include <Magick++.h>
#include <iostream>
using namespace std;
using namespace Magick;
using namespace cv;
int main(int argc,char **argv)
{
// Initialise ImageMagick library
InitializeMagick(*argv);
// Create Magick++ Image object and read image file
Image image("image.gif");
// Get pointer to the Magick++ pixel data in OpenCV "BGR" format
Magick::PixelData pData(image,"BGR",Magick::CharPixel);
// Get dimensions of the Magick++ image
int w=image.columns();
int h=image.rows();
// Make OpenCV Mat of same size with 8-bit and 3 channels
Mat opencvImage(h,w,CV_8UC3);
// Copy Magick++ data into OpenCV Mat
std::memcpy(opencvImage.data,pData.data(),w*h*3);
// Save opencvImage
imwrite("result.png",opencvImage);
}
Actually, Magick++ has the ability to write a buffer of pixels to some memory you have already allocated, which we could do if we declared the Mat sooner.
It looks like this:
image.write(const ssize_t x_,
const ssize_t y_,
const size_t columns_,
const size_t rows_,
const std::string &map_,
const StorageType type_, void *pixels_)
At the moment, we are temporarily at least, using double memory because we copy the pixel data out of Magick++ into a buffer and from the buffer into the Mat, so we should maybe do something like this (not yet tested):
// Create Magick++ Image object and read image file
Image image("image.gif");
// Get dimensions of the Magick++ image
int w=image.columns();
int h=image.rows();
// Make OpenCV Mat of same size with 8-bit and 3 channels
Mat opencvImage(h,w,CV_8UC3);
// Write the Magick++ image data into the Mat structure
image.write(const ssize_t x_, # testing this param
const ssize_t y_, # testing this param
const size_t columns_, # testing this param
const size_t rows_, # testing this param
const std::string &map_, # testing this param
Magick::CharPixel, opencvImage.data);
Complementing Marks fantastic answer (which should be accepted).
cv::Mat has a constructer for byte arrays.
Mat(int rows,
int cols,
int type,
void* data,
size_t step=AUTO_STEP)
This would require you to allocate a byte array; as opposed to Magick::Image.write directly to cv::Mat.
#include <Magick++.h>
#include <opencv2/opencv.hpp>
bool copyImageToMat(Magick::Image & im_image, cv::Mat & cv_image)
{
// Get size of image.
size_t
w = im_image.columns(),
h = im_image.rows();
// Allocate enough bytes for image data.
unsigned char blob[w * h * 3];
// Write image data to blob.
im_image.write(0, 0, w, h, "BGR", Magick::CharPixel, &blob);
// Construct new Mat image.
cv::Mat cv_temp((int)h, (int)w, CV_8UC3, blob);
// Was any work done?
bool dataWasCopied = !cv_temp.empty();
if (dataWasCopied) {
// Copy data to destination.
cv_image = cv_temp.clone();
}
return dataWasCopied;
}
int main(int argc, const char * argv[]) {
cv::Mat destination;
Magick::Image source("rose:");
if(copyImageToMat(source, destination)) {
cv::imwrite("/tmp/rose.png", destination);
}
return 0;
}

OpenCV SIFT key points extraction isuue

I tried to extract SIFT key points. It is working fine for a sample image I downloaded (height 400px width 247px horizontal and vertical resolutions 300dpi). Below image shows the extracted points.
Then I tried to apply the same code to a image that was taken and edited by me (height 443px width 541px horizontal and vertical resolutions 72dpi).
To create the above image I rotated the original image then removed its background and resized it using Photoshop, but my code, for that image doesn't extract features like in the first image.
See the result :
It just extract very few points. I expect a result as in the first case.
For the second case when I'm using the original image without any edit the program gives points as the first case.
Here is the simple code I have used
#include<opencv\cv.h>
#include<opencv\highgui.h>
#include<opencv2\nonfree\nonfree.hpp>
using namespace cv;
int main(){
Mat src, descriptors,dest;
vector<KeyPoint> keypoints;
src = imread(". . .");
cvtColor(src, src, CV_BGR2GRAY);
SIFT sift;
sift(src, src, keypoints, descriptors, false);
drawKeypoints(src, keypoints, dest);
imshow("Sift", dest);
cvWaitKey(0);
return 0;
}
What I'm doing wrong here? what do I need to do to get a result like in the first case to my own image after resizing ?
Thank you!
Try set nfeatures parameter (may be other parameters also need adjustment) in SIFT constructor.
Here is constructor definition from reference:
SIFT::SIFT(int nfeatures=0, int nOctaveLayers=3, double contrastThreshold=0.04, double edgeThreshold=10, double sigma=1.6)
Your code will be:
#include<opencv\cv.h>
#include<opencv\highgui.h>
#include<opencv2\nonfree\nonfree.hpp>
using namespace cv;
using namespace std;
int main(){
Mat src, descriptors,dest;
vector<KeyPoint> keypoints;
src = imread("D:\\ImagesForTest\\leaf.jpg");
cvtColor(src, src, CV_BGR2GRAY);
SIFT sift(2000,3,0.004);
sift(src, src, keypoints, descriptors, false);
drawKeypoints(src, keypoints, dest);
imshow("Sift", dest);
cvWaitKey(0);
return 0;
}
The result:
Dense sampling example:
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
#include "opencv2/nonfree/nonfree.hpp"
int main(int argc, char* argv[])
{
cv::initModule_nonfree();
cv::namedWindow("result");
cv::Mat bgr_img = cv::imread("D:\\ImagesForTest\\lena.jpg");
if (bgr_img.empty())
{
exit(EXIT_FAILURE);
}
cv::Mat gray_img;
cv::cvtColor(bgr_img, gray_img, cv::COLOR_BGR2GRAY);
cv::normalize(gray_img, gray_img, 0, 255, cv::NORM_MINMAX);
cv::DenseFeatureDetector detector(12.0f, 1, 0.1f, 10);
std::vector<cv::KeyPoint> keypoints;
detector.detect(gray_img, keypoints);
std::vector<cv::KeyPoint>::iterator itk;
for (itk = keypoints.begin(); itk != keypoints.end(); ++itk)
{
std::cout << itk->pt << std::endl;
cv::circle(bgr_img, itk->pt, itk->size, cv::Scalar(0,255,255), 1, CV_AA);
cv::circle(bgr_img, itk->pt, 1, cv::Scalar(0,255,0), -1);
}
cv::Ptr<cv::DescriptorExtractor> descriptorExtractor = cv::DescriptorExtractor::create("SURF");
cv::Mat descriptors;
descriptorExtractor->compute( gray_img, keypoints, descriptors);
// SIFT returns large negative values when it goes off the edge of the image.
descriptors.setTo(0, descriptors<0);
imshow("result",bgr_img);
cv::waitKey();
return 0;
}
The result:

Output producing 4 images side by side for single image provided in gradient calculation

Following code is used to calculate the normalized gradient at all the pixels of image. But on using imshow on calculated gradient, instead of showing gradient for provided image its showing gradient of provided image 4 times (side by side).
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/core/core.hpp>
#include<iostream>
#include<math.h>
using namespace cv;
using namespace std;
Mat mat2gray(const Mat& src)
{
Mat dst;
normalize(src, dst, 0.0, 1.0, NORM_MINMAX);
return dst;
}
Mat setImage(Mat srcImage){
//GaussianBlur(srcImage,srcImage,Size(3,3),0.5,0.5);
Mat avgImage = Mat::zeros(srcImage.rows,srcImage.cols,CV_32F);
Mat gradient = Mat::zeros(srcImage.rows,srcImage.cols,CV_32F);
Mat norMagnitude = Mat::zeros(srcImage.rows,srcImage.cols,CV_32F);
Mat orientation = Mat::zeros(srcImage.rows,srcImage.cols,CV_32F);
//Mat_<uchar> srcImagetemp = srcImage;
float dx,dy;
for(int i=0;i<srcImage.rows-1;i++){
for(int j=0;j<srcImage.cols-1;j++){
dx=srcImage.at<float>(i,j+1)-srcImage.at<float>(i,j);
dy=srcImage.at<float>(i+1,j)-srcImage.at<float>(i,j);
gradient.at<float>(i,j)=sqrt(dx*dx+dy*dy);
orientation.at<float>(i,j)=atan2(dy,dx);
//cout<<gradient.at<float>(i,j)<<endl;
}
}
GaussianBlur(gradient,avgImage,Size(7,7),3,3);
for(int i=0;i<srcImage.rows;i++){
for(int j=0;j<srcImage.cols;j++){
norMagnitude.at<float>(i,j)=gradient.at<float>(i,j)/max(avgImage.at<float>(i,j),float(4));
//cout<<norMagnitude.at<float>(i,j)<<endl;
}
}
imshow("b",(gradient));
waitKey();
return norMagnitude;
}
int main(int argc,char **argv){
Mat image=imread(argv[1]);
cvtColor( image,image, CV_BGR2GRAY );
Mat newImage=setImage(image);
imshow("a",(newImage));
waitKey();
}
Your incoming source image is of type CV_8UC1, and yet you read it as floats:
dx=srcImage.at<float>(i,j+1)-srcImage.at<float>(i,j);
dy=srcImage.at<float>(i+1,j)-srcImage.at<float>(i,j);
If running under the debugger, this should have thrown an assertion, which would have highlighted the problem.
Try changing those lines to use unsigned char as follows:
dx=(float)(srcImage.at<unsigned char>(i,j+1)-srcImage.at<unsigned char>(i,j));
dy=(float)(srcImage.at<unsigned char>(i+1,j)-srcImage.at<unsigned char>(i,j));

OpenCV - C++ Code runs in Eclipse but not in terminal?

I am trying to make the follwing Code by Mohammad Reza Mostajabi (http://alum.sharif.ir/~mostajabi/Tutorial.html) run under Ubuntu 12.04 with OpenCV 2.4.6.1. I made some minor changes with the libraries included and added "cv::initModule_nonfree()" right after starting the main file.
#include "cv.h"
#include "highgui.h"
#include "ml.h"
#include <stdio.h>
#include <iostream>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <vector>
using namespace cv;
using namespace std;
using std::cout;
using std::cerr;
using std::endl;
using std::vector;
char ch[30];
//--------Using SURF as feature extractor and FlannBased for assigning a new point to the nearest one in the dictionary
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");
Ptr<DescriptorExtractor> extractor = new SurfDescriptorExtractor();
SurfFeatureDetector detector(500);
//---dictionary size=number of cluster's centroids
int dictionarySize = 1500;
TermCriteria tc(CV_TERMCRIT_ITER, 10, 0.001);
int retries = 1;
int flags = KMEANS_PP_CENTERS;
BOWKMeansTrainer bowTrainer(dictionarySize, tc, retries, flags);
BOWImgDescriptorExtractor bowDE(extractor, matcher);
void collectclasscentroids() {
IplImage *img;
int i,j;
for(j=1;j<=4;j++)
for(i=1;i<=60;i++){
sprintf( ch,"%s%d%s%d%s","train/",j," (",i,").jpg");
const char* imageName = ch;
img = cvLoadImage(imageName,0);
vector<KeyPoint> keypoint;
detector.detect(img, keypoint);
Mat features;
extractor->compute(img, keypoint, features);
bowTrainer.add(features);
}
return;
}
int main(int argc, char* argv[])
{
cv::initModule_nonfree();
int i,j;
IplImage *img2;
cout<<"Vector quantization..."<<endl;
collectclasscentroids();
vector<Mat> descriptors = bowTrainer.getDescriptors();
int count=0;
for(vector<Mat>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
count+=iter->rows;
}
cout<<"Clustering "<<count<<" features"<<endl;
//choosing cluster's centroids as dictionary's words
Mat dictionary = bowTrainer.cluster();
bowDE.setVocabulary(dictionary);
cout<<"extracting histograms in the form of BOW for each image "<<endl;
Mat labels(0, 1, CV_32FC1);
Mat trainingData(0, dictionarySize, CV_32FC1);
int k=0;
vector<KeyPoint> keypoint1;
Mat bowDescriptor1;
//extracting histogram in the form of bow for each image
for(j=1;j<=4;j++)
for(i=1;i<=60;i++){
sprintf( ch,"%s%d%s%d%s","train/",j," (",i,").jpg");
const char* imageName = ch;
img2 = cvLoadImage(imageName,0);
detector.detect(img2, keypoint1);
bowDE.compute(img2, keypoint1, bowDescriptor1);
trainingData.push_back(bowDescriptor1);
labels.push_back((float) j);
}
//Setting up SVM parameters
CvSVMParams params;
params.kernel_type=CvSVM::RBF;
params.svm_type=CvSVM::C_SVC;
params.gamma=0.50625000000000009;
params.C=312.50000000000000;
params.term_crit=cvTermCriteria(CV_TERMCRIT_ITER,100,0.000001);
CvSVM svm;
printf("%s\n","Training SVM classifier");
bool res=svm.train(trainingData,labels,cv::Mat(),cv::Mat(),params);
cout<<"Processing evaluation data..."<<endl;
Mat groundTruth(0, 1, CV_32FC1);
Mat evalData(0, dictionarySize, CV_32FC1);
k=0;
vector<KeyPoint> keypoint2;
Mat bowDescriptor2;
Mat results(0, 1, CV_32FC1);;
for(j=1;j<=4;j++)
for(i=1;i<=60;i++){
sprintf( ch,"%s%d%s%d%s","eval/",j," (",i,").jpg");
const char* imageName = ch;
img2 = cvLoadImage(imageName,0);
detector.detect(img2, keypoint2);
bowDE.compute(img2, keypoint2, bowDescriptor2);
evalData.push_back(bowDescriptor2);
groundTruth.push_back((float) j);
float response = svm.predict(bowDescriptor2);
results.push_back(response);
}
//calculate the number of unmatched classes
double errorRate = (double) countNonZero(groundTruth- results) / evalData.rows;
printf("%s%f","Error rate is ",errorRate);
return 0;
}
After doing this I can compile the Code without problems. I can also run it within Eclipse, but once I try to make it work in terminal I get the following error message:
" OpenCV Error: Assertion failed (!_descriptors.empty()) in add, file /home/mark/Downloads/FP/opencv-2.4.6.1/modules/features2d/src/bagofwords.cpp, line 57
terminate called after throwing an instance of 'cv::Exception'
what(): /home/mark/Downloads/FP/opencv-2.4.6.1/modules/features2d/src/bagofwords.cpp:57: error: (-215) !_descriptors.empty() in function add "
I've been trying to solve the problem for a few days now, but I just cannot get rid of this error. I also tried to do it with CodeBlocks, which gives me the same error. I would appreciate some help very much!
Thanks!
It's possible that your program fails to load input images (when launched from the terminal window) because it can't find them. Make sure that your input images are copied to the directory from which you run the application. Eclipse may have a different home directory and hence it sees the image when the program is started in Eclipse.

watershed segmentation opencv xcode

I am now learning a code from the opencv codebook (OpenCV 2 Computer Vision Application Programming Cookbook): Chapter 5, Segmenting images using watersheds, page 131.
Here is my main code:
#include "opencv2/opencv.hpp"
#include <string>
using namespace cv;
using namespace std;
class WatershedSegmenter {
private:
cv::Mat markers;
public:
void setMarkers(const cv::Mat& markerImage){
markerImage.convertTo(markers, CV_32S);
}
cv::Mat process(const cv::Mat &image){
cv::watershed(image,markers);
return markers;
}
};
int main ()
{
cv::Mat image = cv::imread("/Users/yaozhongsong/Pictures/IMG_1648.JPG");
// Eliminate noise and smaller objects
cv::Mat fg;
cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),6);
// Identify image pixels without objects
cv::Mat bg;
cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),6);
cv::threshold(bg,bg,1,128,cv::THRESH_BINARY_INV);
// Create markers image
cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0));
markers= fg+bg;
// Create watershed segmentation object
WatershedSegmenter segmenter;
// Set markers and process
segmenter.setMarkers(markers);
segmenter.process(image);
imshow("a",image);
std::cout<<".";
cv::waitKey(0);
}
However, it doesn't work. How could I initialize a binary image? And how could I make this segmentation code work?
I am not very clear about this part of the book.
Thanks in advance!
There's a couple of things that should be mentioned about your code:
Watershed expects the input and the output image to have the same size;
You probably want to get rid of the const parameters in the methods;
Notice that the result of watershed is actually markers and not image as your code suggests; About that, you need to grab the return of process()!
This is your code, with the fixes above:
// Usage: ./app input.jpg
#include "opencv2/opencv.hpp"
#include <string>
using namespace cv;
using namespace std;
class WatershedSegmenter{
private:
cv::Mat markers;
public:
void setMarkers(cv::Mat& markerImage)
{
markerImage.convertTo(markers, CV_32S);
}
cv::Mat process(cv::Mat &image)
{
cv::watershed(image, markers);
markers.convertTo(markers,CV_8U);
return markers;
}
};
int main(int argc, char* argv[])
{
cv::Mat image = cv::imread(argv[1]);
cv::Mat binary;// = cv::imread(argv[2], 0);
cv::cvtColor(image, binary, CV_BGR2GRAY);
cv::threshold(binary, binary, 100, 255, THRESH_BINARY);
imshow("originalimage", image);
imshow("originalbinary", binary);
// Eliminate noise and smaller objects
cv::Mat fg;
cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),2);
imshow("fg", fg);
// Identify image pixels without objects
cv::Mat bg;
cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),3);
cv::threshold(bg,bg,1, 128,cv::THRESH_BINARY_INV);
imshow("bg", bg);
// Create markers image
cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0));
markers= fg+bg;
imshow("markers", markers);
// Create watershed segmentation object
WatershedSegmenter segmenter;
segmenter.setMarkers(markers);
cv::Mat result = segmenter.process(image);
result.convertTo(result,CV_8U);
imshow("final_result", result);
cv::waitKey(0);
return 0;
}
I took the liberty of using Abid's input image for testing and this is what I got:
Below is the simplified version of your code, and it works fine for me. Check it out :
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;
int main ()
{
Mat image = imread("sofwatershed.jpg");
Mat binary = imread("sofwsthresh.png",0);
// Eliminate noise and smaller objects
Mat fg;
erode(binary,fg,Mat(),Point(-1,-1),2);
// Identify image pixels without objects
Mat bg;
dilate(binary,bg,Mat(),Point(-1,-1),3);
threshold(bg,bg,1,128,THRESH_BINARY_INV);
// Create markers image
Mat markers(binary.size(),CV_8U,Scalar(0));
markers= fg+bg;
markers.convertTo(markers, CV_32S);
watershed(image,markers);
markers.convertTo(markers,CV_8U);
imshow("a",markers);
waitKey(0);
}
Below is my input image :
Below is my output image :
See the code explanation here : Simple watershed Sample in OpenCV
I had the same problem as you, following the exact same code sample of the cookbook (great book btw).
Just to place the matter I was coding under Visual Studio 2013 and OpenCV 2.4.8. After a lot of searching and no solutions I decided to change the IDE.
It's still Visual Studio BUT it's 2010!!!! And boom it works!
Becareful of how you configure Visual Studio with OpenCV. Here's a great tutorial for installation here
Good day to all