Related
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 5 years ago.
Improve this question
With the rapid development of C++ compilers,especially the intel ones, and the abilities of directly applying SIMD functions in your C/C++ code, does Fortran still hold any real advantage in the world of numerical computations?
I am from an applied maths background, my job involves a lot of numerical analysis, computations, optimisations and such, with a strictly defined performance-requirement.
I hardly know anything about Fortran, I have some experience in C/CUDA/matlab(if you consider the latter as a computer language to begin with), and my daily task involves analysis of very large data (e.g. 10GB-large matrix), and it seems the program at least spend 2/3 of its time on memory-accessing (thats why I send some of its job to GPU), do you people think it may worth the effects for me to trying the fortran routine on at least some performance-critical part of my code to improve the performance of my program?
Because the complexity and things need to be done involved there, I will only go that routine if only there is significant performance benefit there, thanks in advance.
Fortran has strict aliasing semantics compared to C++ and has been aggressively tuned for numerical performance for decades. Algorithms that uses the CPU to work with arrays of data often have the potential to benefit from a Fortran implementation.
The programming languages shootout should not be taken too seriously, but of the 15 benchmarks, Fortran ranks #1 for speed on four of them (for Intel Q6600 one core), more than any other single language. You can see that the benchmarks where Fortran shines are the heavily numerical ones:
spectral norm 27% faster
fasta 67% faster
mandelbrot 56% faster
pidigits 18% faster
Counterexample:
k-nucleotide 500% slower (this benchmark focuses heavily on more sophisticated data structures and string processing, which is not Fortran's strength)
You can also see a summary page "how many times slower" that shows that out of all implementations, the Fortran code is on average closest to the fastest implementation for each benchmark -- although the quantile bars are much larger than for C++, indicating Fortran is unsuited for some tasks that C++ is good at, but you should know that already.
So the questions you will need to ask yourself are:
Is the speed of this function so critical that reimplementing it in Fortran is worth my time?
Is performance so important that my investment in learning Fortran will pay off?
Is it possible to use a library like ATLAS instead of writing the code myself?
Answering these questions would require detailed knowledge of your code base and business model, so I can't answer those. But yes, Fortran implementations are often faster than C++ implementations.
Another factor in your decision is the amount of sample code and the quantity of reference implementations available. Fortran's strong history means that there is a wealth of numerical code available for download and even with a trip to the library. As always you will need to sift through it to find the good stuff.
The complete and correct answer to your question is, "yes, Fortran does hold some advantages".
C++ also holds some, different, advantages. So do Python, R, etc etc. They're different languages. It's easier and faster to do some things in one language, and some in others. All are widely used in their communities, and for very good reasons.
Anything else, in the absence of more specific questions, is just noise and language-war-bait, which is why I've voted to close the question and hope others will too.
Fortran is just naturally suited for numerical programming. You tend to have a large amount of numbers in such programs, typically arranged arrays. Arrays are first class citizens in Fortran and it is often pretty straight forward to translate numerical kernels from Matlab into Fortran.
Regarding potential performance advantages see the other answers, that cover this quite nicely. The baseline is probably you can create highly efficient numerical applications with most compiled languages today, but you might jump through some loops to get there. Fortran was carefully designed to allow the compiler to recognize most spots for optimizations, due to the language features. Of course you can also write arbitrary slow code with any compiled language, including Fortran.
In any case you should pick the tools as suited. Fortran suits numerical applications, C suits system related development. On a final remark, learning Fortran basics is not hard, and it is always worthwhile to have a look into other languages. This opens a different view on problems you want to solve.
Also worth mentioning is that Fortran is a lot easier to master than C++. In fact, Fortran has a shorter language spec than plain C and it's syntax is arguably simpler. You can pick it up very quickly.
Meaning that if you are only interested in learning C++ or Fortran to solve a single specific problem you have at the moment (say, to speed up the bottlenecks in something you wrote in a prototyping language), Fortran might give you a better return on investment.
Fortran code is better for matrix and vector type operation in general. But you also can produce similar performance with c/c++ code by passing hints/suggestions to the compiler to produce similar quality vector instructions. One option that gave me good boost was not to assume memory aliasing among input variables that are array objects. This way, the compiler can aggressively do inner loop unrolling and pipelining for ILP where it can overlap loads and store operation across loop iteration with right prefetches.
I'm planning on writing a game with C++, and it will be extremely CPU-intensive (pathfinding,genetic algorithms, neural networks, ...)
So I've been thinking about how to tackle this situation best so that it would run smoothly.
(let this top section of this question be side information, I don't want it to restrict the main question, but it would be nice if you could give me side notes as well)
Is it worth it to learn how to work with ASM, so I can make ASM calls in C++,
can it give me a significant/notable performance advantage?
In what situations should I use it?
Almost never:
You only want to be using it once you've profiled your C++ code and have identified a particular section as a bottleneck.
And even then, you only want to do it once you've exhausted all C++ optimization options.
And even then, you only want to be using ASM for tight, inner loops.
And even then, it takes quite a lot of effort and skill to beat a C++ compiler on a modern platform.
If your not an experienced assembly programmer, I doubt you will be able to optimize assembly code better than your compiler.
Also note that assembly is not portable. If you decide to go this way, you will have to write different assembly for all the architectures you decide to support.
Short answer: it depends, most likely you won't need it.
Don't start optimizing prematurely. Write code that is also easy to read and to modify. Separate logical sections into modules. Write something that is easy to extend.
Do some profiling.
You can't tell where your bottlenecks are unless you profile your code. 99% of the time you won't get that much performance gain by writing asm. There's a high chance you might even worsen your performance. Optimizers nowadays are very good at what they do. If you do have a bottleneck, it will most probably be because of some poorly chosen algorithm or at least something that can be remedied at a high-level.
My suggestion is, even if you do learn asm, which is a good thing, don't do it just so you can optimize.
Profile profile profile....
A legitimate use case for going low-level (although sometimes a compiler can infer it for you) is to make use of SIMD instructions such as SSE. I would assume that at least some of the algorithms you mention will benefit from parallel processing.
However, you don't need to write actual assembly, instead you can simply use intrinsic functions. See, e.g. this.
Don't get ahead of yourself.
I've posted a sourceforge project showing how a simulation program was massively speeded up (over 700x).
This was not done by assuming in advance what needed to be made fast.
It was done by "profiling", which I put in quotes because the method I use is not to employ a profiler.
Rather I rely on random pausing, a method known and used to good effect by some programmers.
It proceeds through a series of iterations.
In each iteration a large source of time-consumption is identified and fixed, resulting in a certain speedup ratio.
As you proceed through multiple iterations, these speedup ratios multiply together (like compound interest).
That's how you get major speedup.
If, and only if, you get to a point where some code is taking a large fraction of time, and it doesn't contain any function calls, and you think you can write assembly code better than the compiler does, then go for it.
P.S. If you're wondering, the difference between using a profiler and random pausing is that profilers look for "bottlenecks", on the assumption that those are localized things. They look for routines or lines of code that are responsible for a large percent of overall time.
What they miss is problems that are diffuse.
For example, you could have 100 routines, each taking 1% of time.
That is, no bottlenecks.
However, there could be an activity being done within many or all of those routines, accounting for 1/3 of the time, that could be done better or not at all.
Random pausing will see that activity with a small number of samples, because you don't summarize, you examine the samples.
In other words, if you took 9 samples, on average you would notice the activity on 3 of them.
That tells you it's big.
So you can fix it and get your 3/2 speedup ratio.
"To understand recursion, you must first understand recursion." That quote comes to mind when I consider my response to your question, which is "until you understand when to use assembly, you should never use assembly." After you have completely implemented your soution, extensively profiled its performance and determined precise bottlenecks, and experimented with several alternative solutions, then you can begin to consider using assembly. If you code a single line of assembly before you have a working and extensively profiled program, you have made a mistake.
If you need to ask than you don't need it.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
I have recently read an article about fast sqrt calculation. Therefore, I have decided to ask SO community and its experts to help me find out, which STL algorithms or mathematical calculations can be implemented faster with programming hacks?
It would be great if you can give examples or links.
Thanks in advance.
System library developers have more concerns than just performance in mind:
Correctness and standards compliance: Critical!
General use: No optimisations are introduced, unless they benefit the majority of users.
Maintainability: Good hand-written assembly code can be faster, but you don't see much of it. Why?
Portability: Decent libraries should be portable to more than just Windows/x86/32bit.
Many optimisation hacks that you see around violate one or more of the requirements above.
In addition, optimisations that will be useless or even break when the next generation CPU comes around the corner are not a welcome thing.
If you don't have profiler evidence on it being really useful, don't bother optimising the system libraries. If you do, work on your own algorithms and code first, anyway...
EDIT:
I should also mention a couple of other all-encompassing concerns:
The cost/effort to profit/result ratio: Optimisations are an investment. Some of them are seemingly-impressive bubbles. Others are deeper and more effective in the long run. Their benefits must always be considered in relation to the cost of developing and maintaining them.
The marketing people: No matter what you think, you'll end up doing whatever they want - or think they want.
Probably all of them can be made faster for a specific problem domain.
Now the real question is, which ones should you hack to make faster? None, until the profiler tells you to.
Several of the algorithms in <algorithm> can be optimized for vector<bool>::[const_]iterator. These include:
find
count
fill
fill_n
copy
copy_backward
move // C++0x
move_backward // C++0x
swap_ranges
rotate
equal
I've probably missed some. But all of the above algorithms can be optimized to work on many bits at a time instead of just one bit at a time (as would a naive implementation).
This is an optimization that I suspect is sorely missing from most STL implementations. It is not missing from this one:
http://libcxx.llvm.org/
This is where you really need to listen to project managers and MBAs. What you're suggesting is re-implementing parts of the STL and or standard C library. There is an associated cost in terms of time to implement and maintenance burden of doing so, so you shouldn't do it unless you really, genuinely need to, as John points out. The rule is simple: is this calculation you're doing slowing you down (a.k.a. you are bound by the CPU)? If not, don't create your own implementation just for the sake of it.
Now, if you're really interested in fast maths, there are a few places you can start. The gnu multi-precision library implements many algorithms from modern computer arithmetic and semi numerical algorithms that are all about doing maths on arbitrary precision integers and floats insanely fast. The guys who write it optimise in assembly per build platform - it is about as fast as you can get in single core mode. This is the most general case I can think of for optimised maths i.e. that isn't specific to a certain domain.
Bringing my first paragraph and second in with what thkala has said, consider that GMP/MPIR have optimised assembly versions per cpu architecture and OS they support. Really. It's a big job, but it is what makes those libraries so fast on a specific small subset of problems that are programming.
Sometimes domain specific enhancements can be made. This is about understanding the problem in question. For example, when doing finite field arithmetic under rijndael's finite field you can, based on the knowledge that the characteristic polynomial is 2 with 8 terms, assume that your integers are of size uint8_t and that addition/subtraction are equivalent to xor operations. How does this work? Well basically if you add or subtract two elements of the polynomial, they contain either zero or one. If they're both zero or both one, the result is always zero. If they are different, the result is one. Term by term, that is equivalent to xor across a 8-bit binary string, where each bit represents a term in the polynomial. Multiplication is also relatively efficient. You can bet that rijndael was designed to take advantage of this kind of result.
That's a very specific result. It depends entirely on what you're doing to make things efficient. I can't imagine many STL functions are purely optimised for cpu speed, because amongst other things STL provides: collections via templates, which are about memory, file access which is about storage, exception handling etc. In short, being really fast is a narrow subset of what STL does and what it aims to achieve. Also, you should note that optimisation has different views. For example, if your app is heavy on IO, you are IO bound. Having a massively efficient square root calculation isn't really helpful since "slowness" really means waiting on the disk/OS/your file parsing routine.
In short, you as a developer of an STL library are trying to build an "all round" library for many different use cases.
But, since these things are always interesting, you might well be interested in bit twiddling hacks. I can't remember where I saw that, but I've definitely stolen that link from somebody else on here.
Almost none. The standard library is designed the way it is for a reason.
Taking sqrt, which you mention as an example, the standard library version is written to be as fast as possible, without sacrificing numerical accuracy or portability.
The article you mention is really beyond useless. There are some good articles floating around the 'net, describing more efficient ways to implement square roots. But this article isn't among them (it doesn't even measure whether the described algorithms are faster!) Carmack's trick is slower than std::sqrt on a modern CPU, as well as being less accurate.
It was used in a game something like 12 years ago, when CPUs had very different performance characteristics. It was faster then, but CPU's have changed, and today, it's both slower and less accurate than the CPU's built-in sqrt instruction.
You can implement a square root function which is faster than std::sqrt without losing accuracy, but then you lose portability, as it'll rely on CPU features not present on older CPU's.
Speed, accuracy, portability: choose any two. The standard library tries to balance all three, which means that the speed isn't as good as it could be if you were willing to sacrifice accuracy or portability, and accuracy is good, but not as good as it could be if you were willing to sacrifice speed, and so on.
In general, forget any notion of optimizing the standard library. The question you should be asking is whether you can write more specialized code.
The standard library has to cover every case. If you don't need that, you might be able to speed up the cases that you do need. But then it is no longer a suitable replacement for the standard library.
Now, there are no doubt parts of the standard library that could be optimized. the C++ IOStreams library in particular comes to mind. It is often naively, and very inefficiently, implemented. The C++ committee's technical report on C++ performance has an entire chapter dedicated to exploring how IOStreams could be implemented to be faster.
But that's I/O, where performance is often considered to be "unimportant".
For the rest of the standard library, you're unlikely to find much room for optimization.
I have a very large program which I have been compiling under visual studio (v6 then migrated to 2008). I need the executable to run as fast as possible. The program spends most of its time processing integers of various sizes and does very little IO.
Obviously I will select maximum optimization, but it seems that there are a variety of things that can be done which don't come under the heading of optimization which do still affect the speed of the executable. For example selecting the __fastcall calling convention or setting structure member alignment to a large number.
So my question is: Are there other compiler/linker options I should be using to make the program faster which are not controlled from the "optimization" page of the "properties" dialog.
EDIT: I already make extensive use of profilers.
Another optimization option to consider is optimizing for size. Sometimes size-optimized code can run faster than speed-optimized code due to better cache locality.
Also, beyond optimization operations, run the code under a profiler and see where the bottlenecks are. Time spent with a good profiler can reap major dividends in performance (especially it if gives feedback on the cache-friendliness of your code).
And ultimately, you'll probably never know what "as fast as possible" is. You'll eventually need to settle for "this is fast enough for our purposes".
Profile-guided optimization can result in a large speedup. My application runs about 30% faster with a PGO build than a normal optimized build. Basically, you run your application once and let Visual Studio profile it, and then it is built again with optimization based on the data collected.
1) Reduce aliasing by using __restrict.
2) Help the compiler in common subexpression elimination / dead code elimination by using __pure.
3) An introduction to SSE/SIMD can be found here and here. The internet isn't exactly overflowing with articles about the topic, but there's enough. For a reference list of intrinsics, you can search MSDN for 'compiler intrinsics'.
4) For 'macro parallelization', you can try OpenMP. It's a compiler standard for easy task parallelization -- essentially, you tell the compiler using a handful of #pragmas that certain sections of the code are reentrant, and the compiler creates the threads for you automagically.
5) I second interjay's point that PGO can be pretty helpful. And unlike #3 and #4, it's almost effortless to add in.
You're asking which compiler options can help you speed up your program, but here's some general optimisation tips:
1) Ensure your algorithms are appropriate for the job. No amount of fiddling with compiler options will help you if you write an O(shit squared) algorithm.
2) There's no hard and fast rules for compiler options. Sometimes optimise for speed, sometimes optimise for size, and make sure you time the differences!
3) Understand the platform you are working on. Understand how the caches for that CPU operate, and write code that specifically takes advantage of the hardware. Make sure you're not following pointers everywhere to get access to data which will thrash the cache. Understand the SIMD operations available to you and use the intrinsics rather than writing assembly. Only write assembly if the compiler is definitely not generating the right code (i.e. writing to uncached memory in bad ways). Make sure you use __restrict on pointers that will not alias. Some platforms prefer you to pass vector variables by value rather than by reference as they can sit in registers - I could go on with this but this should be enough to point you in the right direction!
Hope this helps,
-Tom
Forget micro-optimization such as what you are describing. Run your application through a profiler (there is one included in Visual Studio, at least in some editions). The profiler will tell you where your application is spending its time.
Micro-optimization will rarely give you more than a few percentage points increase in performance. To get a really big boost, you need to identify areas in your code where inefficient algorithms and/or data structures are being used. Focus on those, for example by changing algorithms. The profiler will help identify these problem areas.
Check which /precision mode you are using. Each one generates quite different code and you need to choose based on what accuracy is required in your app. Our code needs precision (geometry, graphics code) but we still use /fp:fast (C/C++ -> Code generation options).
Also make sure you have /arch:SSE2, assuming your deployment covers processors that all support SSE2. This will result is quite a big difference in performance, as compile will use very few cycles. Details are nicely covered in the blog SomeAssemblyRequired
Since you are already profiling, I would suggest loop unrolling if it is not happening. I have seen VS2008 not doing it more frequently (templates, references etc..)
Use __forceinline in hotspots if applicable.
Change hotspots of your code to use SSE2 etc as your app seems to be compute intense.
You should always address your algorithm and optimise that before relying on compiler optimisations to get you significant improvements in most cases.
Also you can throw hardware at the problem. Your PC may already have the necessary hardware lying around mostly unused: the GPU! One way of improving performance of some types of computationally expensive processing is to execute it on the GPU. This is hardware specific but NVIDIA provide an API for exactly that: CUDA. Using the GPU is likely to get you far greater improvement than using the CPU.
I agree with what everyone has said about profiling. However you mention "integers of various sizes". If you are doing much arithmetic with mismatched integers a lot of time can be wasted in changing sizes, shorts to ints for example, when the expressions are evaluated.
I'll throw in one more thing too. Probably the most significant optimisation is in choosing and implementing the best algorithm.
You have three ways to speed up your application:
Better algorithm - you've not specified the algorithm or the data types (is there an upper limit to integer size?) or what output you want.
Macro parallelisation - split the task into chunks and give each chunk to a separate CPU, so, on a two core cpu divide the integer set into two sets and give half to each cpu. This depends on the algorithm you're using - not all algorithms can be processed like this.
Micro parallelisation - this is like the above but uses SIMD. You can combine this with point 2 as well.
You say the program is very large. That tells me it probably has many classes in a hierarchy.
My experience with that kind of program is that, while you are probably assuming that the basic structure is just about right, and to get better speed you need to worry about low-level optimization, chances are very good that there are large opportunities for optimization that are not of the low-level kind.
Unless the program has already been tuned aggressively, there may be room for massive speedup in the form of mid-stack operations that can be done differently. These are usually very innocent-looking and would never grab your attention. They are not cases of "improve the algorithm". They are usually cases of "good design" that just happen to be on the critical path.
Unfortunately, you cannot rely on profilers to find these things, because they are not designed to look for them.
This is an example of what I'm talking about.
I'm developing non-interactive cpu-bound application which does only computations, almost no IO. Currently it works too long and while I'm working on improving the algorithm, I also think if it can give any benefit to change language or platform. Currently it is C++ (no OOP so it is almost C) on windows compiled with Intel C++ compiler. Can switching to ASM help and how much? Can switching to Linux and GCC help?
Just to be thorough: the first thing to do is to gather profile data and the second thing to do is consider your algorithms. I'm sure you know that, but they've got to be #included into any performance-programming discussion.
To be direct about your question "Can switching to ASM help?" the answer is "If you don't know the answer to that, then probably not." Unless you're very familiar with the CPU architecture and its ins and outs, it's unlikely that you'll do a significantly better job than a good optimizing C/C++ compiler on your code.
The next point to make is that significant speed-ups in your code (aside from algorithmic improvements) will almost certainly come from parallelism, not linear increases. Desktop machines can now throw 4 or 8 cores at a task, which has much more performance potential than a slightly better code generator. Since you're comfortable with C/C++, OpenMP is pretty much a no-brainer; it's very easy to use to parallelize your loops (obviously, you have to watch loop-carried dependencies, but it's definitely "the simplest parallelism that could possibly work").
Having said all that, code generation quality does vary between C/C++ compilers. The Intel C++ compiler is well-regarded for its optimization quality and has full support not just for OpenMP but for other technologies such as the Threading Building Blocks.
Moving into the question of what programming languages might be even better than C++, the answer would be "programming languages that actively promote / facilitate concepts of parallelism and concurrent programming." Erlang is the belle of the ball in that regard, and is a "hot" language right now and most people interested in performance programming are paying at least some attention to it, so if you want to improve your skills in that area, you might want to check it out.
It's always algorithm, rarely language. Here's my clue: "while I'm working on improving the algorithm".
Tweaking may not be enough.
Consider radical changes to the algorithm. You've got to eliminate processing, not make the processing go faster. The culprit is often "search" -- looping through data looking for something. Find ways to eliminate search. If you can't eliminate it, replace linear search with some kind of tree search or a hash map of some kind.
Switching to ASM is not going to help much, unless you're very good at it and/or have a specific critical path routine which you know you can do better. As several people have remarked, modern compilers are just better in most cases at taking advantages of caching/etc. than anyone can do by hand.
I'd suggest:
Try a different compiler, and/or different optimization options
Run a code coverage/analysis utility, and figure out where the critical paths are, and work on optimizing those in the code
C++ should be able to give you very near the best possible performance from the code, so I wouldn't recommend switching the language. Depending on the app, you may be able to get better performance on multi code/processor systems using multiple thread, as another suggestion.
While just switching to asm won't give any benefits, since the Intel C++ Compiler is likely better at optimizing than you, you can try one of the following options:
Try a compiler that will parallelize your code, like the VectorC compiler.
Try to switch to asm with heavy use of MMX, 3DNow!, SSE or whatever fits your needs (and your CPU). This will give more of a benefit than pure asm.
You can also try GPGPU, i.e. execute large parts of your algorithm on a GPU instead of a CPU. Depending on your algorithm, it can be dramatically faster.
Edit: I also second the profile approach. I recommend AQTime, which supports the Intel C++ compiler.
Personally I'd look at languages which allow you to take advantage of parallelism most easily, unless it's a thoroughly non-parallelisable situation. Being able to bolt on some extra cores and get (if possible!) near-linear improvement may well be a lot more cost-effective than squeezing the extra few percent of efficiency out.
When it comes to parallelisation, I believe functional languages are often regarded as the best way to go, or you could look at OpenMP for C/C++. (Personally, as a managed language guy, I'd be looking at libraries for Java/.NET, but I quite understand that not everyone has the same preferences!)
Try Fortran 77 - when it comes to computations still nothing beats the granddaddy of programming languages. Also, try it with OpenMP to take advantage of multiple cores.
Hand optimizing your ASM code compared to what C++ can do for you is rarely cost effective.
If you've done anything you can to the algorithm from a traditional algorithmic view, and you've also eliminated excesses, then you may either be SOL, or you can consider optimizing your program from a hardware point of view.
For example, any time you follow a pointer around the heap you are paying a huge cost due to cache misses, possibly paging, etc., which all affect branching predictions. Most programmers (even C gurus) tend to look at the CPU from the functional standpoint rather than what happens behind the scenes. Sometimes reorganizing memory, for example by "flattening" or manually allocating memory to fit on the same page can obtain ENORMOUS speedups. I managed to get 2X speedups on graph traversals just by flattening my structures.
These are not things that your compiler will do for you since they are based on your high-level understanding of the program.
As lobrien said, you haven't given us any information to tell you if hand-optimized ASM code would help... which means the answer is probably, "not yet."
Have you run your code with a profiler?
Do you know if the code is slow because of memory constraints or processor constraints?
Are you using all your available cores?
Have you identified any algorithms you're using that aren't O(1)? Can you get them to O(1)? If not, why not?
If you've done all that, how much control do you have over the environment your program is running in? (presumably a lot if you're thinking of switching operating systems) Can you disable other processes, give your process highest priority, etc? What about just finding a machine with a faster processor, more cores, or more memory (depending on what you're constrained on)
And on and on.
If you've already done all that and more, it's certainly possible you'll get to a point where you think, "I wonder if these few lines of code right here could be optimized better than the assembly that I'm looking at in the debugger right now?" And at that point you can ask specifically.
Good luck! You're solving a problem that's fun to solve.
Sometimes you can find libraries that have optimized implementations of the algorithms you care about. Often times they will have done the multithreading for you.
For example switching from LINPACK to LAPACK got us a 10x speed increase in LU factorization/solve with a good BLAS library.
First, figure out if you can change the algorithm, as S.Lott suggested.
Assuming the algorithm choice is correct, you might look a the memory access patterns, if you have a lot of data you are processing. For a lot of number crunching applications these days, they're bound by the memory bus, not by the ALU(s). I recently optimized some code that was of the form:
// Assume N is a big number
for (int i=0; i<N; i++) {
myArray[i] = dosomething(i);
}
for (int i=0; i<N; i++) {
myArray[i] = somethingElse(myArray[i]);
}
...
and converted it to look like:
for (int i=0; i<N; i++) {
double tmp = dosomething(i);
tmp = somethingElse(tmp);
...
myArray[i] = tmp;
}
...
In this particular case, this yielded about a 2x speedup.
As Oregonghost already hinted - The VectorC compiler might help. It does not really parallelize the code though, instead you can use it to leverage on extended command sets like mmx or sse. I used it for the most time-critical parts in a software rendering engine and it resulted in a speedup of about 150%-200% on most processors.
For an alternative approach, you could look into Distributed Computing which sounds like it could suit your needs.
If you're sticking with C++ on the intel compiler, take a look at the compiler intrinsics (full reference here). I know that VC++ has similar functionality, and I'm sure you can do the same thing with gcc. These can let you take full advantage of the parallelism built into your CPU. You can use the MMX, SSE and SSE2 instructions to improve performance to a degree. Like others have said, you're probably best looking at the algorithm first.
I suggest you rethink your algorithm, or maybe even better, your approach. On the other hand maybe what you are trying to calculate just takes a lot of computing time. Have you considered to make it distributed so it can run in a cluster of some sort? If you want to focus on pure code optimization by introducing Assembler for your inner loops then often that can be very beneficial (if you know what you're doing).
For modern processors, learning ASM will take you a long time. Further, with all the different versions of SSE around, your code will end up very processor dependant.
I do quite a lot of CPU-bound work, and have found that the difference between intel's C++ compiler and g++ usually isn't that big (at most 15% or so), and there is no measurable difference between Mac OS X, Windows and Linux.
You are going to have to optimise your code and improve your algorithm by hand. There is no "magic fairy dust" which can make existing code that much faster I'm afraid.
If you haven't yet, and you care about performance, you MUST run your code through a good profiler (personally, I like kcachegrind & valgrind on Linux, or Shark on Mac OS X. I don't know what is good for windows I'm afraid).
Based on my past experience, there is a very good chance you'll find some method is taking 95% of your CPU time, and some simple change or addition of caching will make a massive improvement to your performance. On a similar note, if some method is only taking 1% of your CPU time, no amount of optimising is going to gain you anything.
The 2 obvious answers to "CPU-bound" are:
1. Use more CPU (core)s
2. Use something else.
Using 2 threads instead of 1 will cut the time spent by up to 50%. In comparision, C++ to ASM rarely gives you 5% (and for novice ASM programmers, it's often -5%!). Some problems scale well, and may benefit from 8 or 16 cores. That kind of hardware is still pretty mainstream, so see if your problems fall in that category.
The other solution is to throw more specialized hardware at the task. This could be the vector unit of your CPU - considering Windows=x86/x64, that's going to be a flavor of SSE. Another kind of vector hardware is the modern GPU. The GPU also has its own memory bus, which is quite speedy.
First get the lead out. Then if it's as fast as it can possibly be without going to ASM, so be it. But thinking you have to go to ASM assumes you know what's making it slow, and I'll bet a donut that you're guessing.
If you feel you have optimized your code to a point there is no improvement, increase your CPU's. This can be done on different platforms. One I develop with is Appistry. A few links:
http://www.appistry.com/resource-library/index.html
and you can download the product free from here:
http://www.appistry.com/developers/
I work for Appistry and we have done many installations for tasks that were cpu bound by spreading work out over 10's or 100's of machines.
Hope this helps,
-Brett
Probable small help:
Optimization of 64-bit programs
AMD64 (EM64T) architecture
Debugging and optimization of multi-thread OpenMP-programs
Introduction into the problems of developing parallel programs
Development of Resource-intensive Applications in Visual C++
Linux
Switching to Linux can help, if you strip it down to only the parts you actually need.
CrowdProcess has about 2000 workers you can use to compute your algorithm. The API is extremely simple and we've been observing speedups close to the number of workers. Also you can write Javascript which should make you more productive than C++ or ASM.
So if you're in between C++ or ASM, I'd say you should first use all your CPU cores, then if it's not enough, CrowdProcess should be an interesting platform.
Disclaimer: I built CrowdProcess.
It is hard to produce ASM code that is faster than naive C or C++ code. In most cases if you do this job really well, you probably gain not much than few percents and getting like 10% speedup is considered great success but in most cases it is just impossible.
Compilers are capable of understanding how to compile efficiently. You should profile in order to figure out where to optimize.