I'm developing non-interactive cpu-bound application which does only computations, almost no IO. Currently it works too long and while I'm working on improving the algorithm, I also think if it can give any benefit to change language or platform. Currently it is C++ (no OOP so it is almost C) on windows compiled with Intel C++ compiler. Can switching to ASM help and how much? Can switching to Linux and GCC help?
Just to be thorough: the first thing to do is to gather profile data and the second thing to do is consider your algorithms. I'm sure you know that, but they've got to be #included into any performance-programming discussion.
To be direct about your question "Can switching to ASM help?" the answer is "If you don't know the answer to that, then probably not." Unless you're very familiar with the CPU architecture and its ins and outs, it's unlikely that you'll do a significantly better job than a good optimizing C/C++ compiler on your code.
The next point to make is that significant speed-ups in your code (aside from algorithmic improvements) will almost certainly come from parallelism, not linear increases. Desktop machines can now throw 4 or 8 cores at a task, which has much more performance potential than a slightly better code generator. Since you're comfortable with C/C++, OpenMP is pretty much a no-brainer; it's very easy to use to parallelize your loops (obviously, you have to watch loop-carried dependencies, but it's definitely "the simplest parallelism that could possibly work").
Having said all that, code generation quality does vary between C/C++ compilers. The Intel C++ compiler is well-regarded for its optimization quality and has full support not just for OpenMP but for other technologies such as the Threading Building Blocks.
Moving into the question of what programming languages might be even better than C++, the answer would be "programming languages that actively promote / facilitate concepts of parallelism and concurrent programming." Erlang is the belle of the ball in that regard, and is a "hot" language right now and most people interested in performance programming are paying at least some attention to it, so if you want to improve your skills in that area, you might want to check it out.
It's always algorithm, rarely language. Here's my clue: "while I'm working on improving the algorithm".
Tweaking may not be enough.
Consider radical changes to the algorithm. You've got to eliminate processing, not make the processing go faster. The culprit is often "search" -- looping through data looking for something. Find ways to eliminate search. If you can't eliminate it, replace linear search with some kind of tree search or a hash map of some kind.
Switching to ASM is not going to help much, unless you're very good at it and/or have a specific critical path routine which you know you can do better. As several people have remarked, modern compilers are just better in most cases at taking advantages of caching/etc. than anyone can do by hand.
I'd suggest:
Try a different compiler, and/or different optimization options
Run a code coverage/analysis utility, and figure out where the critical paths are, and work on optimizing those in the code
C++ should be able to give you very near the best possible performance from the code, so I wouldn't recommend switching the language. Depending on the app, you may be able to get better performance on multi code/processor systems using multiple thread, as another suggestion.
While just switching to asm won't give any benefits, since the Intel C++ Compiler is likely better at optimizing than you, you can try one of the following options:
Try a compiler that will parallelize your code, like the VectorC compiler.
Try to switch to asm with heavy use of MMX, 3DNow!, SSE or whatever fits your needs (and your CPU). This will give more of a benefit than pure asm.
You can also try GPGPU, i.e. execute large parts of your algorithm on a GPU instead of a CPU. Depending on your algorithm, it can be dramatically faster.
Edit: I also second the profile approach. I recommend AQTime, which supports the Intel C++ compiler.
Personally I'd look at languages which allow you to take advantage of parallelism most easily, unless it's a thoroughly non-parallelisable situation. Being able to bolt on some extra cores and get (if possible!) near-linear improvement may well be a lot more cost-effective than squeezing the extra few percent of efficiency out.
When it comes to parallelisation, I believe functional languages are often regarded as the best way to go, or you could look at OpenMP for C/C++. (Personally, as a managed language guy, I'd be looking at libraries for Java/.NET, but I quite understand that not everyone has the same preferences!)
Try Fortran 77 - when it comes to computations still nothing beats the granddaddy of programming languages. Also, try it with OpenMP to take advantage of multiple cores.
Hand optimizing your ASM code compared to what C++ can do for you is rarely cost effective.
If you've done anything you can to the algorithm from a traditional algorithmic view, and you've also eliminated excesses, then you may either be SOL, or you can consider optimizing your program from a hardware point of view.
For example, any time you follow a pointer around the heap you are paying a huge cost due to cache misses, possibly paging, etc., which all affect branching predictions. Most programmers (even C gurus) tend to look at the CPU from the functional standpoint rather than what happens behind the scenes. Sometimes reorganizing memory, for example by "flattening" or manually allocating memory to fit on the same page can obtain ENORMOUS speedups. I managed to get 2X speedups on graph traversals just by flattening my structures.
These are not things that your compiler will do for you since they are based on your high-level understanding of the program.
As lobrien said, you haven't given us any information to tell you if hand-optimized ASM code would help... which means the answer is probably, "not yet."
Have you run your code with a profiler?
Do you know if the code is slow because of memory constraints or processor constraints?
Are you using all your available cores?
Have you identified any algorithms you're using that aren't O(1)? Can you get them to O(1)? If not, why not?
If you've done all that, how much control do you have over the environment your program is running in? (presumably a lot if you're thinking of switching operating systems) Can you disable other processes, give your process highest priority, etc? What about just finding a machine with a faster processor, more cores, or more memory (depending on what you're constrained on)
And on and on.
If you've already done all that and more, it's certainly possible you'll get to a point where you think, "I wonder if these few lines of code right here could be optimized better than the assembly that I'm looking at in the debugger right now?" And at that point you can ask specifically.
Good luck! You're solving a problem that's fun to solve.
Sometimes you can find libraries that have optimized implementations of the algorithms you care about. Often times they will have done the multithreading for you.
For example switching from LINPACK to LAPACK got us a 10x speed increase in LU factorization/solve with a good BLAS library.
First, figure out if you can change the algorithm, as S.Lott suggested.
Assuming the algorithm choice is correct, you might look a the memory access patterns, if you have a lot of data you are processing. For a lot of number crunching applications these days, they're bound by the memory bus, not by the ALU(s). I recently optimized some code that was of the form:
// Assume N is a big number
for (int i=0; i<N; i++) {
myArray[i] = dosomething(i);
}
for (int i=0; i<N; i++) {
myArray[i] = somethingElse(myArray[i]);
}
...
and converted it to look like:
for (int i=0; i<N; i++) {
double tmp = dosomething(i);
tmp = somethingElse(tmp);
...
myArray[i] = tmp;
}
...
In this particular case, this yielded about a 2x speedup.
As Oregonghost already hinted - The VectorC compiler might help. It does not really parallelize the code though, instead you can use it to leverage on extended command sets like mmx or sse. I used it for the most time-critical parts in a software rendering engine and it resulted in a speedup of about 150%-200% on most processors.
For an alternative approach, you could look into Distributed Computing which sounds like it could suit your needs.
If you're sticking with C++ on the intel compiler, take a look at the compiler intrinsics (full reference here). I know that VC++ has similar functionality, and I'm sure you can do the same thing with gcc. These can let you take full advantage of the parallelism built into your CPU. You can use the MMX, SSE and SSE2 instructions to improve performance to a degree. Like others have said, you're probably best looking at the algorithm first.
I suggest you rethink your algorithm, or maybe even better, your approach. On the other hand maybe what you are trying to calculate just takes a lot of computing time. Have you considered to make it distributed so it can run in a cluster of some sort? If you want to focus on pure code optimization by introducing Assembler for your inner loops then often that can be very beneficial (if you know what you're doing).
For modern processors, learning ASM will take you a long time. Further, with all the different versions of SSE around, your code will end up very processor dependant.
I do quite a lot of CPU-bound work, and have found that the difference between intel's C++ compiler and g++ usually isn't that big (at most 15% or so), and there is no measurable difference between Mac OS X, Windows and Linux.
You are going to have to optimise your code and improve your algorithm by hand. There is no "magic fairy dust" which can make existing code that much faster I'm afraid.
If you haven't yet, and you care about performance, you MUST run your code through a good profiler (personally, I like kcachegrind & valgrind on Linux, or Shark on Mac OS X. I don't know what is good for windows I'm afraid).
Based on my past experience, there is a very good chance you'll find some method is taking 95% of your CPU time, and some simple change or addition of caching will make a massive improvement to your performance. On a similar note, if some method is only taking 1% of your CPU time, no amount of optimising is going to gain you anything.
The 2 obvious answers to "CPU-bound" are:
1. Use more CPU (core)s
2. Use something else.
Using 2 threads instead of 1 will cut the time spent by up to 50%. In comparision, C++ to ASM rarely gives you 5% (and for novice ASM programmers, it's often -5%!). Some problems scale well, and may benefit from 8 or 16 cores. That kind of hardware is still pretty mainstream, so see if your problems fall in that category.
The other solution is to throw more specialized hardware at the task. This could be the vector unit of your CPU - considering Windows=x86/x64, that's going to be a flavor of SSE. Another kind of vector hardware is the modern GPU. The GPU also has its own memory bus, which is quite speedy.
First get the lead out. Then if it's as fast as it can possibly be without going to ASM, so be it. But thinking you have to go to ASM assumes you know what's making it slow, and I'll bet a donut that you're guessing.
If you feel you have optimized your code to a point there is no improvement, increase your CPU's. This can be done on different platforms. One I develop with is Appistry. A few links:
http://www.appistry.com/resource-library/index.html
and you can download the product free from here:
http://www.appistry.com/developers/
I work for Appistry and we have done many installations for tasks that were cpu bound by spreading work out over 10's or 100's of machines.
Hope this helps,
-Brett
Probable small help:
Optimization of 64-bit programs
AMD64 (EM64T) architecture
Debugging and optimization of multi-thread OpenMP-programs
Introduction into the problems of developing parallel programs
Development of Resource-intensive Applications in Visual C++
Linux
Switching to Linux can help, if you strip it down to only the parts you actually need.
CrowdProcess has about 2000 workers you can use to compute your algorithm. The API is extremely simple and we've been observing speedups close to the number of workers. Also you can write Javascript which should make you more productive than C++ or ASM.
So if you're in between C++ or ASM, I'd say you should first use all your CPU cores, then if it's not enough, CrowdProcess should be an interesting platform.
Disclaimer: I built CrowdProcess.
It is hard to produce ASM code that is faster than naive C or C++ code. In most cases if you do this job really well, you probably gain not much than few percents and getting like 10% speedup is considered great success but in most cases it is just impossible.
Compilers are capable of understanding how to compile efficiently. You should profile in order to figure out where to optimize.
Related
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
We're running a project that is highly computationally intensive, and right now we're letting the compiler do SSE optimizations. However, we're not sure we are getting the best performance for the code.
My question is, I understand, broad, but I don't find many suggestions about this: is writing manual SIMD code affordable, or in other terms, worth the effort?
Affordability means, here, a rough estimate of cost benefit, as for instance speedup / development_time, or any other measure that is reasonable in the context of project development.
To lessen the scope:
we profiled the code and we know the computation is the most heavy part
we have a C++ code that can easily make use of Boost.SIMD and similar libraries
affordability should not take care of code readability, we assume we're confident with SSE/AVX
the code is currently multithreaded (OpenMP)
our compiler is Intel's icc
Quite agree with Paul R, and just wanted to add that IMO in most cases intrinsics/asm optimizations are not worth the effort. In most cases those optimizations are marketing driven, i.e. we juicing the performance on a specific platform just to get (in most cases) a bit better numbers.
Nowadays it is almost impossible to get an order of magnitude of performance just rewriting your C/C++ code in asm. In most cases it is a matter of memory/cache access and methods/algorithms (i.e. parallelization) as Paul has noted.
The first thing you should try is to analyze your code with hardware performance counters (with free "perf" tool or Intel VTune) and understand the real bottlenecks. For example, memory access during the computation is the most common bottleneck in fact, not computation itself. So manual vectorization of such a code does not help, since the CPU stalls on memory anyway.
Such analysis is always worth the effort, since you better understand your code and CPU architecture.
The next thing you should try is to optimize your code. There are a variety of methods: optimize data structures, cache-friendly memory access patterns, better algorithms etc. For example, an order you declare fields in a structure might have a significant performance impact in some cases, because you structure might have holes and occupy two lines of cache instead of one. Another example is false sharing, when you ping-pong same cache lines between CPUs and simple cache alignment might give you an order of magnitude better performance.
Those optimization are always worth the effort, since they will impact your low-level code as well.
Then you should try to help your compiler. For example, by default compiler vectorize/unroll an inner loop, but it might be better to vectorize/unroll an outer loop. You do this with #pragma hints and sometimes it worth the effort.
The last thing you should try is to rewrite already highly optimized C/C++ code using intrinsics/asm. There might be some reasons for that, such as better instructions interleave (so your CPU pipelines are always busy) or use of special CPU instructions (i.e. for encryption). The actual number of reasonable intrinsics/asm usages are negligible, and they are always platform-dependent.
So, with no further details about your code/algorithms it is hard to guess if it makes sense in your case, but I would bet for no. Better spend the effort on analysis and platform-independent optimizations. Better have a look on OpenCL or similar frameworks if you really need that computation power. At last, invest in better CPUs: the effect of such an investment is predictable and instantaneous.
You need to do a cost-benefit analysis, e.g. if you can invest say X months of effort at a cost of $Y getting your code to run N times faster, and that translates to either a reduction in hardware costs (e.g. fewer CPUs in an HPC context), or reduced run-time which in some way equates to a cost benefit, then it's a simple exercise in arithmetic. (Note however that there are some intangible long-term costs, e.g. SIMD-optimized code tends to be more complex, more error-prone, less portable, and harder to maintain.)
If the performance-critical part of your code (the hot 10%) is vectorizable then you may be able to get an order of magnitude speed-up (less for double precision float, more for narrower data types such as 16 bit fixed point).
Note that this kind of optimisation is not always just a simple matter of converting scalar code to SIMD code - you may have to think about your data structures and your cache/memory access pattern.
I'm looking to optimize C++ code (mainly some for loops) using the NEON capability of computing 4 or 8 array elements at a time. Is there some kind of library or set of functions that can be used in C++ environment?
I use Eclipse IDE in Linux Gentoo to write C++ code.
UPDATE
After reading the answers I did some tests with the software. I compiled my project with the following flags:
-O3 -mcpu=cortex-a9 -ftree-vectorize -mfloat-abi=hard -mfpu=neon
Keep in mind that this project includes extensive libraries such as open frameworks, OpenCV, and OpenNI, and everything was compiled with these flags.
To compile for the ARM board we use a Linaro toolchain cross-compiler, and GCC's version is 4.8.3.
Would you expect this to improve the performance of the project? Because we experienced no changes at all, which is rather weird considering all the answers I read here.
Another question: all the for cycles have an apparent number of iterations, but many of them iterate through custom data types (structs or classes). Can GCC optimize these cycles even though they iterate through custom data types?
EDIT:
From your update, you may misunderstand what the NEON processor does. It is an SIMD (Single Instruction, Multiple Data) vector processor. That means that it is very good at performing an instruction (say "multiply by 4") to several pieces of data at the same time. It also loves to do things like "add all these numbers together" or "add each element of these two lists of numbers to create a third list of numbers." So if you problem looks like those things the NEON processor is going to be huge help.
To get that benefit, you must put your data in very specific formats so that the vector processor can load multiple data simultaneously, process it in parallel, and then write it back out simultaneously. You need to organize things such that the math avoids most conditionals (because looking at the results too soon means a roundtrip to the NEON). Vector programming is a different way of thinking about your program. It's all about pipeline management.
Now, for many very common kinds of problems, the compiler automatically can work all of this out. But it's still about working with numbers, and numbers in particular formats. For example, you almost always need to get all of your numbers into a contiguous block in memory. If you're dealing with fields inside of structs and classes, the NEON can't really help you. It's not a general-purpose "do stuff in parallel" engine. It's an SIMD processor for doing parallel math.
For very high-performance systems, data format is everything. You don't take arbitrary data formats (structs, classes, etc.) and try to make them fast. You figure out the data format that will let you do the most parallel work, and you write your code around that. You make your data contiguous. You avoid memory allocation at all costs. But this isn't really something a simple StackOverflow question can address. High-performance programming is a whole skill set and a different way of thinking about things. It isn't something you get by finding the right compiler flag. As you've found, the defaults are pretty good already.
The real question you should be asking is whether you could reorganize your data so that you can use more of OpenCV. OpenCV already has lots of optimized parallel operations that will almost certainly make good use of the NEON. As much as possible, you want to keep your data in the format that OpenCV works in. That's likely where you're going to get your biggest improvements.
My experience is that it is certainly possible to hand-write NEON assembly that will beat clang and gcc (at least from a couple of years ago, though the compiler certainly continues to improve). Having excellent ARM optimization is not the same as NEON optimization. As #Mats notes, the compiler will generally do an excellent job at obvious cases, but does not always handle every case ideally, and it is certainly possible for even a lightly skilled developer to sometimes beat it, sometimes dramatically. (#wallyk is also correct that hand-tuning assembly is best saved for last; but it can still be very powerful.)
That said, given your statement "Assembly, for which I have absolutely no background, and can't possibly afford to learn at this point," then no, you should not even bother. Without first at least understanding the basics (and a few non-basics) of assembly (and specifically vectorized NEON assembly), there is no point in second-guessing the compiler. Step one of beating the compiler is knowing the target.
If you are willing to learn the target, my favorite introduction is Whirlwind Tour of ARM Assembly. That, plus some other references (below), were enough to let me beat the compiler by 2-3x in my particular problems. On the other hand, they were insufficient enough that when I showed my code to an experienced NEON developer, he looked at it for about three seconds and said "you have a halt right there." Really good assembly is hard, but half-decent assembly can still be better than optimized C++. (Again, every year this gets less true as the compiler writers get better, but it can still be true.)
ARM Assembly language
A few things iOS developers ought to know about the ARM architecture (iPhone-focused, but the principles are the same for all uses.)
ARM NEON support in the ARM compiler
Coding for NEON
One side note, my experience with NEON intrinsics is that they are seldom worth the trouble. If you're going to beat the compiler, you're going to need to actually write full assembly. Most of the time, whatever intrinsic you would have used, the compiler already knew about. Where you get your power is more often in restructuring your loops to best manage your pipeline (and intrinsics don't help there). It's possible this has improved over the last couple of years, but I would expect the improving vector optimizer to outpace the value of intrinsics more than the other way around.
Here's a "mee too" with some blog posts from ARM. FIRST, start with the following to get the background information, including 32-bit ARM (ARMV7 and below), Aarch32 (ARMv8 32-bit ARM) and Aarch64 (ARMv8 64-bit ARM):
ARM NEON programming quick reference
Second, checkout the Coding for NEON series. Its a nice introduction with pictures so things like interleaved loads make sense with a glance.
ARM NEON programming quick reference
Coding for NEON - Part 1: Load and Stores
Coding for NEON - Part 2: Dealing With Leftovers
Coding for NEON - Part 3: Matrix Multiplication
Coding for NEON - Part 4: Shifting Left and Right
Coding for NEON - Part 5: Rearranging Vectors
I also went on Amazon looking for some books on ARM assembly with a treatment of NEON. I could only find two, and neither book's treatment of NEON were impressive. They reduced to a single chapter with the obligatory Matrix example.
I believe ARM Intrinsics are a very good idea. The instrinsics allow you to write code for GCC, Clang and Visual C/C++ compilers. We have one code base that works for ARM Linux distros (like Linaro), some iOS devices (using -arch armv7) and Microsoft gadgets (like Windows Phone and Windows Store Apps).
If you have access to a reasonably modern GCC (GCC 4.8 and upwards) I would recommend giving intrinsics a go. The NEON intrinsics are a set of functions that the compiler knows about, which can be used from C or C++ programs to generate NEON/Advanced SIMD instructions. To gain access to them in your program, it is necessary to #include <arm_neon.h>. The verbose documentation of all available intrinsics is available at http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf , but you may find more user-friendly tutorials elsewhere online.
Advice on this site is generally against the NEON intrinsics, and certainly there are GCC versions which have done a poor job of implementing them, but recent versions do reasonably well (and if you spot bad code generation, please do raise it as a bug - https://gcc.gnu.org/bugzilla/ )
They are an easy way to program to the NEON/Advanced SIMD instruction set, and the performance you can achieve is often rather good. They are also "portable", in that when you move to an AArch64 system, a superset of the intrinsics you can use from ARMv7-A are available. They are also portable across implementations of the ARM architecture, which can vary in their performance characteristics, but which the compiler will model for performance tuning.
The principle benefit of the NEON intrinsics over hand-written assembly, is that the compiler can understand them when performing its various optimization passes. By contrast hand-written assembler is an opaque block to GCC, and will not be optimized. On the other hand, expert assembler programmers can often beat the compiler's register allocation policies, particularly when using the instructions which write to or read from to multiple consecutive registers.
In addition to Wally's answer - and probably should be a comment, but I couldn't make it short enough: ARM has a team of compiler developers whose entire role is to improve the parts of GCC and Clang/llvm that does code generation for ARM CPUs, including features that provides "auto-vectorization" - I have not looked deeply into it, but from my experience on x86 code generation, I'd expect for anything that is relatively easy to vectorize, the compiler should do a deecent job. Some code is hard for the compiler to understand when it can vectorize or not, and may need some "encouragement" - such as unrolling loops or marking conditions as "likely" or "unlikely", etc.
Disclaimer: I work for ARM, but have very little to do with the compilers or even CPUs, as I work for the group that does graphics (where I have some involvement with compilers for the GPUs in the OpenCL part of the GPU driver).
Edit:
Performance, and use of various instruction extensions is really depending on EXACTLY what the code is doing. I'd expect that libraries such as OpenCV is already doing a fair amount of clever stuff in their code (such as both handwritten assembler as compiler intrinsics and generally code that is designed to allow the compiler to already do a good job), so it may not really give you much improvement. I'm not a computer vision expert, so I can't really comment on exactly how much such work is done on OpenCV, but I'd certainly expect the "hottest" points of the code to have been fairly well optimised already.
Also, profile your application. Don't just fiddle with optimisation flags, measure it's performance and use a profiling tool (e.g. the Linux "perf" tool) to measure WHERE your code is spending time. Then see what can be done to that particular code. Is it possible to write a more parallel version of it? Can the compiler help, do you need to write assembler? Is there a different algorithm that does the same thing but in a better way, etc, etc...
Although tweaking compiler options CAN help, and often does, it can give tens of percent, where a change in algorithm can often lead to 10 times or 100 times faster code - assuming of course, your algorithm can be improved!
Understanding what part of your application is taking the time, however, is KEY. It's no point in changing things to make the code that takes 5% of the time 10% faster, when a change somewhere else could make a piece of code that is 30 or 60% of the total time 20% faster. Or optimise some math routine, when 80% of the time is spent on reading a file, where making the buffer twice the size would make it twice as fast...
Although a long time has passed since I submitted this question, I realize that it gathers some interest and I decided to tell what I ended up doing regarding this.
My main goal was to optimize a for-loop which was the bottleneck of the project. So, since I don't know anything about Assembly I decided to give NEON intrinsics a go. I ended up having a 40-50% gain in performance (in this loop alone), and a significant overall improvement in performance of the whole project.
The code does some math to transform a bunch of raw distance data into distance to a plane in millimetres. I use some constants (like _constant05, _fXtoZ) that are not defined here, but they are just constant values defined elsewhere.
As you can see, I'm doing the math for 4 elements at a time, talk about real parallelization :)
unsigned short* frameData = frame.ptr<unsigned short>(_depthLimits.y, _depthLimits.x);
unsigned short step = _runWidth - _actWidth; //because a ROI being processed, not the whole image
cv::Mat distToPlaneMat = cv::Mat::zeros(_runHeight, _runWidth, CV_32F);
float* fltPtr = distToPlaneMat.ptr<float>(_depthLimits.y, _depthLimits.x); //A pointer to the start of the data
for(unsigned short y = _depthLimits.y; y < _depthLimits.y + _depthLimits.height; y++)
{
for (unsigned short x = _depthLimits.x; x < _depthLimits.x + _depthLimits.width - 1; x +=4)
{
float32x4_t projX = {(float)x, (float)(x + 1), (float)(x + 2), (float)(x + 3)};
float32x4_t projY = {(float)y, (float)y, (float)y, (float)y};
framePixels = vld1_u16(frameData);
float32x4_t floatFramePixels = {(float)framePixels[0], (float)framePixels[1], (float)framePixels[2], (float)framePixels[3]};
float32x4_t fNormalizedY = vmlsq_f32(_constant05, projY, _yResInv);
float32x4_t auxfNormalizedX = vmulq_f32(projX, _xResInv);
float32x4_t fNormalizedX = vsubq_f32(auxfNormalizedX, _constant05);
float32x4_t realWorldX = vmulq_f32(fNormalizedX, floatFramePixels);
realWorldX = vmulq_f32(realWorldX, _fXtoZ);
float32x4_t realWorldY = vmulq_f32(fNormalizedY, floatFramePixels);
realWorldY = vmulq_f32(realWorldY, _fYtoZ);
float32x4_t realWorldZ = floatFramePixels;
realWorldX = vsubq_f32(realWorldX, _tlVecX);
realWorldY = vsubq_f32(realWorldY, _tlVecY);
realWorldZ = vsubq_f32(realWorldZ, _tlVecZ);
float32x4_t distAuxX, distAuxY, distAuxZ;
distAuxX = vmulq_f32(realWorldX, _xPlane);
distAuxY = vmulq_f32(realWorldY, _yPlane);
distAuxZ = vmulq_f32(realWorldZ, _zPlane);
float32x4_t distToPlane = vaddq_f32(distAuxX, distAuxY);
distToPlane = vaddq_f32(distToPlane, distAuxZ);
*fltPtr = (float) distToPlane[0];
*(fltPtr + 1) = (float) distToPlane[1];
*(fltPtr + 2) = (float) distToPlane[2];
*(fltPtr + 3) = (float) distToPlane[3];
frameData += 4;
fltPtr += 4;
}
frameData += step;
fltPtr += step;
}
If you don't want to mess with assembly code at all, then tweak the compiler flags to maximally optimize for speed. gcc given the proper ARM target should do this provided the number of loop iterations is apparent.
To check gcc code generation, request assembly output by adding the -S flag.
If after several tries (of reading the gcc documentation and tweaking flags) you still can't get it to produce the code you want, then take the assembly output and edit it to your satisfaction.
Beware of premature optimization. The proper development order is to get the code functional, then see if it needs optimization. Only when the code is stable does it makes sense to do so.
Play with some minimal assembly examples on QEMU to understand the instructions
The following setup does not have many examples yet, but it serves as a neat playground:
v7 examples
v8 examples
setup usage
The examples run on QEMU user mode, which dispenses extra hardware, and the GDB is working just fine.
The asserts are done through the C standard library.
You should be a able to easily extend that setup with new instructions as you learn them.
ARM intrinsincs in particular were asked at: Is there a good reference for ARM Neon intrinsics?
I'm planning on writing a game with C++, and it will be extremely CPU-intensive (pathfinding,genetic algorithms, neural networks, ...)
So I've been thinking about how to tackle this situation best so that it would run smoothly.
(let this top section of this question be side information, I don't want it to restrict the main question, but it would be nice if you could give me side notes as well)
Is it worth it to learn how to work with ASM, so I can make ASM calls in C++,
can it give me a significant/notable performance advantage?
In what situations should I use it?
Almost never:
You only want to be using it once you've profiled your C++ code and have identified a particular section as a bottleneck.
And even then, you only want to do it once you've exhausted all C++ optimization options.
And even then, you only want to be using ASM for tight, inner loops.
And even then, it takes quite a lot of effort and skill to beat a C++ compiler on a modern platform.
If your not an experienced assembly programmer, I doubt you will be able to optimize assembly code better than your compiler.
Also note that assembly is not portable. If you decide to go this way, you will have to write different assembly for all the architectures you decide to support.
Short answer: it depends, most likely you won't need it.
Don't start optimizing prematurely. Write code that is also easy to read and to modify. Separate logical sections into modules. Write something that is easy to extend.
Do some profiling.
You can't tell where your bottlenecks are unless you profile your code. 99% of the time you won't get that much performance gain by writing asm. There's a high chance you might even worsen your performance. Optimizers nowadays are very good at what they do. If you do have a bottleneck, it will most probably be because of some poorly chosen algorithm or at least something that can be remedied at a high-level.
My suggestion is, even if you do learn asm, which is a good thing, don't do it just so you can optimize.
Profile profile profile....
A legitimate use case for going low-level (although sometimes a compiler can infer it for you) is to make use of SIMD instructions such as SSE. I would assume that at least some of the algorithms you mention will benefit from parallel processing.
However, you don't need to write actual assembly, instead you can simply use intrinsic functions. See, e.g. this.
Don't get ahead of yourself.
I've posted a sourceforge project showing how a simulation program was massively speeded up (over 700x).
This was not done by assuming in advance what needed to be made fast.
It was done by "profiling", which I put in quotes because the method I use is not to employ a profiler.
Rather I rely on random pausing, a method known and used to good effect by some programmers.
It proceeds through a series of iterations.
In each iteration a large source of time-consumption is identified and fixed, resulting in a certain speedup ratio.
As you proceed through multiple iterations, these speedup ratios multiply together (like compound interest).
That's how you get major speedup.
If, and only if, you get to a point where some code is taking a large fraction of time, and it doesn't contain any function calls, and you think you can write assembly code better than the compiler does, then go for it.
P.S. If you're wondering, the difference between using a profiler and random pausing is that profilers look for "bottlenecks", on the assumption that those are localized things. They look for routines or lines of code that are responsible for a large percent of overall time.
What they miss is problems that are diffuse.
For example, you could have 100 routines, each taking 1% of time.
That is, no bottlenecks.
However, there could be an activity being done within many or all of those routines, accounting for 1/3 of the time, that could be done better or not at all.
Random pausing will see that activity with a small number of samples, because you don't summarize, you examine the samples.
In other words, if you took 9 samples, on average you would notice the activity on 3 of them.
That tells you it's big.
So you can fix it and get your 3/2 speedup ratio.
"To understand recursion, you must first understand recursion." That quote comes to mind when I consider my response to your question, which is "until you understand when to use assembly, you should never use assembly." After you have completely implemented your soution, extensively profiled its performance and determined precise bottlenecks, and experimented with several alternative solutions, then you can begin to consider using assembly. If you code a single line of assembly before you have a working and extensively profiled program, you have made a mistake.
If you need to ask than you don't need it.
I'm coding a game and it's very important to make speed calculations in render-code.
How can I get the speed of some operations?
For example, how to know whether multiplying is faster then sqrt, etc? Or I have to make tests and calculate the time.
Programming language is c++, thanks.
This kind of micro-optimisation is just the thing to waste your time for minimal gain.
Use a profiler and start by improving your own algorithms and code wherever the profiler tells you that the game is spending most of its time.
Note that in some cases you may have to overhaul the whole software - or a major part of it - in order to implement a more efficient design. In that case the profiler results can be misleading to the inexperienced. E.g. optimising a complex computation may procure minimal gain, when compared to caching its result once and for all.
See also this somewhat related thread.
Determining the speed of a particular operation is often known as profiling.The best solution for profiling an operation is to use a profiler. Visual Studio has a good profiler. Linux has gprof . If your compiler doesn't have a profiler, it might be worthwhile purchasing a compiler that does if you will often be profiling your code.
If you have to get by without using a professional profiler, then you can usually get by embedding your own into your program
check this out for codes of some profilers.
Your best bet is to use a tool like AQTime and do a profiling run. Then you will know where to spend your time optimizing. But doing it prematurely or based on guess work likely wont get you much, and just complicate your code or break something. The best thing is to take any floating point calculations, especially sin, cos and the like, and sqrt out of any loops if you can.
I once had something like this:
for i = 0 to nc
for j = 0 to nc
aij = sqrt(a[i]*b[j])
which calculates nc*nc square roots. But since sqrt(a*b) is equal to sqrt(a)*sqrt(b), you can precompute the square roots for all the a's and b's beforehand so the loop then just becomes what is shown below. So instead of nc*nc square roots, you have 2*nc square roots.
for i = 0 to nc
for j = 0 to nc
aij = asqrt[i]*bsqrt[j]
The question you are asking is highly dependent on the platform you are developing for at the hardware level. Not only will there be variation between different chipsets (Intel / AMD) but there will also be variations on the platform (I suspect that the iPhone doesn't have as many instructions for doing certain things quicker).
You state in your question that you are talking about 'render code'. The rules change massively if you're talking about code that will actually run on the GPU (shader code) instead of the CPU.
As #thkala states, I really wouldn't worry about this before you start. I've found it not only easier, but quicker to code it in a way that works first, and then (only if it needs improving) rewriting the bits that are slow when you profile your code. Better algorithms will usually provide better performance than trying to make use of only specific functions.
In the game(s) that we're developing for the iPhone, the only thing that I've kept in mind are that big math operations (sqrt) are slow (not basic maths) and that for loops that run every frame can quickly eat up CPU. Keeping that in mind, we've not had to optimise hardly any code - as it's all running at 60fps anyway - so I'm glad I didn't worry about it at the start.
I have a very large program which I have been compiling under visual studio (v6 then migrated to 2008). I need the executable to run as fast as possible. The program spends most of its time processing integers of various sizes and does very little IO.
Obviously I will select maximum optimization, but it seems that there are a variety of things that can be done which don't come under the heading of optimization which do still affect the speed of the executable. For example selecting the __fastcall calling convention or setting structure member alignment to a large number.
So my question is: Are there other compiler/linker options I should be using to make the program faster which are not controlled from the "optimization" page of the "properties" dialog.
EDIT: I already make extensive use of profilers.
Another optimization option to consider is optimizing for size. Sometimes size-optimized code can run faster than speed-optimized code due to better cache locality.
Also, beyond optimization operations, run the code under a profiler and see where the bottlenecks are. Time spent with a good profiler can reap major dividends in performance (especially it if gives feedback on the cache-friendliness of your code).
And ultimately, you'll probably never know what "as fast as possible" is. You'll eventually need to settle for "this is fast enough for our purposes".
Profile-guided optimization can result in a large speedup. My application runs about 30% faster with a PGO build than a normal optimized build. Basically, you run your application once and let Visual Studio profile it, and then it is built again with optimization based on the data collected.
1) Reduce aliasing by using __restrict.
2) Help the compiler in common subexpression elimination / dead code elimination by using __pure.
3) An introduction to SSE/SIMD can be found here and here. The internet isn't exactly overflowing with articles about the topic, but there's enough. For a reference list of intrinsics, you can search MSDN for 'compiler intrinsics'.
4) For 'macro parallelization', you can try OpenMP. It's a compiler standard for easy task parallelization -- essentially, you tell the compiler using a handful of #pragmas that certain sections of the code are reentrant, and the compiler creates the threads for you automagically.
5) I second interjay's point that PGO can be pretty helpful. And unlike #3 and #4, it's almost effortless to add in.
You're asking which compiler options can help you speed up your program, but here's some general optimisation tips:
1) Ensure your algorithms are appropriate for the job. No amount of fiddling with compiler options will help you if you write an O(shit squared) algorithm.
2) There's no hard and fast rules for compiler options. Sometimes optimise for speed, sometimes optimise for size, and make sure you time the differences!
3) Understand the platform you are working on. Understand how the caches for that CPU operate, and write code that specifically takes advantage of the hardware. Make sure you're not following pointers everywhere to get access to data which will thrash the cache. Understand the SIMD operations available to you and use the intrinsics rather than writing assembly. Only write assembly if the compiler is definitely not generating the right code (i.e. writing to uncached memory in bad ways). Make sure you use __restrict on pointers that will not alias. Some platforms prefer you to pass vector variables by value rather than by reference as they can sit in registers - I could go on with this but this should be enough to point you in the right direction!
Hope this helps,
-Tom
Forget micro-optimization such as what you are describing. Run your application through a profiler (there is one included in Visual Studio, at least in some editions). The profiler will tell you where your application is spending its time.
Micro-optimization will rarely give you more than a few percentage points increase in performance. To get a really big boost, you need to identify areas in your code where inefficient algorithms and/or data structures are being used. Focus on those, for example by changing algorithms. The profiler will help identify these problem areas.
Check which /precision mode you are using. Each one generates quite different code and you need to choose based on what accuracy is required in your app. Our code needs precision (geometry, graphics code) but we still use /fp:fast (C/C++ -> Code generation options).
Also make sure you have /arch:SSE2, assuming your deployment covers processors that all support SSE2. This will result is quite a big difference in performance, as compile will use very few cycles. Details are nicely covered in the blog SomeAssemblyRequired
Since you are already profiling, I would suggest loop unrolling if it is not happening. I have seen VS2008 not doing it more frequently (templates, references etc..)
Use __forceinline in hotspots if applicable.
Change hotspots of your code to use SSE2 etc as your app seems to be compute intense.
You should always address your algorithm and optimise that before relying on compiler optimisations to get you significant improvements in most cases.
Also you can throw hardware at the problem. Your PC may already have the necessary hardware lying around mostly unused: the GPU! One way of improving performance of some types of computationally expensive processing is to execute it on the GPU. This is hardware specific but NVIDIA provide an API for exactly that: CUDA. Using the GPU is likely to get you far greater improvement than using the CPU.
I agree with what everyone has said about profiling. However you mention "integers of various sizes". If you are doing much arithmetic with mismatched integers a lot of time can be wasted in changing sizes, shorts to ints for example, when the expressions are evaluated.
I'll throw in one more thing too. Probably the most significant optimisation is in choosing and implementing the best algorithm.
You have three ways to speed up your application:
Better algorithm - you've not specified the algorithm or the data types (is there an upper limit to integer size?) or what output you want.
Macro parallelisation - split the task into chunks and give each chunk to a separate CPU, so, on a two core cpu divide the integer set into two sets and give half to each cpu. This depends on the algorithm you're using - not all algorithms can be processed like this.
Micro parallelisation - this is like the above but uses SIMD. You can combine this with point 2 as well.
You say the program is very large. That tells me it probably has many classes in a hierarchy.
My experience with that kind of program is that, while you are probably assuming that the basic structure is just about right, and to get better speed you need to worry about low-level optimization, chances are very good that there are large opportunities for optimization that are not of the low-level kind.
Unless the program has already been tuned aggressively, there may be room for massive speedup in the form of mid-stack operations that can be done differently. These are usually very innocent-looking and would never grab your attention. They are not cases of "improve the algorithm". They are usually cases of "good design" that just happen to be on the critical path.
Unfortunately, you cannot rely on profilers to find these things, because they are not designed to look for them.
This is an example of what I'm talking about.