Bazel test with Boost.UTF - c++

For many reasons, I prefer Boost.UTF to gtest (or other alternatives).
I recently decided to use Bazel as my build system, and since I'm essentially at tutorial level, I looked online for a way to use Boost in Bazel, but none of them seems to handle for Boost.UTF, and since this library is not header only (like the ones handled in https://github.com/nelhage/rules_boost), I am not sure how to proceed.
How can I add Boost.UTF to Bazel, so I can use it for my test modules?
Any hint is welcome, thanks.
P.S.
The only way to work around the issue I see is to try to install boost on the machine I build with and try to have Bazel use that. I guess that is how it deals with the standard libs anyway.
EDIT:
This is the code of my unit test.
btest.cpp
#define BOOST_TEST_MODULE CompactStateTest
#include <boost/test/included/unit_test.hpp>
BOOST_AUTO_TEST_SUITE(Suite1)
BOOST_AUTO_TEST_CASE(Test1)
{
int x(0);
BOOST_CHECK_EQUAL(x, 0);
}
BOOST_AUTO_TEST_SUITE_END()
BUILD (the "Makefile" for bazel)
cc_test(
name = "btest",
srcs = ["btest.cpp",],
deps = ["#boost//:test",],
)

From bazel's (and cc_test's) point of view, a test is a binary that returns non-zero exit code when it fails, possibly (not obligatory) writing an xml file specified by XML_OUTPUT_FILE env var set at the test execution time with the xml test results.
So your goal is to write cc_test rule with all the deps set, so bazel can compile and run it. For that you will need to add a dependency to cc_library for Boost.UTF. This will be a standard bazel cc_library with hdrs and srcs (and/or deps).
I'm anticipating your next question on how to depend files installed on your local system, for that you will find local_repository (and it's new_ variant) useful.

Related

Can I manually use CMake's cpp file dependency-scanner in my cmake code?

I am trying to add a custom target with CMake that executes one command for each given .cpp file. The command should only be re-executed when the source file itself or one of the included source files changes. AFAIK to achieve this I need a list of all the included files and add them to the DEPENDS option of the add_custom_command() calls that belong to my custom target.
So is there a built-in way to get that list of included files?
I know about the IMPLICIT_DEPENDS option of the add_custom_command() function but it only works for Makefile generators. I would like to make this work for all generators.
Thank you for your time
Edit:
As requested I will post some cmake code to show what I want to achieve.
I want to add a custom target, that runs clang-tidy on all the given .cpp files. When incrementally building the custom target the clang-tidy commands should be re-run whenever a .cpp file or one of its directly or indirectly included header files is changed. Just like re-runs of the compiler are handled.
# ----------------------------------------------------------------------------------------
# mainTargetName The name of the target that shall be analyzed
# files A list of all the main targets .cpp files
#
function( addStaticAnalysisTarget mainTargetName files )
set(targetName runStaticAnalysis_${mainTargetName})
set(command "clang-tidy-4.0 -checks=* -p ${CMAKE_BINARY_DIR}")
foreach( file ${files} )
get_filename_component( baseName ${file} NAME_WE)
set(stampFile ${CMAKE_CURRENT_BINARY_DIR}/analyze_${baseName}.stamp )
set(fullFile ${CMAKE_CURRENT_SOURCE_DIR}/${file})
set(commandWithFile "${command} ${fullFile}")
separate_arguments_for_platform( commandList ${commandWithFile})
add_custom_command(
OUTPUT ${stampFile}
DEPENDS "${fullFile}"
IMPLICIT_DEPENDS CXX "${fullFile}"
COMMAND ${commandList}
COMMAND cmake -E touch "${stampFile}" # without creating a file as a touch-stone the command will always be re-run.
WORKING_DIRECTORY ${CPPCODEBASE_ROOT_DIR}
COMMENT "${commandWithFile}"
VERBATIM
)
list(APPEND stampFiles ${stampFile})
endforeach()
set_source_files_properties(${stampFiles} PROPERTIES GENERATED TRUE) # make the stamp files known to cmake as generated files.
add_custom_target(
${targetName}
DEPENDS ${stampFiles}
)
endfunction()
The problem with that is, that it does not seem to work. When I change included files clang-tidy is not re-run for the affected files.
I used the "Unix Makefile" generator for this example so it should work at least with make. Any hints why it doesn't?
My hopes where that I could achieve the desired behavior for all generators by somehow getting the file-dependencies at cmake time and then adding them to the ''''DEPENDS'''' list. But the dependency scanning must be done each time the command is run, so it can not be done at cmake time. This means that the scanning must be implemented by cmake which it currently is not.
A guy with similar problems:
https://gitlab.kitware.com/cmake/cmake/issues/16830
Edit 2:
I think the problem that the IMPLICIT_DEPENDS option was not working was because I did not use correct filenames. I changed that in the code snipped, but I have not yet tested if it works in the project.
I think the answer to my question is ...
No, you can not use cmakes dependency scanner in the cmake code.
That makes sense, because this problem can not be solved at cmake time, because the dependencies of a .cpp file may change without cmake being re-run.
The problem must be solved within cmake itself at make time. This is done when using the IMPLICIT_DEPENDS option.
Also, I tried to solve a Problem that I did not really have, because at this point I can only run clang-tidy on linux anyways. However, clang-tidy may become available on windows as well and then I may have the problem again.
To sum the comments up:
Tambre stated that CMake is not a compiler and therefore can not do that.
I think this is wrong. According to this article, CMake can parse cpp include dependencies because make has no such dependency searcher itself. That was news to me, but I mostly live on Windows so I am not that familiar with make. It could also be possible that in the meantime make was extended to do its own dependency searching. Also this explains why the IMPLICIT_DEPENDS option is only available for make.
Florian pointed out that it is not necessary to create an own custom target for running clang-tidy. Instead, one can use the CXX_CLANG_TIDY target property to run clang-tidy for each file after compiling it. This means however, that static-analysis can not be separated from the build which could lead to inacceptable buildtimes.
There is the cmake -E cmake_depends command line, that could be used to retrieve dependencies at cmake time. But as stated above, I erroneously thought that I needed the dependencies at cmake time, while I needed them at runtime.
The IMPLICIT_DEPENDS options did not work because I had an error in my cmake code.

CMake: compilation speed when including external makefile

I have a c++ cmake project. In this project I build (among other) one example, where I need to use another project, call it Foo. This Foo project does not offer a cmake build system. Instead, it has a pre-made Makefile.custom.in. In order to build an executable that uses Foo's features, one needs to copy this makefile in his project, and modify it (typically setting the SOURCES variable and a few compiler flags). Basically, this Makefile ends up having the sources for your executable and also all the source files for the Foo project. You will not end up using Foo as a library.
Now, this is a design I don't like, but for the sake of the question, let's say we stick with it.
To create my example inside my cmake build I added a custom target:
CONFIGURE_FILE( ${CMAKE_CURRENT_SOURCE_DIR}/Makefile.custom.in Makefile.custom)
ADD_CUSTOM_TARGET(my_target COMMAND $(MAKE) -f Makefile.custom
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
This works. I can specify some variables to cmake, which get resolved in the call to CONFIGURE_FILE, and I end up with a working Makefile.custom. Then, invoking make my_target from the build directory, I can build the executable. I can even add it to the all target (to save me the effort of typing make my_target) with
SET_TARGET_PROPERTIES(my_target PROPERTIES EXCLUDE_FROM_ALL FALSE)
Sweet. However, cmake appears to assign a single job to the custom target, slowing down my compilation time (the Foo source folder contains a couple dozens cpp files). On top of that, the make clean target does not forward to the custom makefile. I end up having to add another target:
ADD_CUSTOM_TARGET(really-clean COMMAND "$(MAKE)" clean
COMMAND "$(MAKE)" -f Makefile.custom clean
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
which, unlike my_target with all, I can't include in the clean target (can I?).
Now, I know that a cleaner solution would be to have the Foo project be built as an external project, and then link to it. However, I've been 'recommended' to use their Makefile.custom.in makefile, modifying the few lines I need (adding my sources, specifying compiler flags, and few other minor modifications). So, regardless of how neat and clean this design pattern is, my questions are:
is there a way to tell cmake that make should use more than 1 job when making the target my_target?
is there a cleaner way to include a pre-existing makefile in a cmake project? Note that I don't want (can't?) use Foo as a library (and link against it). I want (need?) to compile it together with my executable using a makefile not generated by cmake (well, cmake can help a bit, through CONFIGURE_FILE, by resolving some variables, but that's it).
Note: I am aware of ExternalProject (as suggested also in this answer), but I think it's not exactly what I need here (since it would build Foo and then use it as a library). Also, both my project and Foo are written exclusively in C++ (not sure this matter at all).
I hope the question makes sense (regardless of how ugly/annoying/unsatisfactory the resulting design would be).
Edit: I am using cmake version 3.5.2
First, since you define your own target, you can assign more cores to the build process for the target my_target, directly inside your CMakeLists.txt.
You can include the Cmake module ProcessCount to determine the number of cores in your machine and then use this for a parallel build.
include(ProcessorCount)
ProcessorCount(N)
if(NOT N EQUAL 0)
# given that cores != 0 you could modify
# math(EXPR N "${N}+1") # modify (increment/decrement) N at your will, in this case, just incrementing N by one
set(JOBS_IN_PARALLEL -j${N})
endif(NOT N EQUAL 0)
and when you define your custom target have something like the following:
ADD_CUSTOM_TARGET(my_target
COMMAND ${CMAKE_MAKE_PROGRAM} ${JOBS_IN_PARALLEL} -f Makefile.custom
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
by the way, I don't think there's the need for you to include also CMAKE_BUILD_TOOL among the COMMANDs in your target.
I believe that instead of modifying the lines as above, you could call
make -j8 my_target
and it might start 8 jobs (just an example) without modifying the CMakeLists.txt, but I cannot guarantee this works having defined the COMMAND the way you have, just try if that's enough.
For the second point, I cannot think right now of a "cleaner" way.

CMake + Boost test: ignore tests that fail to build

We have C++ project that has a relatively big number of test suites implemented in Boost/Test. All tests are kept out of main project's tree, every test suite is located in separate .cpp file. So, our current CMakeLists.txt for tests looks like this:
cmake_minimum_required(VERSION 2.6)
project(TEST_PROJECT)
find_package(Boost COMPONENTS unit_test_framework REQUIRED)
set(SPEC_SOURCES
main.cpp
spec_foo.cpp
spec_bar.cpp
...
)
set(MAIN_PATH some/path/to/our/main/tree)
set(MAIN_SOURCES
${MAIN_PATH}/foo.cpp
${MAIN_PATH}/bar.cpp
...
)
add_executable (test_project
${SPEC_SOURCES}
${MAIN_SOURCES}
)
target_link_libraries(test_project
${Boost_UNIT_TEST_FRAMEWORK_LIBRARY}
)
add_test(test_project test_project)
enable_testing()
It works ok, but the problem is SPEC_SOURCES and MAIN_SOURCES are fairly long lists and someone occasionally breaks something in either one of the files in main tree or spec sources. This, in turn, makes it impossible to build target executable and test the rest. One has to manually figure out what was broken, go into CMakeLists.txt and comment out parts that fail to compile.
So, the question: is there a way to ignore tests that fail to build automatically in CMake, compile, link and run the rest (ideally, marking up ones that failed as "failed to build")?
Remotely related question
Best practice using boost test and tests that should not compile suggests to try_compile command in CMake. However, in its bare form it justs executes new ad hoc generated CMakeList (which will fail just as the original one) and doesn't have any hooks to remove uncompilable units.
I think you have some issues in your testing approach.
One has to manually figure out what was broken, go into CMakeLists.txt and comment out parts that fail to compile.
If you have good coverage by unit-tests you should be able to identify and locate problems really quickly. Continuous integration (e.g. Jenkins, Buildbot, Travis (GitHub)) can be very helpful. They will run your tests even if some developers have not done so before committing.
Also you assume that a non-compiling class (and its test) would just have to be removed from the build. But what about transitive dependencies, where a non-compiling class breaks compilation of other classes or leads to linking errors. What about tests that break the build? All these things happen during development.
I suggest you separate your build into many libraries each having its own test runner. Put together what belongs together (cohesion). Try to minimize dependencies in your compilation also (dependency injection, interfaces, ...). This will allow to keep development going by having compiling libraries and test runners even if some libs do not compile (for some time).
I guess you could create one test executable per spec source, (using a foreach() loop) and then do something like:
make spec_foo && ./spec_foo
This will only try to build the binary matching the test you want to run
But if your build often fails it may be a sign of some bad design in your production code ...

How can I use Google Test with my project that builds via autotools?

It seems like there are a few answers that kind-of, sort-of make sense, but that I don't know how to carry out. And I haven't found a comprehensive answer.
The First Problem
Google Test should not be an installed library, it should be built with the project. (See the FAQ.) As far as I can tell, this means the Google Test libraries are a dependency of my unit tests, and should be built when I run "make check" within my project for the first time. This should build Google Test libraries in some directory. I don't know how to do this. It mentions some autotools script that's deprecated, and I'm not sure what they're talking about or how to point my build at it properly.
The Second Problem
Assuming the build is successful, how do I write a test that uses my locally-compiled version of Google Test to run tests? I assume that there are a bunch of Makefile.am commands I put in my tests directory. But what are they? And what's an example of a unit test that uses Google Test?
I have solved the problem to my satisfaction! I will move on entirely now. This is basically asking for a tutorial. There are a lot of decisions that must be made, hopefully logically, so that Google Test dovetails nicely into autotools. So I apologize in advance for the long answer, but all the details should be there.
The First Problem
In order to understand the answer, the question needs to be rephrased a little. We are compiling Google Test as a library which our test code will link to. The library will not be installed. The question we want to ask is
"How do we configure autotools to compile Google Test as a library
which our test code can link against?"
In order to do that, we need to download Google Test and place it into our project. I use Github, so I do that by adding a submodule in the root path of my project:
$ git submodule add git#github.com:google/googletest.git
$ git submodule init
$ git submodule update
This downloads googletest into my root of my project:
/:
Makefile.am
configure.ac
src/:
(files for my project)
tests/:
(test files)
googletest/:
googletest/:
include/:
(headers, etc., to be included)
gtest/:
gtest.h
m4/:
(directory for m4 scripts and things)
src/:
(source files for Google Test)
I need to compile per the instructions. I only want the Google Test library to be built upon running make check, so I will use check_LTLIBRARIES. I add the following to my tests Makefile.am in /tests:
check_LTLIBRARIES = libgtest.la
libgtest_la_SOURCES = ../googletest/googletest/src/gtest-all.cc
libgtest_la_CPPFLAGS = -I$(top_srcdir)/googletest/googletest/include -I$(top_srcdir)/googletest/googletest
libgtest_la_LDFLAGS = -pthread
This requires subdir-objects to be enabled in configure.ac. That is accomplished by adding it to the AM_INIT_AUTOMAKE line. I also need to include the makefile in AC_CONFIG_FILES. We also want to use libtool, because we are compiling library files (I'll explain why and how that works in a moment). To use libtool, we add AM_PROG_AR, LT_INIT. We want autoreconf to install m4 macros to /m4, and then we want automake to find them, so we need AC_CONFIG_MACRO_DIRS. My configure.ac has lines updated:
AM_INIT_AUTOMAKE([-Wall -Werror subdir-objects])
...
AM_PROG_AR
LT_INIT
AC_CONFIG_MACRO_DIRS([m4])
...
AC_CONFIG_FILES([Makefile
src/Makefile
tests/Makefile
])
I also need to include the subdirectory and a line pointing to the macros in the /m4 macros directory in my /Makefile.am:
ACLOCAL_AMFLAGS = -I m4
SUBDIRS = src tests
What has this done? Libtool has been enabled with AM_PROG_AR and LT_INIT. The check_LTLIBRARIES means we will use libtool to create what's called a convenience library called libgtest.la. With subdir-objects enabled, it will be built into the /tests directory, but not installed. This means that, whenever we want to update our tests, we don't have to recompile the Google Test library libgtest.la. This will save time when testing and help us iterate faster. Then, we will want to compile our unit tests against it later as we update them. The library will only be compiled upon running make check, saving time by not compiling it if all we want to do is make or make install.
The Second Problem
Now, the second problem needs to be refined: How do you (a) create a test (b) that is linked to the Google Test libraries and thus uses them? The questions are kind of intertwined, so we answer them at once.
Creating a test is just a matter of putting the following code into a gtest.cpp file located at /tests/gtest.cpp:
#include "gtest/gtest.h" // we will add the path to C preprocessor later
TEST(CategoryTest, SpecificTest)
{
ASSERT_EQ(0, 0);
}
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
This runs only the simple test 0=0. To create a test for your library, you need to read the primer. You'll notice we don't need a header for this (yet). We are linking to the file "gtest/gtest.h", so we'll need to make sure that we tell automake to include a directory that has gtest/gtest.h.
Next, we need to tell automake that we want to build a test and run it. The test is going to build into an executable that we don't want to install. Then automake is going to run that executable. It will report whether that executable says the tests passed or failed.
Automake does that by looking in the makefile for the variable check_PROGRAMS. These are the programs it will compile, but it won't necessarily run them. So we add to /tests/Makefile.am:
check_PROGRAMS = gtest
gtest_SOURCES = gtest.cpp
gtest_LDADD = libgtest.la
gtest_LDFLAGS = -pthread
gtest_CPPFLAGS = -I$(top_srcdir)/googletest/googletest/include -I$(top_srcdir)/googletest/googletest -pthread
The gtest_SOURCES finds the /tests/gtest.cpp file and compiles it. gtest_LDADD links against libgtest.la which will be compiled into the /tests directory. Google wants us to use the gtest_LDFLAGS line to enable pthreads. Finally, we need to include the location where the header "gtest/gtest.h" will be found, and that is the gtest_CPPFLAGS line. Google also wants us to include the /googletest/googletest location, and include the
The state of things: The Google Test library libgtest.la will compile with make into the directory /tests, but not be installed. The binary gtest will only be compiled with make check, but will not be installed.
Next we want to tell automake to actually run the compiled binary gtest and report errors. This is accomplished by adding a line to /tests/Makefile.am:
TESTS = gtest
The final /tests/Makefile.am looks like this:
check_LTLIBRARIES = libgtest.la
libgtest_la_SOURCES = ../googletest/googletest/src/gtest-all.cc
libgtest_la_CPPFLAGS = -I$(top_srcdir)/googletest/googletest/include -I$(top_srcdir)/googletest/googletest -pthread
check_PROGRAMS = gtest demo
gtest_SOURCES = gtest.cpp ../src/fields.cpp
gtest_LDADD = libgtest.la
gtest_LDFLAGS = -pthread
gtest_CPPFLAGS = -I$(top_srcdir)/googletest/googletest/include -I$(top_srcdir)/src
demo_SOURCES = demo.cpp ../src/fields.cpp
demo_CPPFLAGS = -I$(top_srcdir)/src
TESTS = gtest
Now, autoreconf -fiv (note any errors and hopefully fix them) from /, and make check and you should get a test that runs:
build(dev)$ make check
Making check in tests
/Applications/Xcode.app/Contents/Developer/usr/bin/make gtest
make[2]: `gtest' is up to date.
/Applications/Xcode.app/Contents/Developer/usr/bin/make check-TESTS
PASS: gtest
============================================================================
Testsuite summary for IonMotion 0.0.1
============================================================================
# TOTAL: 1
# PASS: 1
# SKIP: 0
# XFAIL: 0
# FAIL: 0
# XPASS: 0
# ERROR: 0
============================================================================
Here is a sample Makefile.am for the unit test project (project name: TestProject). It depends on GTEST and GMOCK:
Makefile.am
#######################################
# The list of executables we are building seperated by spaces
# the 'bin_' indicates that these build products will be installed
# in the $(bindir) directory. For example /usr/bin
#bin_PROGRAMS=exampleProgram
# Because a.out is only a sample program we don't want it to be installed.
# The 'noinst_' prefix indicates that the following targets are not to be
# installed.
noinst_PROGRAMS=utTestProject
#######################################
# Build information for each executable. The variable name is derived
# by use the name of the executable with each non alpha-numeric character is
# replaced by '_'. So a.out becomes a_out and the appropriate suffex added.
# '_SOURCES' for example.
# Sources for the a.out
utTestProject_SOURCES= \
utTestProject.cpp
# Library dependencies
utTestProject_LDADD = \
$(top_srcdir)/../TestProject/build/${host}/libTestProject/.libs/libTestProject.a \
../$(PATH_TO_GTEST)/lib/libgtest.a \
../$(PATH_TO_GMOCK)/lib/libgmock.a
# Compiler options for a.out
utTestProject_CPPFLAGS = \
-std=c++11 \
-I../$(PATH_TO_GTEST)/include \
-I../$(PATH_TO_GMOCK)/include \
-I$(top_srcdir)/include \
-I$(top_srcdir)/..
TESTS = utTestProject
TESTS_ENVIRONMENT = export UT_FOLDER_PATH=$(top_srcdir)/utTestProject; \
export GTEST_OUTPUT="xml";
Compiling gtest:
# Useful vars
SourceVersionedArchiveFolderName="gtest-1.7.0"
#
# Make it
#
pushd .
cd ./${SourceVersionedArchiveFolderName}/make
make gtest.a
if [ $? != 0 ]; then
echo "$0: Make failed"
exit 1
fi
popd
It's worth noting that Googletest doesn't officially maintain its Autotools integration anymore:
Before settling on CMake, we have been providing hand-maintained build
projects/scripts for Visual Studio, Xcode, and Autotools. While we
continue to provide them for convenience, they are not actively
maintained any more. We highly recommend that you follow the
instructions in the above sections to integrate Google Test with your
existing build system.
https://github.com/google/googletest/tree/master/googletest#legacy-build-scripts
It's now recommended to build Googletest with CMake.
Making GoogleTest's source code available to the main build can be
done a few different ways:
Download the GoogleTest source code manually and place it at a known
location. This is the least flexible approach and can make it more
difficult to use with continuous integration systems, etc.
Embed the
GoogleTest source code as a direct copy in the main project's source
tree. This is often the simplest approach, but is also the hardest to
keep up to date. Some organizations may not permit this method.
Add
GoogleTest as a git submodule or equivalent. This may not always be
possible or appropriate. Git submodules, for example, have their own
set of advantages and drawbacks.
Use CMake to download GoogleTest as
part of the build's configure step. This is just a little more
complex, but doesn't have the limitations of the other methods.
https://github.com/google/googletest/tree/master/googletest#incorporating-into-an-existing-cmake-project

Autotools: Including a prebuilt 3rd party library

I'm currently working to upgrade a set of c++ binaries that each use their own set of Makefiles to something more modern based off of Autotools. However I can't figure out how to include a third party library (eg. the Oracle Instant Client) into the build/packaging process.
Is this something really simple that I've missed?
Edit to add more detail
My current build environment looks like the following:
/src
/lib
/libfoo
... source and header files
Makefile
/oci #Oracle Instant Client
... header and shared libraries
Makefile
/bin
/bar
... source and header files
Makefile
Makefile
/build
/bin
/lib
build.sh
Today the top level build.sh does the following steps:
Runs each lib's Makefile and copies the output to /build/lib
Runs each binary's Makefile and copied the output to /build/bin
Each Makefile has a set of hardcoded paths to the various sibling directories. Needless to say this has become a nightmare to maintain. I have started testing out autotools but where I am stuck is figuring out the equivalent to copying /src/lib/oci/*.so to /build/lib for compile time linking and bundling into a distribution.
I figured out how to make this happen.
First I switched to a non recursive make.
Next I made the following changes to configure.am as per this page http://www.openismus.com/documents/linux/using_libraries/using_libraries
AC_ARG_WITH([oci-include-path],
[AS_HELP_STRING([--with-oci-include-path],
[location of the oci headers, defaults to lib/oci])],
[OCI_CFLAGS="-$withval"],
[OCI_CFLAGS="-Ilib/oci"])
AC_SUBST([OCI_CFLAGS])
AC_ARG_WITH([oci-lib-path],
[AS_HELP_STRING([--with-oci-lib-path],
[location of the oci libraries, defaults to lib/oci])],
[OCI_LIBS="-L$withval -lclntsh -lnnz11"],
[OCI_LIBS='-L./lib/oci -lclntsh -lnnz11'])
AC_SUBST([OCI_LIBS])
In the Makefile.am you then use the following lines (assuming a binary named foo)
foo_CPPFLAGS = $(OCI_CFLAGS)
foo_LDADD = libnavycommon.la $(OCI_LIBS)
ocidir = $(libdir)
oci_DATA = lib/oci/libclntsh.so.11.1 \
lib/oci/libnnz11.so \
lib/oci/libocci.so.11.1 \
lib/oci/libociicus.so \
lib/oci/libocijdbc11.so
The autotools are not a package management system, and attempting to put that type of functionality in is a bad idea. Rather than incorporating the third party library into your distribution, you should simply have the configure script check for its existence and abort if the required library is not available. The onus is on the user to satisfy the dependency. You can then release a binary package that will allow the user to use the package management system to simplify dependency resolution.