c++98 struct default to zero except one value - c++

This is certainly related to a bunch of other questions which have been answered, but I have been unable to derive the answer for my specific case from them, largely because I'm not actually a programmer; I'm just an engineer who happens to have to write some code.
Here's the situation:
I have a bunch of variables I'd like to collect together, probably into a structure.
All but two I would like to initialize to zero; two specific variables (which don't happen to be the first two) need to be initialized to one.
The actual names are unique and meaningful enough that using a vector wouldn't be appropriate, plus there are some doubles in there too. I'm keeping my example below simple for clarity.
Because of the project I'm working on, I'm stuck with C++98, so even if C++11 has more elegant solutions, they won't work for me.
I am thinking something along these lines for the structure itself:
struct allFlags
{
int flagAA;
int flagAB;
int flagAC;
int flagAD;
int flagAE;
// ...
// there's about 100 variables total
// ...
int flagZZ;
};
I want to have all the flags initialized to 0 except for flagAD and flagAE, which should be 1.
So first of all, I am not sure if I should use typedef struct allFlags or struct allFlags. Next, I am not sure if I should be creating a constructor (which I think only would apply in the case of no typedef?) or making the defaults happens when I instantiate the structure. I have seen things like this (which would be put inside the struct definition):
allFlags() : flagAD(1), flagAE(1) { /*not sure of I'd need anything here*/ }
but I wouldn't want to have to list out all other ~98 variables by name individually in the constructor body to set them to zero. I have also seen things using memset which could potentially help, but I'm not sure the best way to do it.
And finally one additional related question is how to actually declare an instance of my structure (which results in the initial values I want). It looks like sometimes a struct is instantiated with the new keyword and sometimes is it treated more like a base data type, i.e. I have seen both of these in searching:
allFlags flagset1;
flagset2 = new allFlags;
I have also seen syntax which would be like this rather than using a constructor at all:
allFlags flagset3 = {}; // to zero all fields first
flagset3.flagAD = 1;
flagset3.flagAE = 1;
but I'd rather keep the instantiation as clean and simple as possible.
Please forgive the question. I have tried to do my homework before asking, but my C++ knowledge is mediocre at best and so some of the seemingly relevant answers I've found I either didn't fully understand or just raised more questions.

If you feel comfortable with using templates, you can use a class template to automate clean initialization of all member variables of allFlags.
// class template to help initialize members cleanly.
template <typename T>
struct flag
{
// Constructors
flag() : val(0) {}
flag(T const& v) : val(v) {}
// Automatic cast operators to T
operator T& () { return val; }
operator T const& () const { return val; }
// Comparison operators
bool operator==(flag const& rhs) const { return val == rhs.val; }
bool operator!=(flag const& rhs) const { return val != rhs.val; }
bool operator<(flag const& rhs) const { return val < rhs.val; }
T val;
};
typedef flag<int> IntFlag;
typedef flag<double> DoubleFlag;
struct allFlags
{
// Initialize all flags bug flagAD to zero.
allFlags() : flagAD(1) {}
IntFlag flagAA;
IntFlag flagAB;
IntFlag flagAC;
IntFlag flagAD;
IntFlag flagAE;
IntFlag flagZZ;
};
#include <iostream>
int main()
{
allFlags f;
std::cout << f.flagAA << " " << f.flagAD << std::endl;
}
Output:
0 1

You answered your own question quite well:
allFlags flagset3 = {}; // to zero all fields first
flagset3.flagAD = 1;
flagset3.flagAE = 1;
It is clean, and very clear about your intentions. Later, when someone else has to read your code they will understand exactly what you are trying to do.
It is similar to what you see in device driver programming:
registerX = 0 | 1 << BIT2 | 1 << BIT3;

Related

why does this return a unexpected value?

# include <iostream>
using namespace std;
class Something
{
public:
int data;
Something(int data)
{
data = data; //
}
};
int main()
{
Something s = Something(4);
cout << s.data << endl;
return 0;
}
When I run the above code, I got output 32764. I know it can be fixed by changing data = data by
(*this).data = data or this->data = data. I was just thought the above code would work out also.
You should prefer initialization over assignment:
Something(int data) : data(data) {}
In your code data is the local variable, the parameter passed to the constructor. You are assigning the value of data to data which effectively does nothing.
Here : data(data) is special syntax for the constructors initializer list. data(...) is the class member, while ...(data) is the parameter. Note that this is a special case where you can refer to two different variables via the exact same name. You can still use a different name for the parameter, what you choose is only based on opinions, personal perference and possibly coding standards you have to adhere to.
Something(int data)
{
data = data; //
}
I consider this a really bad way to code this. You've defined a method that overrides a class-level variable, which is a really bad idea. To fix this, you can do one of two things:
Something(int _data)
{
data = _data; //
}
Something(int data)
{
this->data = data; //
}
I do the first one. I think it's evil to hide class variables, but you'll find a lot of code that does the second, at least in constructors. A lot of IDEs will flag this as a warning.

How can I write a function to modify a struct's member value without knowing the member's name ahead of time?

Say I have a struct that has a bunch of member variables. I want to write a function that will set the value of any of those members (along with a few other things, but I think that is beyond the scope of the question). Something like (but obviously not) this:
struct A
{
A() { /* do stuff */ }
bool a1;
bool a2;
bool a3;
void set_member(???);
bool get_member(???);
};
A a;
a.set_member(a1, true);
bool value = a.get_member(a1);
Now, my first thought is to use an array instead of a bunch of named variables. I would like to do that, but this is code that I would not like to touch in that way if I can help it (it is legacy). It has a constructor so I'm not even sure if it will maintain it's binary serializablility characteristics since it is not a POD. Even if it were a POD, I'm still not convinced as a1, a2 and a3 can have different alignment than that on an array of bools.
So, going back to the original question, is there a way of doing this? Perhaps with some template trick that I'm not aware of yet?
You can use a pointer-to-member:
void set_member(bool A::*var, bool value)
{
this->*var = value;
}
A a;
a.set_member(&A::a1, true);
A templatized version is straightforward:
template<typename T>
void set_member(T A::*var, T value)
{
this->*var = value;
}
But I don't see the reason for doing this if you already know the name of the variable.
If all contiguous members are the same data type, you could use pointer arithmetic:
void set_member(size_t var, bool val)
{
*(&a1+var) = val;
}
bool get_member(size_t var) const
{
return *(&a1+var);
}
A a;
a.set_member(1, true);
bool value = a.get_member(1);
But this can cause memory corruption or access violations if you use the wrong value of 'var'.

Simple C++ getter/setters

Lately I'm writing my getter and setters as (note: real classes do more things in getter/setter):
struct A {
const int& value() const { return value_; } // getter
int& value() { return value_; } // getter/setter
private:
int value_;
};
which allows me to do the following:
auto a = A{2}; // non-const object a
// create copies by "default" (value always returns a ref!):
int b = a.value(); // b = 2, is a copy of value :)
auto c = a.value(); // c = 2, is a copy of value :)
// create references explicitly:
auto& d = a.value(); // d is a ref to a.value_ :)
decltype(a.value()) e = a.value(); // e is a ref to a.value_ :)
a.value() = 3; // sets a.value_ = 3 :)
cout << b << " " << c << " " << d << " " << e << endl; // 2 2 3 3
const auto ca = A{1};
const auto& f = ca.value(); // f is a const ref to ca.value_ :)
auto& g = ca.value(); // no compiler error! :(
// g = 4; // compiler error :)
decltype(ca.value()) h = ca.value(); // h is a const ref to ca.value_ :)
//ca.value() = 2; // compiler error! :)
cout << f << " " << g << " " << h << endl; // 1 1 1
This approach doesn't allow me to:
validate the input for the setter (which is a big BUT),
return by value in the const member function (because I want the compiler to catch assignment to const objects: ca.value() = 2). Update: see cluracan answer below.
However, I'm still using this a lot because
most of the time I don't need that,
this allows me to decouple the implementation details of my classes from their interface, which is just what I want.
Example:
struct A {
const int& value(const std::size_t i) const { return values_[i]; }
int& value(const std::size_t i) { return values_[i]; }
private:
std::vector<int> values_;
// Storing the values in a vector/list/etc is an implementation detail.
// - I can validate the index, but not the value :(
// - I can change the type of values, without affecting clients :)
};
Now to the questions:
Are there any other disadvantages of this approach that I'm failing to see?
Why do people prefer:
getter/setters methods with different names?
passing the value as a parameter?
just for validating input or are there any other main reasons?
Generally using accessors/mutators at all is a design smell that your class public interface is incomplete. Typically speaking you want a useful public interface that provides meaningful functionality rather than simply get/set (which is just one or two steps better than we were in C with structs and functions). Every time you want to write a mutator, and many times you want to write an accessor first just take a step back and ask yourself "do I *really* need this?".
Just idiom-wise people may not be prepared to expect such a function so it will increase a maintainer's time to grok your code.
The same-named methods are almost the same as the public member: just use a public member in that case. When the methods do two different things, name them two different things.
The "mutator" returning by non-const reference would allow for a wide variety of aliasing problems where someone stashes off an alias to the member, relying on it to exist later. By using a separate setter function you prevent people from aliasing to your private data.
This approach doesn't allow me to:
return by value in the const member function (because I want the compiler to catch assignment to const objects ca.value() = 2).
I don't get what you mean. If you mean what I think you mean - you're going to be pleasantly surprised :) Just try to have the const member return by value and see if you can do ca.value()=2...
But my main question, if you want some kind of input validation, why not use a dedicated setter and a dedicated getter
struct A {
int value() const { return value_; } // getter
void value(int v) { value_=v; } // setter
private:
int value_;
};
It will even reduce the amount typing! (by one '=') when you set. The only downside to this is that you can't pass the value by reference to a function that modifies it.
Regarding your second example after the edit, with the vector - using your getter/setter makes even more sense than your original example as you want to give access to the values (allow the user to change the values) but NOT to the vector (you don't want the user to be able to change the size of the vector).
So even though in the first example I really would recommend making the member public, in the second one it is clearly not an option, and using this form of getters / setters really is a good option if no input validation is needed.
Also, when I have classes like your second type (with the vector) I like giving access to the begin and end iterators. This allows more flexibility of using the data with standard tools (while still not allowing the user to change the vector size, and allowing easy change in container type)
Another bonus to this is that random access iterators have an operator[] (like pointers) so you can do
vector<int>::iterator A::value_begin() {return values_.begin();}
vector<int>::const_iterator A::value_begin()const{return values_.begin();}
...
a.value_begin()[252]=3;
int b=a.value_begin()[4];
vector<int> c(a.value_begin(),a.value_end())
(although it maybe ugly enough that you'd still want your getters/setters in addition to this)
REGARDING INPUT VALIDATION:
In your example, the assignment happens in the calling code. If you want to validate user input, you need to pass the value to be validated into your struct object. This means you need to use member functions (methods). For example,
struct A {
// getter
int& getValue() const { return value_; }
// setter
void setValue(const int& value) {
// validate value here
value_ = value;
}
private:
int value_;
};
By the way, .NET properties are implemented are methods under the hood.

C++ similar behavior to java.lang.Enum<E> [duplicate]

It is common knowledge that built-in enums in C++ are not typesafe.
I was wondering which classes implementing typesafe enums are used out there...
I myself use the following "bicycle", but it is somewhat verbose and limited:
typesafeenum.h:
struct TypesafeEnum
{
// Construction:
public:
TypesafeEnum(): id (next_id++), name("") {}
TypesafeEnum(const std::string& n): id(next_id++), name(n) {}
// Operations:
public:
bool operator == (const TypesafeEnum& right) const;
bool operator != (const TypesafeEnum& right) const;
bool operator < (const TypesafeEnum& right) const;
std::string to_string() const { return name; }
// Implementation:
private:
static int next_id;
int id;
std::string name;
};
typesafeenum.cpp:
int TypesafeEnum::next_id = 1;
bool TypesafeEnum::operator== (const TypesafeEnum& right) const
{ return id == right.id; }
bool TypesafeEnum::operator!= (const TypesafeEnum& right) const
{ return !operator== (right); }
bool TypesafeEnum::operator< (const TypesafeEnum& right) const
{ return id < right.id; }
Usage:
class Dialog
{
...
struct Result: public TypesafeEnum
{
static const Result CANCEL("Cancel");
static const Result OK("Ok");
};
Result doModal();
...
};
const Dialog::Result Dialog::Result::OK;
const Dialog::Result Dialog::Result::CANCEL;
Addition:
I think I should have been more specific about the requirements. I'll try to summarize them:
Priority 1: Setting an enum variable to an invalid value should be impossible (a compile-time error) with no exceptions.
Priority 2: Converting an enum value to/from an int should be possible with a single explicit function/method call.
Priority 3: As compact, elegant and convenient declaration and usage as possible
Priority 4: Converting enum values to and from strings.
Priority 5: (Nice to have) Possibility to iterate over enum values.
I'm currently playing around with the Boost.Enum proposal from the Boost Vault (filename enum_rev4.6.zip). Although it was never officially submitted for inclusion into Boost, it's useable as-is. (Documentation is lacking but is made up for by clear source code and good tests.)
Boost.Enum lets you declare an enum like this:
BOOST_ENUM_VALUES(Level, const char*,
(Abort)("unrecoverable problem")
(Error)("recoverable problem")
(Alert)("unexpected behavior")
(Info) ("expected behavior")
(Trace)("normal flow of execution")
(Debug)("detailed object state listings")
)
And have it automatically expand to this:
class Level : public boost::detail::enum_base<Level, string>
{
public:
enum domain
{
Abort,
Error,
Alert,
Info,
Trace,
Debug,
};
BOOST_STATIC_CONSTANT(index_type, size = 6);
Level() {}
Level(domain index) : boost::detail::enum_base<Level, string>(index) {}
typedef boost::optional<Level> optional;
static optional get_by_name(const char* str)
{
if(strcmp(str, "Abort") == 0) return optional(Abort);
if(strcmp(str, "Error") == 0) return optional(Error);
if(strcmp(str, "Alert") == 0) return optional(Alert);
if(strcmp(str, "Info") == 0) return optional(Info);
if(strcmp(str, "Trace") == 0) return optional(Trace);
if(strcmp(str, "Debug") == 0) return optional(Debug);
return optional();
}
private:
friend class boost::detail::enum_base<Level, string>;
static const char* names(domain index)
{
switch(index)
{
case Abort: return "Abort";
case Error: return "Error";
case Alert: return "Alert";
case Info: return "Info";
case Trace: return "Trace";
case Debug: return "Debug";
default: return NULL;
}
}
typedef boost::optional<value_type> optional_value;
static optional_value values(domain index)
{
switch(index)
{
case Abort: return optional_value("unrecoverable problem");
case Error: return optional_value("recoverable problem");
case Alert: return optional_value("unexpected behavior");
case Info: return optional_value("expected behavior");
case Trace: return optional_value("normal flow of execution");
case Debug: return optional_value("detailed object state listings");
default: return optional_value();
}
}
};
It satisfies all five of the priorities which you list.
A nice compromise method is this:
struct Flintstones {
enum E {
Fred,
Barney,
Wilma
};
};
Flintstones::E fred = Flintstones::Fred;
Flintstones::E barney = Flintstones::Barney;
It's not typesafe in the same sense that your version is, but the usage is nicer than standard enums, and you can still take advantage of integer conversion when you need it.
I use C++0x typesafe enums. I use some helper template/macros that provide the to/from string functionality.
enum class Result { Ok, Cancel};
I don't. Way too much overhead for little benefit. Also, being able to caste enumerations to different data types for serialization is a very handy tool. I have never seen an instance where a "Type safe" enumeration would be worth the overhead and complexity where C++ offers a good enough implementation already.
My take is that you're inventing a problem and then fitting a solution onto it. I see no need to do an elaborate framework for an enumeration of values. If you are dedicated to having your values only be members of a certain set, you could hack up a variant of a unique set datatype.
I'm personally using an adapted version of the typesafe enum idiom. It doesn't provide all the five "requirements" that you've stated in your edit, but I strongly disagree with some of them anyway. For example, I don't see how Prio#4 (conversion of values to strings) has anything to do with type safety. Most of the time string representation of individual values should be separate from the definition of the type anyway (think i18n for a simple reason why). Prio#5 (iteratio, which is optional) is one of the nicest things I'd like to see naturally happening in enums, so I felt sad that it appears as "optional" in your request, but it seems it is better addressed via a separate iteration system such as begin/end functions or an enum_iterator, which makes them work seamlessly with STL and C++11 foreach.
OTOH this simple idiom nicely provides Prio#3 Prio#1 thanks to the fact that it mostly only wraps enums with more type information. Not to mention it is a very simple solution that for the most part doesn't require any external dependency headers, so it's pretty easy to carry around. It also has the advantage of making enumerations scoped a-la-C++11:
// This doesn't compile, and if it did it wouldn't work anyway
enum colors { salmon, .... };
enum fishes { salmon, .... };
// This, however, works seamlessly.
struct colors_def { enum type { salmon, .... }; };
struct fishes_def { enum type { salmon, .... }; };
typedef typesafe_enum<colors_def> colors;
typedef typesafe_enum<fishes_def> fishes;
The only "hole" that solution provides is that it doesn't address the fact that it doesn't prevent enums of different types (or an enum and an int) from being directly compared, because when you use values directly you force the implicit conversion to int:
if (colors::salmon == fishes::salmon) { .../* Ooops! */... }
But so far I've found such problems can be solved by simply offering a better comparison to the compiler - for example, explicitly providing an operator that compares any two different enum types, then forcing it to fail:
// I'm using backports of C++11 utilities like static_assert and enable_if
template <typename Enum1, typename Enum2>
typename enable_if< (is_enum<Enum1>::value && is_enum<Enum2>::value) && (false == is_same<Enum1,Enum2>::value) , bool >
::type operator== (Enum1, Enum2) {
static_assert (false, "Comparing enumerations of different types!");
}
Though it doesn't seem to break code so far, and it does to explicitly deal with the specific problem without doing something else, I'm not sure it such thing is a thing one "should" do (I suspect it will interfere with enums already taking part in conversion operators declared elsewhere; I'd gladly receive commentary about this).
Combining this with the above typesafe idiom gives something that is relatively close to C++11 enum class in humanibility (readability and maintainability) without having to do anything too obscure. And I have to admit it was fun to do, I had never thought to actually ask the compiler if I was dealing with enums or not...
I think the Java enum would be a good model to follow. Essentially, the Java form would look like this:
public enum Result {
OK("OK"), CANCEL("Cancel");
private final String name;
Result(String name) {
this.name = name;
}
public String getName() {
return name;
}
}
What's interesting about the Java approach is that OK and CANCEL are immutable, singleton instances of Result (with the methods that you see). You cannot create any further instances of Result. Since they're singletons, you can compare by pointer/reference---very handy. :-)
ETA: In Java, instead of doing bitmasks by hand, instead you use an EnumSet to specify a bit set (it implements the Set interface, and works like sets---but implemented using bitmasks). Much more readable than hand-written bitmask manipulation!
I gave an answer to this here, on a different topic. It's a different style of approach which allows most of the same functionality without requiring modification to the original enum definition (and consequently allowing usage in cases where you don't define the enum). It also allows runtime range checking.
The downside of my approach is that it doesn't programmatically enforce the coupling between the enum and the helper class, so they have to be updated in parallel. It works for me, but YMMV.
I am currently writing my own typesafe enum library at https://bitbucket.org/chopsii/typesafe-enums
I am not the most experienced C++ developer ever, but I am writing this due to the shortcomings of the BOOST vault enums.
Feel free to check it out and use them yourself, but they have some (hopefully minor) usability issues, and are probably not at all cross-platform.
Please contribute if you want to. This is my first open source undertaking.
Use boost::variant!
After trying a lot of the above ideas and finding them lacking I hit upon this simple approach:
#include <iostream>
#include <boost/variant.hpp>
struct A_t {};
static const A_t A = A_t();
template <typename T>
bool isA(const T & x) { if(boost::get<A_t>(&x)) return true; return false; }
struct B_t {};
static const B_t B = B_t();
template <typename T>
bool isB(const T & x) { if(boost::get<B_t>(&x)) return true; return false; }
struct C_t {};
static const C_t C = C_t();
template <typename T>
bool isC(const T & x) { if(boost::get<C_t>(&x)) return true; return false; }
typedef boost::variant<A_t, B_t> AB;
typedef boost::variant<B_t, C_t> BC;
void ab(const AB & e)
{
if(isA(e))
std::cerr << "A!" << std::endl;
if(isB(e))
std::cerr << "B!" << std::endl;
// ERROR:
// if(isC(e))
// std::cerr << "C!" << std::endl;
// ERROR:
// if(e == 0)
// std::cerr << "B!" << std::endl;
}
void bc(const BC & e)
{
// ERROR:
// if(isA(e))
// std::cerr << "A!" << std::endl;
if(isB(e))
std::cerr << "B!" << std::endl;
if(isC(e))
std::cerr << "C!" << std::endl;
}
int main() {
AB a;
a = A;
AB b;
b = B;
ab(a);
ab(b);
ab(A);
ab(B);
// ab(C); // ERROR
// bc(A); // ERROR
bc(B);
bc(C);
}
You can probably come up with a macro to generate the boilerplate. (Let me know if you do.)
Unlike other approaches this one is actually type-safe and works with old C++. You can even make cool types like boost::variant<int, A_t, B_t, boost::none>, for example, to represent a value that could be A, B, an integer or nothing which is almost Haskell98 levels of type safety.
Downsides to be aware of:
at-least with old boost -- I'm on a system with boost 1.33 -- you are limited to 20 items in your variant; there is a work-around however
affects compile time
insane error messages -- but that's C++ for you
Update
Here, for your convenience is your typesafe-enum "library". Paste this header:
#ifndef _TYPESAFE_ENUMS_H
#define _TYPESAFE_ENUMS_H
#include <string>
#include <boost/variant.hpp>
#define ITEM(NAME, VAL) \
struct NAME##_t { \
std::string toStr() const { return std::string( #NAME ); } \
int toInt() const { return VAL; } \
}; \
static const NAME##_t NAME = NAME##_t(); \
template <typename T> \
bool is##NAME(const T & x) { if(boost::get<NAME##_t>(&x)) return true; return false; } \
class toStr_visitor: public boost::static_visitor<std::string> {
public:
template<typename T>
std::string operator()(const T & a) const {
return a.toStr();
}
};
template<BOOST_VARIANT_ENUM_PARAMS(typename T)>
inline static
std::string toStr(const boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> & a) {
return boost::apply_visitor(toStr_visitor(), a);
}
class toInt_visitor: public boost::static_visitor<int> {
public:
template<typename T>
int operator()(const T & a) const {
return a.toInt();
}
};
template<BOOST_VARIANT_ENUM_PARAMS(typename T)>
inline static
int toInt(const boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> & a) {
return boost::apply_visitor(toInt_visitor(), a);
}
#define ENUM(...) \
typedef boost::variant<__VA_ARGS__>
#endif
And use it like:
ITEM(A, 0);
ITEM(B, 1);
ITEM(C, 2);
ENUM(A_t, B_t) AB;
ENUM(B_t, C_t) BC;
Notice you have to say A_t instead of A in the ENUM macro which destroys some of the magic. Oh well. Also, notice there's now a toStr function and a toInt function to meet OPs requirement of simple conversion to strings and ints. The requirement I can't figure out is a way to iterate over the items. Let me know if you know how to write such a thing.
Not sure if this post is too late, but there's an article on GameDev.net which satisfies all but the 5th point (ability to iterate over enumerators):
http://www.gamedev.net/reference/snippets/features/cppstringizing/
The method described by the article allows string conversion support for existing enumerations without changing their code. If you only want support for new enumerations though, I'd go with Boost.Enum (mentioned above).

generic non-invasive cache wrapper

I'm trying create a class which adds functionality to a generic class, without directly interfacing with the wrapped class. A good example of this would be a smart pointer. Specifically, I'd like to create a wrapper which caches all the i/o for one (or any?) method invoked through the wrapper. Ideally, the cache wrapper have the following properties:
it would not require the wrapping class to be changed in any way (i.e. generic)
it would not require the wrapped class to be changed in any way (i.e. generic)
it would not change the interface or syntax for using the object significantly
For example, it would be really nice to use it like this:
CacheWrapper<NumberCruncher> crunchy;
...
// do some long and ugly calculation, caching method input/output
result = crunchy->calculate(input);
...
// no calculation, use cached result
result = crunchy->calculate(input);
although something goofy like this would be ok:
result = crunchy.dispatch (&NumberCruncher::calculate, input);
I feel like this should be possible in C++, although possibly with some syntactic gymnastics somewhere along the line.
Any ideas?
I think I have the answer you are seeking, or, at least, I almost do. It uses the dispatch style you suggested was goofy, but I think it meets the first two criteria you set forth, and more or less meets the third.
The wrapping class does not have to be modified at all.
It doesn't modify the wrapped class at all.
It only changes the syntax by introducing a dispatch function.
The basic idea is to create a template class, whose parameter is the class of the object to be wrapped, with a template dispatch method, whose parameters are the argument and return types of a member function. The dispatch method looks up the passed in member function pointer to see if it has been called before. If so, it retrieves the record of previous method arguments and calculated results to return the previously calculated value for the argument given to dispatch, or to calculate it if it is new.
Since what this wrapping class does is also called memoization, I've elected to call the template Memo because that is shorter to type than CacheWrapper and I'm starting to prefer shorter names in my old age.
#include <algorithm>
#include <map>
#include <utility>
#include <vector>
// An anonymous namespace to hold a search predicate definition. Users of
// Memo don't need to know this implementation detail, so I keep it
// anonymous. I use a predicate to search a vector of pairs instead of a
// simple map because a map requires that operator< be defined for its key
// type, and operator< isn't defined for member function pointers, but
// operator== is.
namespace {
template <typename Type1, typename Type2>
class FirstEq {
FirstType value;
public:
typedef std::pair<Type1, Type2> ArgType;
FirstEq(Type1 t) : value(t) {}
bool operator()(const ArgType& rhs) const {
return value == rhs.first;
}
};
};
template <typename T>
class Memo {
// Typedef for a member function of T. The C++ standard allows casting a
// member function of a class with one signature to a type of another
// member function of the class with a possibly different signature. You
// aren't guaranteed to be able to call the member function after
// casting, but you can use the pointer for comparisons, which is all we
// need to do.
typedef void (T::*TMemFun)(void);
typedef std::vector< std::pair<TMemFun, void*> > FuncRecords;
T memoized;
FuncRecords funcCalls;
public:
Memo(T t) : memoized(t) {}
template <typename ReturnType, typename ArgType>
ReturnType dispatch(ReturnType (T::* memFun)(ArgType), ArgType arg) {
typedef std::map<ArgType, ReturnType> Record;
// Look up memFun in the record of previously invoked member
// functions. If this is the first invocation, create a new record.
typename FuncRecords::iterator recIter =
find_if(funcCalls.begin(),
funcCalls.end(),
FirstEq<TMemFun, void*>(
reinterpret_cast<TMemFun>(memFun)));
if (recIter == funcCalls.end()) {
funcCalls.push_back(
std::make_pair(reinterpret_cast<TMemFun>(memFun),
static_cast<void*>(new Record)));
recIter = --funcCalls.end();
}
// Get the record of previous arguments and return values.
// Find the previously calculated value, or calculate it if
// necessary.
Record* rec = static_cast<Record*>(
recIter->second);
typename Record::iterator callIter = rec->lower_bound(arg);
if (callIter == rec->end() || callIter->first != arg) {
callIter = rec->insert(callIter,
std::make_pair(arg,
(memoized.*memFun)(arg)));
}
return callIter->second;
}
};
Here is a simple test showing its use:
#include <iostream>
#include <sstream>
#include "Memo.h"
using namespace std;
struct C {
int three(int x) {
cout << "Called three(" << x << ")" << endl;
return 3;
}
double square(float x) {
cout << "Called square(" << x << ")" << endl;
return x * x;
}
};
int main(void) {
C c;
Memo<C> m(c);
cout << m.dispatch(&C::three, 1) << endl;
cout << m.dispatch(&C::three, 2) << endl;
cout << m.dispatch(&C::three, 1) << endl;
cout << m.dispatch(&C::three, 2) << endl;
cout << m.dispatch(&C::square, 2.3f) << endl;
cout << m.dispatch(&C::square, 2.3f) << endl;
return 0;
}
Which produces the following output on my system (MacOS 10.4.11 using g++ 4.0.1):
Called three(1)
3
Called three(2)
3
3
3
Called square(2.3)
5.29
5.29
NOTES
This only works for methods which take 1 argument and return a result. It doesn't work for methods which take 0 arguments, or 2, or 3, or more arguments. This shouldn't be a big problem, though. You can implement overloaded versions of dispatch which take different numbers of arguments up to some reasonable max. This is what the Boost Tuple library does. They implement tuples of up to 10 elements and assume most programmers don't need more than that.
The possibility of implementing multiple overloads for dispatch is why I used the FirstEq predicate template with the find_if algorithm instead of a simple for loop search. It is a little more code for a single use, but if you are going to do a similar search multiple times, it ends up being less code overall and less chance to get one of the loops subtlely wrong.
It doesn't work for methods returning nothing, i.e. void, but if the method doesn't return anything, then you don't need to cache the result!
It doesn't work for template member functions of the wrapped class because you need to pass an actual member function pointer to dispatch, and an un-instantiated template function doesn't have a pointer (yet). There may be a way around this, but I haven't tried much yet.
I haven't done much testing of this yet, so it may have some subtle (or not-so-subtle) problems.
I don't think a completely seamless solution which satisfies all your requirements with no change in syntax at all is possible in C++. (though I'd love to be proven wrong!) Hopefully this is close enough.
When I researched this answer, I got a lot of help from this very extensive write up on implementing member function delegates in C++. Anyone who wants to learn way more than they realized was possible to know about member function pointers should give that article a good read.
I don't think this can be easily done using just a wrapper as you'll have to intercept the IO calls, so wrapping a class would put the code at the wrong layer. In essence, you want to substitute the IO code underneath the object, but you're trying to do it from the top layer. If you're thinking of the code as an onion, you're trying to modify the outer skin in order to affect something two or three layers in; IMHO that suggests the design might need a rethink.
If the class that you're trying to wrap/modify this way does allow you to pass in the stream (or whatever IO mechanism you use), then substituting that one for a caching one would be the right thing to do; in essence that would be what you'd be trying to achieve with your wrapper as well.
It looks like a simple task, assuming the "NumberCruncher" has a known interface, let's say int operator(int).
Note that you'll need to make it more complicated to support other interfaces. In order to do so, i'm adding another template parameter, an Adaptor. Adaptor should convert some interface to a known interface. Here's simple and dumb implementation with static method, which is one way to do it. Also look what Functor is.
struct Adaptor1 {
static int invoke(Cached1 & c, int input) {
return(c.foo1(input));
}
};
struct Adaptor2 {
static int invoke(Cached2 & c, int input) {
return(c.foo2(input));
}
};
template class CacheWrapper<typename T, typeneame Adaptor>
{
private:
T m_cachedObj;
std::map<int, int> m_cache;
public:
// add c'tor here
int calculate(int input) {
std::map<int, int>::const_iterator it = m_cache.find(input);
if (it != m_cache.end()) {
return(it->second);
}
int res = Adaptor::invoke(m_cachedObj, input);
m_cache[input] = res;
return(res);
}
};
I think what you need is something like a proxy / decorator (design patterns). You can use templates if you don't need the dynamic part of those patterns. The point is that you need to well define the interface that you will need.
I haven't figured out the case for handling object methods, but I think I've got a good fix for regular functions
template <typename input_t, typename output_t>
class CacheWrapper
{
public:
CacheWrapper (boost::function<output_t (input_t)> f)
: _func(f)
{}
output_t operator() (const input_t& in)
{
if (in != input_)
{
input_ = in;
output_ = _func(in);
}
return output_;
}
private:
boost::function<output_t (input_t)> _func;
input_t input_;
output_t output_;
};
Which would be used as follows:
#include <iostream>
#include "CacheWrapper.h"
double squareit(double x)
{
std::cout << "computing" << std::endl;
return x*x;
}
int main (int argc, char** argv)
{
CacheWrapper<double,double> cached_squareit(squareit);
for (int i=0; i<10; i++)
{
std::cout << cached_squareit (10) << std::endl;
}
}
Any tips on how to get this to work for objects?